• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Line-scanning confocal microscopic imaging based on virtual structured modulation

    2021-04-20 06:06:02ZHAOJiawangZHANGYunhaiWANGFaminMIAOXinSHIXin
    中國光學 2021年2期
    關(guān)鍵詞:顯微鏡振幅分辨率

    ZHAO Jia-wang,ZHANG Yun-hai ,WANG Fa-min,MIAO Xin,SHI Xin

    (1.School of Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China;2.Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology,Chinese Academy of Sciences, Suzhou 215163, China;3.The Second Affiliated Hospital of Soochow University, Suzhou 215000, China)

    Abstract:Resolution in a confocal microscope is limited by the diffraction limit.Structured modulation has been proven to be able to achieve super-resolution in confocal microscopy,however,its limited speed in image acquisition limits its applicability in practical applications.In order to improve its imaging speed,we introduce a method that can achieve rapid super-resolution confocal microscopy by combining line-scanning and structured detection.A cylindrical lens is used to focus the light into a line,and a digital mask with a sinusoidal function is used to modulate the descanned image in the light detection arm.Unlike the virtual structured method,there is no need for a subsequent frequency shift process.In order to improve the isotropic resolution of the system,a scanning angle of 0°and 90°is achieved by rotating the sample.Simulation and experiment results indicate that the spectrum width of coherent transfer function expands and the resolution is 1.4 times as large as that of a conventional confocal microscope.This method increases the system’s imaging acquisition speed 104-fold when compared with a confocal structured modulation microscope that uses spotscanning.

    Key words:line-scanning confocal;super-resolution;virtual structured modulation

    1 Introduction

    Due to the diffraction effect of light wave,the resolution of a traditional optical microscope is limited[1-2].Laser-Scanning Confocal Microscopy(LSCM)has a higher resolution than wide-field microscopy because it uses a tightly focused excitation beam and pinhole detection to suppress the defocusing background light[3-4].However,due to the limitation of pinhole size,the resolution of a confocal microscope with smaller pinhole is achieved at the price of SNR reduction.To achieve their balance,the pinhole size is generally large,resulting in a lateral resolution lower than the ideal result but still within the diffraction limit[5-6].In the past two decades,many super-resolution optical microscopy methods such as Stimulated Emission Depletion(STED)microscopy[7]and Structured Illumination Microscopy(SIM)[8]have been applied.These methods follow two main principles,namely,decreasing the size of Point Spread Function(PSF)and increasing the bandwidth of Optical Transfer Function(OTF)[9].In addition,Stochastic Optical Reconstruction Microscopy(STORM)[10]and Photo-Activated Localization Microscopy(PALM)[11]can achieve super-resolution by using an optically switched fluorescent probe to locate a single molecule.These methods have made breakthroughs in fluorescencelabeled imaging resolution.However,each of them also has some limitations.PALM and STORM have long been limited by their imaging speed.In the STED microscopy,the excitation and emission spectra are required to match the given excitation wavelength and depletion wavelength.SIM can only image optical thin samples[12].

    The structural detection microscope is derived from the principle of structured illumination and its resolution enhancement concept is similar to Moire fringe.By acquiring images through optical masks at different scanning locations,the OTF bandwidth is doubled compared with a traditional microscope[13].However,wide-field space structure illumination is not suitable for a scanning microscope,due to the need for a patterned mask(such as a grating)at the illumination end.With the proposing of Scanning Patterned Illumination(SPIN)microscopy and Scanning Patterned Detection(SPADE)microscopy,super-resolution laser scanning microscope has been realized.These methods have achieved the same effect as SIM in the point scanning system by using the time and space modulation[14].SPADE,also known as Virtual Structure Detection(VSD),has been proven correct.However,since the spot image of each scanning point is needed,the imaging speed in VSD is severely limited[15].

    To overcome the above shortcomings,virtual structured modulation has been applied to largeaperture confocal microscope by means of Linescanning confocal microscopy with Virtually Structured Modulation(LVSM)microscopy[16],thus improving the speed and resolution of confocal microscopic imaging.Its difference from VSD is that no subsequent frequency shift is required.At the same time,thick samples can be imaged due to the unique slicing ability of confocal microscope.Different from most of the other super-resolution imaging methods,this method can image non-fluorescent samples with high resolution and fast imaging speed.

    2 Principle of line-scanning confocal virtual structure modulation

    The reflective confocal coherent imaging system is shown in Fig.1.

    Fig.1 Schematic of reflective confocal microscope system圖1 反射式共聚焦系統(tǒng)示意圖

    Suppose the illumination intensity and the system amplification factor are 1.In the case of unscanning,the phase factor is ignored after the interaction between the illumination light field and the sample.Then the amplitude distribution on the sample surface will be:

    wherehil(x,y)is the two-dimensional amplitude PSF of the illumination path,sis the amplitude distribution of the sample,and(x1,y1)is the location of the sample.After passing through the detection light path,the contribution of the light field amplitude distributionA1(x,y,x1,y1)obtained after the interaction between the sample and the illumination light field to the amplitude of a point(x2,y2)on the image plane can be expressed as:

    wherehde(x,y)is the two-dimensional amplitude PSF of the detection path,andA2(x,y,x1,y1,x2,y2)is the contribution of the amplitude distribution obtained after the interaction between the sample point(x1,y1)and the illumination light field to the point(x2,y2)on the image plane.The superposition of the contributions of all the sample points to the amplitude at that point is just the amplitude detected on the image plane.The amplitude distribution on the whole image plane is:

    whereA3(x1,y1,i,j)is the amplitude distribution on the image plane.If the detection function isD(i,j),then:

    whereA(x1,y1)is the amplitude image finally detected by the detector.Bothhil(x,y)andhde(x,y)are even functions.The definition of convolution is applied to obtain:

    It can be seen from Eq.(5)that the final amplitude image is the superposition of the amplitudes at different positions of the sample.This is a coherent imaging process.The imaging characteristics of the system depend on the amplitude PSF:

    Then the Coherent Transfer Function(CTF)of the system can be expressed as the Fourier transform of APSF:

    whereHil(fx1,fy1)andHde(fx1,fy1)are the CTFs at the illumination end and detection end respectively,?represents two-dimensional convolution,and F is the symbol of Fourier transform.According to Eq.(6),the Intensity Point Spread Function(IPSF)of the system can be expressed as[17]:

    Since the imaging performance of the system is ultimately limited by lens,lighting mode and detection function,the forms of system amplitude PSF under different conditions will be discussed separately.

    The scanning mode in which the lighting mode is point lighting andD(x1,y1)is a virtual pinhole is point-scanning mode.The amplitude PSFs for illumination path and detection path can be derived from the Fourier transform of the lens aperture.The effective detection PSF is the convolution of the detection PSF and the aperture functionD(x1,y1).

    The scanning mode in which the lighting mode is line lighting andD(x1,y1)is a virtual slit is linescanning mode.Compared with point scanning,the amplitude PSF of the detection path remains unchanged.Since a cylindrical lens is introduced to focus the spot on the illumination path,the amplitude PSF of the illumination path will change into Gaussian distribution in one direction and constant distribution in the other direction.Suppose the scanning direction is along theXaxis,that is,the illumination PSF is a constant distribution in theYaxis direction.Then under the paraxial approximation,the amplitude PSF of the illumination path can be written into[18]:

    whereΦ=2πNA/λ,w?1.Therefore,the first term in Eq.(9)can be ignored.This means that the amplitude PSF of the illumination path has a constant excitation along the linear direction.

    The LVSM method proposed in this paper is just the superposition of cosine mask and line scanning(line lighting,andD(x1,y1)=rectangular slit).In this method,the amplitude PSFs for illumination path and detection path are the same as those in linescanning mode,but the detection functionD(x1,y1)changes into:

    wherepis the slit width;sis the length of line spot on the CCD,and is infinitely small when being analyzed in the above line-scanning PSF model.Based on the line-scanning mode,this paper mainly studies the characteristics of coherent imaging in the system when the detection function is as shown in Eq.(10).Since only the super-resolution information in the current scanning direction can be extracted under the single-line-scanning condition,the Eq.(5)can be rewritten into(when only one dimension,namelyx-axis,is considered):

    By substituting the Eq.(10)into Eq.(11),the Fourier transform of Eq.(11)will be

    whereUc(fx1)is low frequency component,andUl(fx1)andUr(fx1)are high frequency components.They can be easily determined from Eq.(13).

    3 Computational simulation

    The laser wavelength λof the simulated lighting is 488 nm,the numerical aperture of the objective lens is 0.4,the cosine function modulation frequencyf0is 0.9NA/λ,and both θand φare 0.The scanning direction isXdirection,i.e.,0°direction.The extreme case is assumed,i.e.the slit widthsis infinitely small.The IPSF simulating the normal line-scanning confocal imaging in accordance with Eq.(8)is shown in Fig.2(Color online).According to Fig.2(c),the Full Width at Half Maximum(FWHM)in theXdirection decreases to 0.71 times of the FWHM in theYdirection,because of the confocal imaging in theXdirection and the wide-field imaging in theYdirection.It can also be seen from the OTF in Fig.2(b)that the cut-off frequency in theXdirection is higher than that in theYdirection,so the ability to transmit high-frequency information is enhanced.

    Fig.2 Theoretical simulation results of IPSF.(a)IPSF of traditional line-scanning confocal microscope;(b)Fourier transform of IPSF;(c)normalized intensity distributions of(a)in theXandYdirections respectively圖2 IPSF 理論仿真結(jié)果。(a)普通線掃描共聚焦顯微鏡的IPSF,(b)IPSF 的傅立葉變換,(c)圖(a)中X 和Y 方向上的歸一化強度分布

    The simulation system CTF based on Eq.(7)is shown in Fig.3(Color online),where the slit width is equal to an Airy disk.It can be seen from Fig.3(c)that,compared with Wide-field Microscopy(WM),the cut-off frequencies of CLSM and LVSM in the direction of image scanning are both twice that of WM,indicating higher resolution in the corresponding spatial domain.Given the same cut-off frequency,the percentage of high-frequency information in LVSM is significantly higher than that in CLSM.This indicates that LVSM has a stronger capability of high-frequency information transfer.This is attributed to the modulation of cosine function,which increases the high-frequency ratio.

    In the structure detection method based on linescanning confocal imaging,the structure detection functionD(x,y)directly acts on the unscanned image of the detector plane and doesn’t need to be conjugated with the sample,and the detection function image remains unchanged.The difference between this method and VSD super-resolution method is that,in the VSD method,the structure detection function acts on non-unscanned images,but the imaging system itself is unscanned,so the structure function images need to be conjugated with the sample in order to achieve the effect of non-unscanning modulation and obtain the image data similar to wide-field SIM.In VSD,the reconstruction algorithm identical with wide-field SIM is used to move high-frequency information to the right place,in order to achieve the super-resolution effect.However,in the above method,the unscanned images under line-scanning confocal condition are directly modulated by the detection function,and the cut-off frequency of the system CTF is extended without frequency shift.Even without subsequent image processing,the image resolution is still improved.However,the problem of low transmittance of high-frequency information,as shown in the red curve in Fig.3(c),still exists,so the improvement effect is not obvious.As shown in Fig.4,we can change the phases of the modulation function,establish an equation like Eq.(13),calculate the frequency components along these directions,use the Wiener filtering algorithm to reduce noise,and then apply the generalized Wiener filter to perform weighted superposition recovery of the processed frequency domain information in order to enhance the high frequency components.When the generalized Wiener filter is used for weighted superposition,the weight factor of each frequency component mainly depends on its SNR,which can be estimated with the method in Ref.[19].After the frequency domain image weighted and superimposed enters the spatial domain through inverse Fourier transform,the finally reconstructed amplitude image can be obtained.Then through square operation,the intensity image can be obtained.

    Since line-scanning confocal imaging is working only in one direction,the specific detection function can only expand the cut-off frequency of CTF in a single direction of the system.In order to illustrate the feasibility of isotropic resolution improvement,the image field needs to be rotated to obtain the line-scanning data in different directions for virtual modulation.The more the modulation directions are,the more obvious the isotropic resolution improvement will be.Meanwhile,the imaging speed rate will be reduced,but still much higher than that in the point-scanning mode.An appropriate modulation direction can be selected according to the actual situation.The line spot image obtained in each scanning position is modulated by the structure detection function,and the integral of the images within the linear spot in one direction is calculated to obtain a series of values representing the current scanning positions.These values and their positions represent the structurally modulated image and are used in the subsequent reconstruction process.Because the modulation mode is virtual modulation and the direction and phase of the digital mask can be accurately known,the estimated error of modulation mode and phase will not exist.

    Fig.3 System CTF simulation.(a)CTF of traditional confocal line scanning microscopy(for CLSM);(b)CTF of line-scanning confocal microscopy with structure modulation(for LVSM);(c)black curve is the normalized frequency distribution along theYdirection in(a)(for WM),and blue and red curves are the normalized frequency distributions along theXdirection in(a)and(b),respectively(for CLSM and LVSM)圖3 系統(tǒng)CTF 仿真。(a)傳統(tǒng)線掃描共聚焦(CLSM)的CTF,(b)線掃描結(jié)構(gòu)調(diào)制共聚焦(LVSM)的CTF,(c)黑色曲線為(a)中Y 方向歸一化頻率分布(WM),藍色和紅色曲線分別為(a)、(b)中X 方向歸一化頻率分布(CLSM、LVSM)

    Fig.4 Flow chart of image reconstruction圖4 圖像重建過程流程圖

    To demonstrate the effectiveness of the above method,the imaging results of LVSM were simulated,as shown in Fig.5(Color online).The scanning directions of each sample were 0°and 90°.It can be seen from Fig.5(e)and Fig.5(f)that part of the high-frequency information is cut off,and the detail information of the sample is lost.After the LVSM reconstruction,the high-frequency information in the corresponding direction is moved into the frequency domain passband of the system and put in the right place,and the frequency spectrum in the scanning direction is expanded.It can be seen from the comparison between Fig.5(b)and Fig.5(c)that,after an image in the frequency domain is moved into the spatial domain through transformation,its resolution is significantly improved.

    Fig.5 Simulation of line-scanning confocal microscopy with virtual structure modulation(for LVSM).(a)Spoke-like sample for simulation;(b)image of conventional confocal microscopy;(c)image reconstructed with the structure detection functions in the two scanning directions of 0°and 90°;(d),(e)and(f)are the Fourier transforms i.e.frequency domain images of(a),(b)and(c),respectively圖5 線掃描共聚焦虛擬結(jié)構(gòu)調(diào)制仿真(LVSM)。(a)仿真使用的輻條狀樣品。(b)普通共聚焦圖像。(c)取0°、90°兩個掃描方向,結(jié)合對應(yīng)方向上的結(jié)構(gòu)檢測函數(shù)重建后圖像。(d)、(e)、(f)分別是(a)、(b)、(c)的傅立葉變換,即對應(yīng)的頻域圖像

    4 Experiments and results

    4.1 Experimental system

    The LVSM based on laser line-scanning structure detection is shown in Fig.6.In the LVSM,a single-mode He-Ne laser with a wavelength of 633 nm is used to generate the polarized laser,and an optical attenuation is used to reduce the light intensity.The cylindrical lens CL(f=180 mm)has the focusing characteristic only in one direction,focusing the attenuated laser into a line of light that will be incident to a uniaxial scanning galvanometer(Mode 6215 CTI).The scanning galvanometer vibrates in the scanning direction to guide the focusing line through the homemade scanning lens,tube lens(TTL 180-A Olympus)and objective lens until the line moves along the specified direction on the sample.To reduce the vignetting effect,the center of the galvanometer is controlled to conjugate with the pupil plane of the objective lens.The light reflected from the sample is unscanned by one-dimensional scanning system and relayed to the image plane via the intermediate optical system.The detector collects the line spot images from the current scanning position.As the scanning galvanometer swings,the position of the unscanned image on the detector plane remains unchanged but the image information is constantly updated.512 line-spot images are continuously collected from different scanning positions to obtain a two-dimensional image.

    Fig.6 Schematic diagram of experiment setup圖6 實驗系統(tǒng)示意圖

    sCMOS,a two-dimensional image acquisition device,is used to acquire a single line-spot image(ORCA Flash4.0 V2,Hamamatsu).Compared with EMCCD,the sCMOS has higher quantum efficiency and lower noise output.When the ROI of line-spot image is set as 512 pixel×64 pixel,the theoretical image acquisition rate in a single direction can reach 3 206 fps.In the actual experiment,considering the response time of the device and the delay of the program,the image acquisition rate will decrease,and the image acquisition time in a single direction will be about 0.25s.The width of virtual slit is assumed to be the diameter of Airy disk and is used to detect and process the collected images.

    A 4×flat-field semiapochromat(Olympus)with a numerical aperture of 0.13 is used.The experimental sample is a target with standard optical resolution(USAF 19511×,Edmund).To verify the enhancement of final isotropic resolution,an electric rotary translation stage with the maximum rotation rate of 50°/s is driven by a stepper motor to rotate the sample.The directions of image acquisition are 0°and 90°,and the time for the whole image rotation process is about 2s.

    4.2 Experimental results

    Some of the acquired line-spot images and the final image reconstruction results are shown in Fig.7(Color online).

    Fig.7 Implementation of line-scanning confocal virtual structure modulation imaging on the resolution test target.(a)The 20th,205th,360th and 490th line spot images collected in the 0°scanning direction;(b)the 20th,205th,360th and 490th line spot images collected in the 90°scanning direction;(c)the image of resolution test target obtained by conventional line-scanning confocal method in the 90°scanning direction;(d)reconstructed super-resolution image by LVSM圖7 分辨率測試目標的線掃描虛擬結(jié)構(gòu)調(diào)制共聚焦實現(xiàn)。(a)掃描方向為0°時,采集的第20、205、360、490 條線斑圖像。(b)掃描方向為90°時,采集的第20、205、360、490 條線斑圖像。(c)掃描方向為90°時,常規(guī)線掃描共聚焦獲得的分辨率測試靶圖片。(d)LVSM 超分辨重建后圖像

    The areas marked by blue line segments are the No.8.2~8.6 line pairs in theYdirection of the resolution test board,the area marked by yellow line segment is the No.8.5 line pair in theXdirection,and the area marked by green line segment is the No.8.6 line pair.It can be seen from Fig.8(a)(Color online)that in theYdirection,a conventional line-scanning confocal microscope can distinguish the No.8.2 group but cannot distinguish the No.8.3 group.The number of line pairs in the No.8.2 group is 287 lp/mm,and the corresponding spatial period is 3.48μm.The LVSM microscope can distinguish the No.8.5 group but cannot distinguish the No.8.6 group.The number of line pairs in the No.8.5 group is 406 lp/mm,and the corresponding spatial period is 2.46μm.The resolution of LVSM microscope is higher than that of a line-scanning confocal microscope with the same slit size.As seen from Fig.8(b)(Color online)and Fig.8(c)(Color online),in theXdirection,the line-scanning confocal microscope cannot distinguish both the No.8.5 and No.8.6 groups.In comparison,the LVSM can distinguish the No.8.5 group but cannot distinguish the No.8.6 group.Therefore,the resolutions of LVSM in both theXandYdirections are improved to 2.46μm,1.4 times that of traditional line-scanning confocal microscope.

    Fig.8 Normalized intensity curves of conventional line-scanning confocal microscope and line-scanning confocal microscope with virtual structure modulation in specified areas.Comparison between the normalized intensities of the area marked by(a)blue curve,(b)yellow curve and(c)green curve in Fig.7(c)and Fig.7(d)圖8 常規(guī)線掃描共聚焦和線掃描虛擬結(jié)構(gòu)調(diào)制共聚焦在特定區(qū)域的歸一化強度曲線。圖7(c)、7(d)中(a)藍色線段標記區(qū)域(b)黃色線段標記區(qū)域及(c)綠色線段標記區(qū)域的歸一化強度分布對比

    The above experiment demonstrates that the LVSM can break the diffraction limit during highspeed imaging.This theory shows that the LVSM can improve the lateral resolution and imaging speed by using the modulation factors in two directions.The experiment with standard resolution target confirms that in addition to performing the line scanning based on high-speed imaging,the LVSM microscope can show the detailed target structure that can’t be detected by conventional confocal microscopy.

    5 Conclusion

    In this paper,a line-scanning confocal microscopic imaging method based on structural modulation is presented.The related theories and reconstruction methods are deduced and verified by experiment.The results of simulation and experiment show that the system CTF is enlarged and the imaging resolution is 1.4 times that of traditional confocal microscope.Compared with the point-scanning spot imaging with virtual structure modulation,the imaging rate of the system can be greatly improved in this method.This method needs 2.5 s to scan the image with 512 pixel×512 pixel in two directions,104 times faster than the former method,which needs about 260 s to complete the image acquisition under the image field of the same size.

    ——中文對照版——

    1 引言

    由于光波衍射效應(yīng)的存在,傳統(tǒng)光學顯微鏡的分辨率受到限制[1-2]。激光掃描共焦顯微鏡(LSCM)具有比寬場顯微鏡更高的分辨率。因為它使用緊密聚焦的激發(fā)光束和針孔檢測來抑制離焦背景光[3-4]。但是受到針孔大小的限制,在共焦顯微鏡中,減小針孔的尺寸在提高分辨率的同時也降低了信噪比。為了保持二者的平衡,針孔尺寸一般較大,這會導致橫向分辨率低于理想結(jié)果,仍處于衍射極限之內(nèi)[5-6]。近20 年來,許多超分辨光學顯微方法得到了推廣,如受激發(fā)射損耗顯微鏡(STED)[7]、結(jié)構(gòu)光照明顯微鏡(SIM)[8]等,這些方法主要基于兩個原理,分別是壓縮點擴散函數(shù)(PSF)和增加光傳遞函數(shù)(OTF)帶寬[9]。除此之外,隨機光學重建顯微鏡(STORM)[10]和光激活定位顯微鏡(PALM)[11]通過使用光開關(guān)熒光探針定位單個分子來實現(xiàn)超分辨率。上述這些方法在熒光標記成像分辨率上都有突破,但也都有其局限性。PALM 和STORM長期以來一直受到成像速度的限制,STED 顯微鏡要求激發(fā)光譜和發(fā)射光譜必須與給定的激發(fā)和耗盡波長相匹配,SIM 只能成像光學薄樣品[12]。

    結(jié)構(gòu)探測顯微鏡基于結(jié)構(gòu)照明原理,分辨率增強的實現(xiàn)類似于莫爾條紋。通過在不同掃描位置用光掩模獲取圖像,使傳統(tǒng)顯微鏡的光學傳遞函數(shù)帶寬增大了一倍[13]。然而,寬場空間結(jié)構(gòu)光照明需要在照明端添加光柵等圖案化掩模,不適用于掃描顯微鏡。時間調(diào)制掃描顯微鏡(SPIN)和空間調(diào)制掃描顯微鏡(SPADE)的提出使得超分辨激光掃描顯微鏡得以實現(xiàn)。這些方法利用時間和空間調(diào)制在點掃描系統(tǒng)中實現(xiàn)了與SIM 相同的效果[14]。SPADE 已經(jīng)被證明是正確的,也被稱為虛擬結(jié)構(gòu)探測(VSD)。由于VSD 需要得到每個掃描點的光斑圖像,成像速度受到嚴重限制[15]。

    針對上述缺點,結(jié)合線掃描成像方法[16],將虛擬結(jié)構(gòu)調(diào)制應(yīng)用到大孔徑共焦顯微鏡中(LVSM),以提高共焦顯微成像的速度和分辨率。與虛擬結(jié)構(gòu)探測方法的不同之處在于無需后續(xù)的移頻過程。同時由于共焦顯微鏡具有獨特的切片能力,可以對厚樣品成像。不同于其他大部分超分辨成像方法,本方法可以對非熒光樣本成像,具有高分辨率、成像速度快的特點。

    2 線掃描共焦虛擬結(jié)構(gòu)調(diào)制原理

    反射式共聚焦相干成像系統(tǒng)如圖1 所示,假設(shè)照明強度和系統(tǒng)放大倍數(shù)為1。在解掃描的情況下,照明光場與樣本相互作用后,忽略相位因子,樣本表面處的振幅分布為:

    式(1)中,hil(x,y)為照明路徑的二維振幅點擴散函數(shù),s為樣本振幅分布,(x1,y1)為樣本所在位置。樣本與照明光場作用后的光場振幅分布A1(x,y,x1,y1)經(jīng)過探測光路后對圖像平面上某一點(x2,y2)的振幅貢獻值可以表示為:

    式(2)中,hde(x,y)為探測路徑的二維振幅點擴散函數(shù),A2(x,y,x1,y1,x2,y2)為樣本上(x1,y1)處與照明光場作用后產(chǎn)生的振幅分布在圖像平面(x2,y2)處的貢獻值。所有樣本點對該處振幅的貢獻值疊加,即圖像平面上探測到的振幅值。整個圖像平面上振幅分布為:

    式(3)中,A3(x1,y1,i,j)為圖像平面處的振幅分布。取檢測函數(shù)D(i,j):

    式(4)中,A(x1,y1)為探測器最終探測到的振幅圖像。hil(x,y)與hde(x,y)均為偶函數(shù),應(yīng)用卷積的定義:

    從式(5)可以看出,最終的振幅圖像表現(xiàn)為樣本不同位置振幅的疊加,為相干成像過程,系統(tǒng)的成像特性取決于振幅點擴散函數(shù):

    則系統(tǒng)的相干傳遞函數(shù)(CTF)可以表示為APSF的傅立葉變換:

    式(7)中,Hil(fx1,fy1)和Hde(fx1,fy1)為照明和探測端相干傳遞函數(shù),?表示二維卷積,F(xiàn)為傅立葉變換符號。由式(6)知,系統(tǒng)強度點擴散函數(shù)(IPSF)可以表示為[17]:

    因為系統(tǒng)的成像性能最終受透鏡、照明方式以及檢測函數(shù)限制,下面分別討論不同情況下系統(tǒng)振幅點擴散函數(shù)的形式。

    當照明方式為點照明、D(x1,y1)為虛擬針孔時,即點掃描模式。照明和探測路徑振幅點擴散函數(shù)可以由透鏡孔徑的傅立葉變換得到,有效探測點擴散函數(shù)為探測點擴散函數(shù)和孔徑函數(shù)D(x1,y1)的卷積。

    當照明方式為線照明、D(x1,y1)為虛擬狹縫時,即線掃描模式時。相較于點掃描模式,探測路徑振幅點擴散函數(shù)不變,由于在照明路徑上引入了柱面透鏡對光斑進行聚焦,照明路徑振幅點擴散函數(shù)發(fā)生了變化,在一個方向上為高斯分布而在另一個方向上為常數(shù)分布。假定掃描方向沿X軸方向,即照明點擴散函數(shù)在Y方向上是常數(shù)分布,在傍軸近似下有[18]:

    式中Φ=2πNA/λ,w?1,所以式(10)中的第一項因子可以忽略。這意味著照明路徑的振幅點擴散函數(shù)在沿直線方向有一個恒定的激發(fā)。

    當照明方式為線照明、D(x1,y1)在矩形狹縫的基礎(chǔ)上疊加了余弦掩模,即本文提出的LVSM 方法。照明和探測路徑振幅點擴散函數(shù)與線掃描模式相同,但檢測函數(shù)D(x1,y1)變?yōu)椋?/p>

    式(10)中,p為狹縫寬度,s為CCD 上線斑的長度,在基于上述線掃描點擴散函數(shù)模型分析時取無限小。本文主要在線掃描模式的基礎(chǔ)上,研究檢測函數(shù)為式(10)所表示的形式時系統(tǒng)的相干成像特性。由于單個線掃描模式下只能提取當前掃描方向下的超分辨信息,故只考慮一維方向(沿x軸),式(5)可以重寫為:

    將式(10)代入式(11),則式(11)的傅立葉變換

    式中Uc(fx1)是低頻分量、Ul(fx1)和Ur(fx1)是高頻分量,這些分量可以很容易的從式(13)中確定。

    3 仿真計算

    模擬照明激光波長 λ為488 nm,物鏡數(shù)值孔徑為0.4,余弦函數(shù)調(diào)制頻率f0取0.9NA/λ,θ 和φ 均取0。掃描模式為沿X方向,即0°方向。取極限情況,即狹縫寬度s無限小時,按照式(8)對普通線掃描共聚焦的IPSF 仿真,結(jié)果如圖2(彩圖見期刊電子版)所示。根據(jù)圖2(c),X方向上的半高全寬(FWHM)為Y方向上的0.71,這是由于在X方向上是共聚焦成像,Y方向上是寬場成像的原因。從圖2(b)中的光學傳遞函數(shù)也可以看出,X方向上的截止頻率高于Y方向上的截止頻率,這說明傳遞高頻信息能力增強。

    按照式(7)計算仿真系統(tǒng)CTF,如圖3(彩圖見期刊電子版)所示,狹縫寬度取一個艾里斑大小。由圖3(c)可以看到,在圖像掃描方向上,相較于寬場成像(WM),CLSM 和LVSM 顯微鏡的截止頻率相等,是WM 的2 倍,對應(yīng)空間域中分辨率提高。在相同的截止頻率下,LVSM 中高頻信息的比例明顯高于CLSM。說明LVSM 具有更強的高頻信息傳遞能力。這歸因于余弦函數(shù)的調(diào)制作用,它提高了高頻比。

    基于線掃描共聚焦的結(jié)構(gòu)探測方式中,結(jié)構(gòu)檢測函數(shù)D(x,y)直接作用于探測器平面的解掃描圖像,因此無需與樣本共軛,檢測函數(shù)圖像保持不變。這與虛擬結(jié)構(gòu)探測(VSD)超分辨方法的不同之處在于,VSD 方法中,結(jié)構(gòu)檢測函數(shù)作用于非解掃描圖像,而成像系統(tǒng)本身是解掃描的,所以結(jié)構(gòu)函數(shù)圖像需要與樣本共軛,以達到非解掃描調(diào)制的效果,進而得到掃描成像下類似于寬場SIM 的圖像數(shù)據(jù)。采用寬場SIM 完全相同的重建算法將高頻信息移動到正確的位置上,以達到超分辨的效果,而上述方法在線掃描共聚焦的解掃描圖像下直接使用檢測函數(shù)進行調(diào)制,系統(tǒng)CTF 的截止頻率得到擴展,無需進行移頻,即使不采用后續(xù)的圖像處理過程,圖像分辨率仍然有所提高。只是存在圖3(c)紅色曲線所示的高頻信息透過率低的問題,所以提高的效果并不明顯。圖像重建流程圖如圖4 所示,可以通過改變調(diào)制函數(shù)相位建立如式(13)所示的等式,從而解算出沿著這些方向上的頻率分量,采用維納濾波對其進行降噪處理,隨后使用廣義維納濾波器對處理后的頻域信息進行加權(quán)疊加恢復,從而達到增強高頻分量的效果。使用廣義維納濾波器進行加權(quán)疊加時,各分量權(quán)重因子主要取決于不同頻率分量的信噪比,可以通過文獻[19]中的方法進行估計。將加權(quán)疊加后的頻域圖像傅立葉逆變換到空間域后,得到最終重建的振幅圖像,再進行平方運算即得到強度圖像。

    由于線掃描共聚焦只在一個方向上是共焦成像,利用特定的檢測函數(shù)只能擴大系統(tǒng)單一方向上CTF 的截止頻率。為了驗證各向同性分辨率提高的可行性,需要旋轉(zhuǎn)圖像場獲得不同方向下的線掃描數(shù)據(jù),進行虛擬調(diào)制。調(diào)制方向越多,各向同性分辨率提高越明顯,同時成像速率有所降低,但是相較于點掃描方式仍然有很大提升。可以根據(jù)實際情況選擇合適的調(diào)制方向。用結(jié)構(gòu)化檢測函數(shù)調(diào)制每個掃描位置得到線斑圖像,計算線斑內(nèi)圖像沿一個方向上的積分,得到一系列代表當前掃描位置的值,這些值和它們對應(yīng)的位置即代表結(jié)構(gòu)調(diào)制后的圖像,并用于之后的重建過程。由于調(diào)制方式是虛擬調(diào)制,數(shù)字掩模的方向和相位都可以精確知道,因此不存在調(diào)制模式和相位的估計誤差。

    為了說明上述方法的有效性,本文模擬了LVSM 的成像結(jié)果,如圖5(彩圖見期刊電子版)所示。樣本掃描方向取0°和90°。從圖5(e)和5(f)可以看出,高頻部分信息被截止,樣品的細節(jié)信息丟失,經(jīng)過LVSM 重建后,對應(yīng)方向上的高頻信息被移入系統(tǒng)頻域通帶內(nèi)并處于正確的位置上,掃描方向上的頻譜擴大。將頻域圖像變換到空間域,由圖5(b)和5(c)對比可以看到,分辨率有明顯提高。

    4 實驗與結(jié)果

    4.1 實驗系統(tǒng)

    圖6 展示了基于激光線掃描結(jié)構(gòu)探測共聚焦顯微鏡的(LVSM)示意圖。采用波長為633 nm單模氦氖激光器產(chǎn)生偏振激光,光衰減器用于降低光的強度,柱面透鏡CL(f=180 mm)僅在一個方向上有聚焦特性,將衰減后的激光聚焦成一條直線入射到掃描振鏡上,單軸掃描振鏡(Mode 6215 CTI)在掃描方向上振動,用于引導聚焦直線通過自制的掃描透鏡、筒鏡(TTL 180-A Olympus)、物鏡,在樣本上沿著確定的方向移動。為了減小漸暈效果,控制振鏡中心與物鏡瞳孔平面共軛。來自樣本的反射光被一維掃描系統(tǒng)解掃描,并通過中間光學系統(tǒng)中繼到圖像平面。探測器收集當前掃描位置的線斑圖像,隨著掃描振鏡的擺動,探測器平面上的解掃描圖像位置不變但圖像信息不斷更新,對應(yīng)當前掃描位置,連續(xù)采集512 條不同掃描位置的線斑圖像,得到二維圖像。

    使用二維圖像采集器件sCMOS 采集單個線斑圖像(ORCA-Flash4.0 V2,Hamamatsu),相比較EMCCD,sCMOS 具有更高的量子效率和低噪聲輸出,線斑圖像ROI 區(qū)域設(shè)為512 pixel×64 pixel 時,單個方向理論圖像的采集速度可以達到3 206幀/s。實際實驗過程中考慮到器件的響應(yīng)時間和程序的延時,圖像采集速率降低,單個方向圖像采集時間約為0.25 s。虛擬狹縫取一個艾里斑直徑大小,用于對采集到的圖像做檢測處理。

    使用數(shù)值孔徑為0.13 的4×平場半復消色差物鏡(Olympus)。實驗中的樣本為標準光學分辨率靶(USAF 19511×,Edmund)。為了驗證最終的各項同性分辨率提升效果,采用步進電機驅(qū)動的電動旋轉(zhuǎn)位移臺轉(zhuǎn)動樣本,最大轉(zhuǎn)動速率為50°/s,取0°、90°兩個圖像采集方向,整個圖像旋轉(zhuǎn)過程約需要2 s。

    4.2 實驗結(jié)果

    圖7(彩圖見期刊電子版)為采集到的部分線斑圖像和最終的圖像重建結(jié)果。圖中藍色線段標記區(qū)域是分辨率測試板Y方向線對的8.2 至8.6 組,黃色線段標記區(qū)域為X方向線對的8.5組,綠色線段標記區(qū)域為8.6 組。圖8(彩圖見期刊電子版)為常規(guī)線掃描共聚集和線掃描虛擬結(jié)構(gòu)調(diào)制共聚焦在特定區(qū)域的歸一化強度曲線。由圖8(a)可知,Y方向上,常規(guī)線掃描共聚焦顯微鏡能分辨8.2 組,不能分辨8.3 組,8.2 組的線對數(shù)為287 lp/mm,對應(yīng)空間周期為3.48μm。LVSM顯微鏡可以分辨到8.5 組,不能分辨8.6 組,8.5 組的線對數(shù)為406 lp/mm,對應(yīng)空間周期為2.46μm,LVSM 顯微鏡的分辨率比具有相同狹縫大小的線掃描共聚焦顯微鏡高。從圖8(b)、8(c)可知,X方向上,線掃描共聚焦均不能分辨8.5 組和8.6 組,相比之下,LVSM 顯微鏡可以分辨到8.5 組,不能分辨8.6 組。因此可知,LVSM顯微鏡將X方向和Y方向分辨率均提高到2.46μm,是普通線掃描共聚焦顯微鏡的1.4 倍。

    上述實驗證明了LVSM 顯微鏡可以突破衍射極限,同時可以進行高速成像。該理論表明,LVSM 顯微鏡可以通過2 個方向的調(diào)制因子來提高橫向分辨率和成像速度。標準分辨率靶的實驗證實,基于高速成像的線掃描方式,LVSM 顯微鏡可以顯示常規(guī)共聚焦顯微鏡無法檢測到的詳細結(jié)構(gòu)。

    5 結(jié)論

    本文提出了一種基于結(jié)構(gòu)調(diào)制的線掃描共聚焦顯微成像方法,推導了相關(guān)理論及重建方法,并進行了實驗驗證。仿真和實驗結(jié)果表明,系統(tǒng)CTF 擴大,成像分辨率是普通共焦顯微鏡的1.4倍。該方法與點掃描光斑虛擬結(jié)構(gòu)調(diào)制成像相比,可以大幅度提高系統(tǒng)的成像速率,其只需要2.5 s 即完成兩個方向的圖像掃描,圖像大小為512 pixel×512 pixel。在同樣的圖像場大小下,后者約需要260 s 來完成數(shù)據(jù)采集。圖像采集速度提高了104 倍。

    猜你喜歡
    顯微鏡振幅分辨率
    你會使用顯微鏡嗎
    顯微鏡
    EM算法的參數(shù)分辨率
    原生VS最大那些混淆視聽的“分辨率”概念
    基于深度特征學習的圖像超分辨率重建
    自動化學報(2017年5期)2017-05-14 06:20:52
    一種改進的基于邊緣加強超分辨率算法
    顯微鏡下看沙
    十大漲跌幅、換手、振幅、資金流向
    十大漲跌幅、換手、振幅、資金流向
    十大漲跌幅、換手、振幅、資金流向
    国产淫片久久久久久久久| 91久久精品国产一区二区三区| 亚洲色图av天堂| 亚洲国产成人一精品久久久| 最近中文字幕高清免费大全6| 亚洲欧美日韩无卡精品| 亚洲,欧美,日韩| 麻豆乱淫一区二区| 欧美性猛交╳xxx乱大交人| 深夜a级毛片| 国产精品一区二区三区四区免费观看| 国语对白做爰xxxⅹ性视频网站| 亚洲综合色惰| 熟女电影av网| 国产一区有黄有色的免费视频 | 美女cb高潮喷水在线观看| 七月丁香在线播放| 人妻夜夜爽99麻豆av| 日日摸夜夜添夜夜添av毛片| 18禁动态无遮挡网站| 国产黄色小视频在线观看| 国产真实伦视频高清在线观看| 国产成人freesex在线| 亚洲天堂国产精品一区在线| 简卡轻食公司| 欧美日韩视频高清一区二区三区二| 亚洲国产精品sss在线观看| 大香蕉久久网| 精品久久久久久久久久久久久| 男人和女人高潮做爰伦理| 舔av片在线| 亚洲av.av天堂| 国产精品一区二区性色av| 99久久精品一区二区三区| 久久久久性生活片| 99热6这里只有精品| 免费大片18禁| 我的女老师完整版在线观看| 天天躁夜夜躁狠狠久久av| 熟妇人妻久久中文字幕3abv| 亚洲久久久久久中文字幕| 一二三四中文在线观看免费高清| 国产 亚洲一区二区三区 | 在线天堂最新版资源| 黄色欧美视频在线观看| 99热6这里只有精品| 夫妻午夜视频| 国产精品福利在线免费观看| 日本免费在线观看一区| 亚洲精华国产精华液的使用体验| 中文在线观看免费www的网站| 狂野欧美白嫩少妇大欣赏| 深爱激情五月婷婷| 日韩制服骚丝袜av| 大话2 男鬼变身卡| 一级爰片在线观看| 又爽又黄无遮挡网站| 午夜老司机福利剧场| 夫妻午夜视频| 少妇被粗大猛烈的视频| av.在线天堂| 国产精品人妻久久久久久| 高清毛片免费看| 久久精品夜色国产| 97热精品久久久久久| 精品一区在线观看国产| eeuss影院久久| 日本黄大片高清| 亚洲精品一二三| 伊人久久国产一区二区| 97精品久久久久久久久久精品| 精品久久久久久久末码| 精品久久国产蜜桃| 亚洲欧美精品专区久久| 亚洲av二区三区四区| 亚洲精品一二三| 久久久久久久亚洲中文字幕| 久热久热在线精品观看| 亚洲最大成人手机在线| 乱人视频在线观看| 国产一区二区在线观看日韩| 91久久精品电影网| 成人亚洲欧美一区二区av| 中文资源天堂在线| 久久久a久久爽久久v久久| 久久精品久久久久久久性| av国产久精品久网站免费入址| 有码 亚洲区| 久久99热这里只有精品18| 免费看a级黄色片| 在线a可以看的网站| a级一级毛片免费在线观看| 内地一区二区视频在线| 简卡轻食公司| 午夜福利视频1000在线观看| 日日干狠狠操夜夜爽| av在线观看视频网站免费| 亚洲av二区三区四区| 亚洲人成网站在线观看播放| 日本三级黄在线观看| 人妻系列 视频| 成人av在线播放网站| av国产久精品久网站免费入址| 一级毛片久久久久久久久女| 国产一区亚洲一区在线观看| 国产精品福利在线免费观看| 欧美xxⅹ黑人| 网址你懂的国产日韩在线| 中文资源天堂在线| 午夜免费观看性视频| 日韩欧美国产在线观看| 少妇熟女欧美另类| 亚洲欧美清纯卡通| 久久97久久精品| 我要看日韩黄色一级片| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影| 美女大奶头视频| 人妻夜夜爽99麻豆av| 成年版毛片免费区| 在线播放无遮挡| 波多野结衣巨乳人妻| 中文字幕久久专区| 国产在线一区二区三区精| 青春草国产在线视频| 午夜精品在线福利| 卡戴珊不雅视频在线播放| 日韩成人av中文字幕在线观看| 亚洲国产欧美人成| 国产亚洲91精品色在线| 久久久成人免费电影| 亚洲精品日韩av片在线观看| 麻豆久久精品国产亚洲av| 老司机影院毛片| 女人久久www免费人成看片| 国产一区二区三区综合在线观看 | 成人二区视频| 在线 av 中文字幕| 亚洲高清免费不卡视频| 搡老妇女老女人老熟妇| 青春草亚洲视频在线观看| 国国产精品蜜臀av免费| av又黄又爽大尺度在线免费看| 久久精品国产自在天天线| 久久精品人妻少妇| av在线蜜桃| 永久网站在线| 午夜福利在线观看免费完整高清在| 精品国产一区二区三区久久久樱花 | 麻豆av噜噜一区二区三区| 国产精品一区www在线观看| 能在线免费看毛片的网站| 一个人观看的视频www高清免费观看| 成人午夜高清在线视频| 青青草视频在线视频观看| 18禁在线播放成人免费| 国产一区二区亚洲精品在线观看| 高清日韩中文字幕在线| 美女黄网站色视频| 777米奇影视久久| 国产高清国产精品国产三级 | 精品久久久久久久久久久久久| 婷婷色av中文字幕| 一本一本综合久久| 亚洲综合精品二区| 97热精品久久久久久| 能在线免费看毛片的网站| 国产在视频线精品| 亚洲综合精品二区| 午夜福利在线观看吧| videossex国产| 国模一区二区三区四区视频| 日本爱情动作片www.在线观看| 亚洲av一区综合| 搡老乐熟女国产| 成人漫画全彩无遮挡| 视频中文字幕在线观看| 天美传媒精品一区二区| 国精品久久久久久国模美| 国产亚洲最大av| 午夜激情久久久久久久| 国产精品日韩av在线免费观看| 一级毛片电影观看| 男女边吃奶边做爰视频| 一边亲一边摸免费视频| 国产午夜精品久久久久久一区二区三区| 国产乱人视频| 国产真实伦视频高清在线观看| 欧美日韩在线观看h| 欧美日韩在线观看h| 亚洲精品自拍成人| 国产精品国产三级专区第一集| 亚洲av中文av极速乱| 日本与韩国留学比较| 美女大奶头视频| 91av网一区二区| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区视频9| www.色视频.com| 国产精品一及| 七月丁香在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩欧美国产在线观看| 成人美女网站在线观看视频| 啦啦啦韩国在线观看视频| av专区在线播放| av专区在线播放| 中文资源天堂在线| 久久精品国产亚洲av涩爱| 人妻制服诱惑在线中文字幕| 免费av不卡在线播放| 成人亚洲欧美一区二区av| 国产老妇女一区| 亚洲电影在线观看av| 22中文网久久字幕| 2022亚洲国产成人精品| 国产三级在线视频| av国产免费在线观看| 亚洲欧美成人综合另类久久久| 久久久久久久久久黄片| 亚洲熟妇中文字幕五十中出| 欧美另类一区| 18禁在线播放成人免费| 亚洲aⅴ乱码一区二区在线播放| 春色校园在线视频观看| 国产人妻一区二区三区在| 韩国高清视频一区二区三区| 免费看日本二区| 直男gayav资源| 成年女人在线观看亚洲视频 | 日韩欧美国产在线观看| 免费观看精品视频网站| 亚洲,欧美,日韩| 成人亚洲欧美一区二区av| 国产精品一区二区性色av| 亚洲精品乱码久久久久久按摩| 深夜a级毛片| av免费在线看不卡| 国产国拍精品亚洲av在线观看| av一本久久久久| 久久精品久久精品一区二区三区| av国产久精品久网站免费入址| 中文乱码字字幕精品一区二区三区 | 国产精品蜜桃在线观看| 真实男女啪啪啪动态图| 看黄色毛片网站| 黄色一级大片看看| 国产av码专区亚洲av| 纵有疾风起免费观看全集完整版 | 久久久久久久久久黄片| 欧美精品国产亚洲| 一级毛片电影观看| 成人午夜高清在线视频| 中文乱码字字幕精品一区二区三区 | 别揉我奶头 嗯啊视频| 日韩在线高清观看一区二区三区| 夫妻性生交免费视频一级片| 只有这里有精品99| 免费av毛片视频| 最近视频中文字幕2019在线8| 欧美日韩国产mv在线观看视频 | 九九在线视频观看精品| 午夜福利网站1000一区二区三区| 美女大奶头视频| 中文精品一卡2卡3卡4更新| 偷拍熟女少妇极品色| 能在线免费看毛片的网站| 久久精品国产亚洲网站| 日日啪夜夜爽| 久久久久久久久中文| av天堂中文字幕网| 亚洲av中文av极速乱| 国产精品久久久久久精品电影| 国产高清国产精品国产三级 | 大陆偷拍与自拍| 欧美日韩在线观看h| 国产精品三级大全| 欧美成人a在线观看| 亚洲精品成人av观看孕妇| 国产在线一区二区三区精| 亚洲精华国产精华液的使用体验| 九九在线视频观看精品| 免费看a级黄色片| 精品人妻偷拍中文字幕| 神马国产精品三级电影在线观看| 日韩av不卡免费在线播放| 又大又黄又爽视频免费| 一级毛片电影观看| 男女视频在线观看网站免费| 狂野欧美白嫩少妇大欣赏| 欧美日韩亚洲高清精品| 观看免费一级毛片| 国产探花极品一区二区| 国产免费福利视频在线观看| 国产 一区精品| 亚洲av免费在线观看| 亚洲av一区综合| 国产精品熟女久久久久浪| 啦啦啦啦在线视频资源| 国产午夜精品论理片| 中文字幕av成人在线电影| 午夜激情久久久久久久| 亚洲国产最新在线播放| 国产乱来视频区| 人人妻人人看人人澡| 国产老妇女一区| 只有这里有精品99| 久久久久久久久久黄片| 国产综合精华液| 久久久久网色| 99热这里只有精品一区| 天堂av国产一区二区熟女人妻| 国产精品一区二区三区四区免费观看| 久久99蜜桃精品久久| 一级片'在线观看视频| 日日摸夜夜添夜夜爱| 亚洲欧美中文字幕日韩二区| 午夜福利成人在线免费观看| 国产午夜精品一二区理论片| 成人亚洲精品一区在线观看 | 国产精品国产三级国产av玫瑰| 一个人免费在线观看电影| 99热6这里只有精品| 最近最新中文字幕大全电影3| 亚洲欧美日韩东京热| 亚洲精品久久久久久婷婷小说| 国产精品一区二区三区四区久久| 久久午夜福利片| 久久草成人影院| 小蜜桃在线观看免费完整版高清| 欧美日韩综合久久久久久| 深夜a级毛片| 久久久久久久午夜电影| 春色校园在线视频观看| 午夜福利成人在线免费观看| 欧美变态另类bdsm刘玥| 日韩av在线免费看完整版不卡| 久久久久久久久久黄片| 大香蕉97超碰在线| 国产在线一区二区三区精| 免费大片黄手机在线观看| 婷婷色麻豆天堂久久| 国产亚洲91精品色在线| 六月丁香七月| 男人狂女人下面高潮的视频| 看黄色毛片网站| 国产免费福利视频在线观看| 日本wwww免费看| 视频中文字幕在线观看| 免费黄色在线免费观看| 亚洲在线观看片| 最近中文字幕2019免费版| 日本wwww免费看| 男女视频在线观看网站免费| 狠狠精品人妻久久久久久综合| 欧美人与善性xxx| 深夜a级毛片| 国精品久久久久久国模美| 国产精品一二三区在线看| 秋霞伦理黄片| 国产一级毛片七仙女欲春2| 男女下面进入的视频免费午夜| 国产黄片视频在线免费观看| 三级国产精品片| 日韩一区二区视频免费看| 精品国产一区二区三区久久久樱花 | 日韩不卡一区二区三区视频在线| 视频中文字幕在线观看| 午夜免费激情av| 色尼玛亚洲综合影院| 一个人看视频在线观看www免费| 久久久午夜欧美精品| 69人妻影院| 久久久a久久爽久久v久久| 人人妻人人澡欧美一区二区| 色播亚洲综合网| 欧美高清成人免费视频www| 国产精品一区二区三区四区久久| 免费看日本二区| 午夜福利高清视频| 日本一二三区视频观看| 久久鲁丝午夜福利片| 精品午夜福利在线看| 99热全是精品| 色网站视频免费| 亚洲欧美成人综合另类久久久| 大片免费播放器 马上看| 久久久久久久亚洲中文字幕| 国产精品一区二区性色av| 男女边吃奶边做爰视频| 97精品久久久久久久久久精品| 国产午夜精品一二区理论片| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 日韩精品有码人妻一区| av卡一久久| 亚洲天堂国产精品一区在线| 大话2 男鬼变身卡| 国产一区二区亚洲精品在线观看| 秋霞在线观看毛片| 爱豆传媒免费全集在线观看| 性插视频无遮挡在线免费观看| 99久久人妻综合| 天堂中文最新版在线下载 | 黄色一级大片看看| 亚洲精品乱久久久久久| 最近的中文字幕免费完整| 亚洲,欧美,日韩| 亚洲欧洲国产日韩| 男插女下体视频免费在线播放| 国产探花在线观看一区二区| 日韩一本色道免费dvd| 噜噜噜噜噜久久久久久91| 成人鲁丝片一二三区免费| 伦精品一区二区三区| 97人妻精品一区二区三区麻豆| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 亚洲成色77777| 日韩制服骚丝袜av| 国产中年淑女户外野战色| 女人久久www免费人成看片| 在线免费观看的www视频| 亚洲av免费高清在线观看| 日韩一区二区视频免费看| 国内揄拍国产精品人妻在线| av国产久精品久网站免费入址| 欧美一级a爱片免费观看看| 亚洲av国产av综合av卡| 天天躁日日操中文字幕| 高清在线视频一区二区三区| 国内精品美女久久久久久| 我要看日韩黄色一级片| 国产在视频线在精品| av.在线天堂| 国产精品女同一区二区软件| 亚洲av不卡在线观看| 色网站视频免费| 一级毛片电影观看| 欧美高清性xxxxhd video| 亚洲欧美一区二区三区黑人 | 久久这里有精品视频免费| 亚洲精品久久久久久婷婷小说| 免费观看性生交大片5| 久久精品国产亚洲av天美| 成人毛片a级毛片在线播放| 亚洲最大成人av| 久久久久久久国产电影| .国产精品久久| 九色成人免费人妻av| 欧美3d第一页| 三级男女做爰猛烈吃奶摸视频| 亚洲精品色激情综合| 日韩一区二区三区影片| 免费看光身美女| 亚州av有码| 欧美丝袜亚洲另类| 看免费成人av毛片| 狠狠精品人妻久久久久久综合| 日韩国内少妇激情av| 日韩三级伦理在线观看| 亚洲精品第二区| 免费无遮挡裸体视频| 国产国拍精品亚洲av在线观看| 建设人人有责人人尽责人人享有的 | 国产高清三级在线| 自拍偷自拍亚洲精品老妇| 色播亚洲综合网| 国产免费又黄又爽又色| 91aial.com中文字幕在线观看| 午夜福利在线观看吧| 国产午夜精品一二区理论片| 亚洲欧洲国产日韩| 成人av在线播放网站| 欧美不卡视频在线免费观看| 一级片'在线观看视频| 极品教师在线视频| 纵有疾风起免费观看全集完整版 | 国产精品美女特级片免费视频播放器| 国产伦在线观看视频一区| 免费电影在线观看免费观看| 简卡轻食公司| 成年版毛片免费区| 淫秽高清视频在线观看| 最近最新中文字幕大全电影3| 亚洲精品自拍成人| 少妇猛男粗大的猛烈进出视频 | 久久久久久久亚洲中文字幕| 国产午夜精品久久久久久一区二区三区| av国产久精品久网站免费入址| 欧美变态另类bdsm刘玥| 99久久精品热视频| 一级黄片播放器| 欧美三级亚洲精品| 亚洲欧美日韩卡通动漫| 成人美女网站在线观看视频| av免费观看日本| 亚洲人与动物交配视频| 99视频精品全部免费 在线| 一区二区三区免费毛片| 免费无遮挡裸体视频| 久久99热这里只频精品6学生| 国产一区有黄有色的免费视频 | 亚洲一级一片aⅴ在线观看| 又爽又黄无遮挡网站| 亚洲欧美精品自产自拍| 搡老妇女老女人老熟妇| 欧美一级a爱片免费观看看| 精品人妻视频免费看| 老司机影院成人| 日韩,欧美,国产一区二区三区| 又粗又硬又长又爽又黄的视频| 特大巨黑吊av在线直播| 欧美精品一区二区大全| 国精品久久久久久国模美| 可以在线观看毛片的网站| 最新中文字幕久久久久| 久久久久精品性色| 波野结衣二区三区在线| 成人漫画全彩无遮挡| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 亚洲人与动物交配视频| 人体艺术视频欧美日本| 最近中文字幕高清免费大全6| 禁无遮挡网站| 岛国毛片在线播放| 又粗又硬又长又爽又黄的视频| 欧美极品一区二区三区四区| 男女边摸边吃奶| 一本久久精品| 内射极品少妇av片p| 国产黄a三级三级三级人| 直男gayav资源| 黄片无遮挡物在线观看| 日本欧美国产在线视频| 女人久久www免费人成看片| 嫩草影院精品99| 免费少妇av软件| 国产精品av视频在线免费观看| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区黑人 | 国产精品不卡视频一区二区| 日韩欧美三级三区| 18禁动态无遮挡网站| 在线观看av片永久免费下载| 一区二区三区免费毛片| 中文字幕av在线有码专区| 日韩av不卡免费在线播放| 最近中文字幕高清免费大全6| 精品人妻一区二区三区麻豆| 国产精品久久久久久久电影| 观看美女的网站| 日本熟妇午夜| videossex国产| 国产成人精品久久久久久| 能在线免费看毛片的网站| 夫妻性生交免费视频一级片| 18禁在线无遮挡免费观看视频| 免费少妇av软件| 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲av片在线观看秒播厂 | 国产成人精品婷婷| 久久精品国产亚洲av天美| 精品久久久久久久久亚洲| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 亚洲怡红院男人天堂| 欧美成人午夜免费资源| freevideosex欧美| 午夜激情福利司机影院| 国产av码专区亚洲av| av国产久精品久网站免费入址| 国产伦理片在线播放av一区| av一本久久久久| 国产色爽女视频免费观看| 国产成人免费观看mmmm| 免费黄网站久久成人精品| 日本午夜av视频| 男人狂女人下面高潮的视频| 久久久亚洲精品成人影院| 97精品久久久久久久久久精品| 成人亚洲欧美一区二区av| 国产综合精华液| 国产激情偷乱视频一区二区| 国产av不卡久久| 日本三级黄在线观看| 男人舔女人下体高潮全视频| 国产中年淑女户外野战色| 国产精品综合久久久久久久免费| 欧美日韩国产mv在线观看视频 | 久久精品久久久久久噜噜老黄| 国产黄色视频一区二区在线观看| 欧美最新免费一区二区三区| 欧美日韩国产mv在线观看视频 | 国产欧美另类精品又又久久亚洲欧美| 国产久久久一区二区三区| 又大又黄又爽视频免费| 91精品国产九色| av免费观看日本| 天堂俺去俺来也www色官网 | 亚洲一级一片aⅴ在线观看| 亚洲av在线观看美女高潮| 3wmmmm亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 如何舔出高潮| 日韩欧美精品v在线| 欧美极品一区二区三区四区| 国产三级在线视频| 国产精品伦人一区二区| 亚洲精品亚洲一区二区| 午夜激情欧美在线|