韓斐 朱俞嵐 羅路 姜從玉
摘 要 腦卒中是引起患者肢體殘疾及死亡的常見疾病,發(fā)病后大約有60%的患者處于殘疾狀態(tài),50%的患者輕偏癱,30%的患者沒有幫助情況下無法行走。骨骼肌作為腦卒中后殘疾的主要功能影響器官。既往研究中對(duì)于患者卒中后的研究偏重于腦組織較多,而對(duì)于腦卒中后骨骼肌的結(jié)構(gòu)、代謝和功能變化了解相對(duì)較少。本文通過綜述近些年腦卒中繼發(fā)性肌少癥的研究,闡述腦卒中繼發(fā)性肌少癥的特點(diǎn)、發(fā)病機(jī)制、評(píng)定和干預(yù)治療的相關(guān)進(jìn)展。
關(guān)鍵詞 腦卒中 肌肉 肌少癥 康復(fù)
中圖分類號(hào):R743.3; R685.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2021)05-0035-06
Progress in the research of cerebral apoplexy with sarcopenia
HAN Fei*, ZHU Yulan, LUO Lu, JIANG Congyu**
(Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT Stroke is a common disease that causes limb disability and death in patients. After onset, about 60% of the patients are disabled, 50% of them have mild hemiplegia, and 30% of them can not walk without help. Skeletal muscle is the main functional organ of disability after stroke. Previous studies on patients after stroke have focused on brain tissue, but relatively little is known about the structural, metabolic and functional changes of muscle tissue after stroke. This paper reviews the recent studies on stroke-related sarcopenia and expounds the characteristics, pathogenesis, evaluation and the progress of intervention in the treatment of stroke-related sarcopenia.
KEY WORDS stroke; muscle; sarcopenia; rehabilitation
自肌少癥的概念首次被提出后[1],關(guān)于肌少癥的研究近些年逐漸增多[2-4],肌少癥被認(rèn)為是一種進(jìn)行性的全身骨骼肌疾病,可以分為原發(fā)性肌少癥和繼發(fā)性肌少癥,年齡增長所致的肌少癥被稱為原發(fā)性肌少癥,可發(fā)生于大約15%的老年人中[5],增加老年人跌倒、骨折、殘疾的風(fēng)險(xiǎn)。報(bào)道顯示在心血管疾病、糖尿病和呼吸系統(tǒng)疾病中繼發(fā)性肌少癥發(fā)生率分別為31.4%,31.1%和26.8%[2];最近的一項(xiàng)系統(tǒng)回顧顯示,在腦卒中患者中發(fā)生率可以達(dá)到47%[6]。腦卒中被認(rèn)為是世界主要的致殘性疾病之一[7],之前報(bào)告顯示,首次發(fā)生缺血性中風(fēng)的6個(gè)月內(nèi),約有50%的患者導(dǎo)致殘疾,30%的患者無法獨(dú)立行走[8]。腦卒中幸存者常伴隨嚴(yán)重的功能障礙,對(duì)患者生活質(zhì)量有著不良的影響。對(duì)于腦卒中患者,多由于大腦及上運(yùn)動(dòng)元損害導(dǎo)致一側(cè)肢體運(yùn)動(dòng)受限。肌肉作為人體功能活動(dòng)的主要器官,肌少癥的發(fā)生更增加了患者殘疾的程度,對(duì)患者的康復(fù)進(jìn)程有著不利的影響。因此了解肌少癥的相關(guān)發(fā)病機(jī)制和干預(yù)對(duì)于腦卒中預(yù)后及恢復(fù)有著重要的意義。
1 腦卒中繼發(fā)性肌少癥的特點(diǎn)
肌少癥常伴隨肌量減少、肌強(qiáng)度下降、日?;顒?dòng)功能下降。與年齡相關(guān)的緩慢進(jìn)展型肌少癥相比,腦卒中繼發(fā)的肌少癥呈現(xiàn)肌肉質(zhì)量下降更快,研究顯示在腦卒中發(fā)生的4~30 h即可觀察到偏癱側(cè)肢體運(yùn)動(dòng)單位數(shù)目的下降[9],在中風(fēng)后的一周后即可檢測(cè)偏癱側(cè)肢體及非偏癱側(cè)肢體肌力的下降[9]。在中風(fēng)的開始階段,患側(cè)下肢較健側(cè)下肢肌肉體積可下降20%~24%,而肌肉間脂肪較健側(cè)下肢可增加17%~25%[10]。而在發(fā)病后3周到6個(gè)月,健側(cè)腿可以檢測(cè)到與偏癱側(cè)腿相似的肌肉量減少和肌肉間脂肪增加變化[11]。在增齡型肌少癥患者中伴隨著從快肌纖維到慢肌纖維類型的轉(zhuǎn)變,包括Ⅰ型慢肌纖維比例的增加以及Ⅱ型快肌纖維比例下降[12-13],考慮是由于老年人快肌纖維的失用所致。而在腦卒中引起的肌少癥中,伴隨著從慢肌纖維到快肌纖維的改變[14]。一些慢性疾病如心衰、慢性阻塞性肺等疾病中,肌肉纖維的變化更類似于腦卒中性肌少癥的纖維變化類型。考慮可能是疾病繼發(fā)的肌少癥有著相似的病理生理通路。
2 腦卒中繼發(fā)性肌少癥的發(fā)病機(jī)制
肌少癥的發(fā)生的機(jī)制還不太明確,現(xiàn)認(rèn)為是多種因素共同作用的結(jié)果,包括遺傳因素、肌肉失用性萎縮、營養(yǎng)不足、交感過度激活、炎癥反應(yīng)和去神經(jīng)支配。
2.1 遺傳因素
骨骼肌質(zhì)量與肌力是肌少癥研究中最常見的兩種表型,二者在個(gè)體間差異較大。分子遺傳學(xué)研究顯示,遺傳因素在骨骼肌質(zhì)量表型中占45% ~ 90%,肌肉量、去脂肌肉量和肌肉體積常用于代表肌肉質(zhì)量的參數(shù),分別占52% ~ 80%,45% ~ 65%和70% ~ 90%[15]。遺傳因素在骨骼肌肌力表型中占30% ~ 85%,其中手握力、股四頭肌肌力、下肢肌肉力量分別占30% ~ 52%、31% ~ 78%和42% ~ 64%[15]。血管緊張素轉(zhuǎn)換酶(ACE)、a-輔肌動(dòng)蛋白3(a-actinin-3,ACTN3)、肌肉生長抑制素(myostatin,MSTN)、睫狀神經(jīng)營養(yǎng)因子(ciliary neurotrophic factor,CNTF)和維生素D受體(vitamin D receptor,VDR)等基因在兩個(gè)或兩個(gè)以上的研究中顯示可能與肌肉質(zhì)量與肌力相關(guān)[15]。其中MSTN基因在骨骼肌表型變異中顯示出重要的作用,它在連鎖研究、關(guān)聯(lián)研究和基因表達(dá)研究中的一致性結(jié)果可以支持這一結(jié)論[15]。潛在的重要基因是IGF-1和IL-6基因,關(guān)聯(lián)研究中的證據(jù)可以支持這一結(jié)論[15]。許多相關(guān)基因的篩選研究結(jié)果并不一致,考慮可能受人口分層、種族變異性、性別差異、多重比較等多種因素的影響。因此遺傳因素在肌少癥的進(jìn)展中起到一部分作用,可以部分解釋骨骼肌表型的異質(zhì)性。
2.2 肌肉失用性萎縮
低水平的體力活動(dòng)是導(dǎo)致肌肉減少的最重要因素。對(duì)于一個(gè)健康的老年人,10 d的臥床休息便會(huì)導(dǎo)致肌肉蛋白質(zhì)合成減少30%,腿部肌質(zhì)量減少6%,肌肉力量下降16%[16]。對(duì)于腦卒中患者,由于大腦損傷和上運(yùn)動(dòng)神經(jīng)元通路的中斷導(dǎo)致對(duì)側(cè)肢體偏癱。偏癱側(cè)肢體受限導(dǎo)致長期臥床引發(fā)失用性萎縮。研究統(tǒng)計(jì)急性中風(fēng)患者在住院期間活動(dòng)時(shí)間低于40 min[17]。低強(qiáng)度的運(yùn)動(dòng)導(dǎo)致肌肉力量的下降,而肌肉力量的減弱又進(jìn)一步降低了活動(dòng)力度,從而形成了惡性循環(huán),導(dǎo)致肌少癥的進(jìn)一步加重。
2.3 營養(yǎng)不足
肌肉蛋白質(zhì)占肌肉重量的20%,蛋白質(zhì)攝入不足、合成減少、消耗過多均會(huì)導(dǎo)致肌肉原料不足,促進(jìn)肌少癥的發(fā)生。腦卒中患者多伴隨一側(cè)肢體運(yùn)動(dòng)受限,導(dǎo)致進(jìn)食依賴,同時(shí)吞咽障礙可在24.3%~52.6%的中風(fēng)患者中發(fā)生[18],攝食障礙導(dǎo)致營養(yǎng)不良,從而影響康復(fù)進(jìn)程。除了吞咽障礙引起的營養(yǎng)攝入障礙,患者中風(fēng)后的精神認(rèn)知狀態(tài)、腸道吸收消化問題參與其中,共同作用導(dǎo)致患者營養(yǎng)攝入不足。同時(shí)腦卒中大多發(fā)生在老年人,隨著年齡增長,老年人蛋白質(zhì)合成能力下降。腦卒中患者常伴隨許多慢性疾病如高血壓、糖尿病等,共同消耗體內(nèi)的蛋白質(zhì),導(dǎo)致營養(yǎng)消耗的增加,因此蛋白質(zhì)的攝入減少、合成速度下降、消耗過多綜合作用共同促進(jìn)了肌少癥的發(fā)生進(jìn)程。
2.4 交感過度激活和炎癥反應(yīng)
研究發(fā)現(xiàn),急性腦卒中患者應(yīng)激、情緒應(yīng)激、疼痛及自主神經(jīng)控制的節(jié)前中斷可引起局部和全身交感系統(tǒng)激活,皮質(zhì)醇增多,下丘腦-垂體-腎上腺通路激活,交感神經(jīng)的激活可以導(dǎo)致免疫抑制、炎癥和分解激活[19]。隨著年齡增長,老年人會(huì)產(chǎn)生慢性低水平炎癥反應(yīng)狀態(tài)(chronic low-grade inflammatory profile,CLIP)[20],對(duì)于它的機(jī)制還不是完全清楚,可能是由于慢性疾病、免疫反應(yīng)、活動(dòng)減少、脂肪囤積等多種因素作用所致。而在腦卒中患者體內(nèi)伴隨有早期及持續(xù)的外周炎癥反應(yīng),這種狀態(tài)可以持續(xù)3個(gè)月[21]。炎癥因子可以導(dǎo)致組織下降,加速肌肉質(zhì)量下降,其中腫瘤壞死因子TNF-a在肌肉質(zhì)量降低中起到重要作用[22]。一項(xiàng)對(duì)中老年腦卒中幸存者的研究發(fā)現(xiàn),TNF-a mRNA水平在患側(cè)肢體高于對(duì)側(cè)肢體[23]。腦卒中作為一種慢性疾病,患者由于感染、精神因素、應(yīng)激狀態(tài)、疼痛以及伴隨基礎(chǔ)疾病等各種因素共同作用導(dǎo)致全身炎癥反應(yīng),引發(fā)骨骼肌凋亡旁路的上調(diào),導(dǎo)致肌少癥的發(fā)生[19,24]。
2.5 失神經(jīng)支配
正常情況下,運(yùn)動(dòng)單位代謝過程中會(huì)發(fā)生去神經(jīng)支配、軸索生長、重新支配的循環(huán)現(xiàn)象[25],腦卒中發(fā)生后,由于中樞神經(jīng)下行抑制的喪失和皮質(zhì)脊髓營養(yǎng)輸入的喪失,導(dǎo)致突觸減少和運(yùn)動(dòng)神經(jīng)元變性,原有循環(huán)被打破,加速了失神經(jīng)支配現(xiàn)象。在腦卒中發(fā)生的4 h即可檢測(cè)到運(yùn)動(dòng)單位數(shù)目的下降[9],在腦卒中的慢性階段,運(yùn)動(dòng)神經(jīng)元的下降持續(xù)發(fā)生[26]。運(yùn)動(dòng)神經(jīng)元的缺失是骨骼肌減少癥發(fā)病的重要因素。一項(xiàng)研究通過對(duì)比腦卒中患者中有肌少癥人群和無肌少癥人群,發(fā)現(xiàn)近四分之一的患者有運(yùn)動(dòng)神經(jīng)元的喪失伴肌肉質(zhì)量的下降[25]。
3 肌少癥的評(píng)估
如果從肌少癥后身體結(jié)構(gòu)及機(jī)能的改變上來看,可以從肌肉質(zhì)量改變、肌肉力量變化、肌肉功能減退三個(gè)方面進(jìn)行評(píng)估。
肌量的評(píng)估可以用測(cè)量上臂肌圍做粗略的評(píng)估,但容易受脂肪影響。常用的影像學(xué)技術(shù)如CT、MRI、雙能X射線骨密度儀(dual energy X-ray absorptionmetry,DXA),以及超聲和生物電阻抗分析(bioimpedance analysis,BIA)均可用于肌量評(píng)估。采用DXA全身掃描,每個(gè)發(fā)射源發(fā)出兩種不同能量水平的X射線,可以同時(shí)測(cè)量人體肌肉質(zhì)量、脂肪質(zhì)量和骨礦物質(zhì)含量,對(duì)不同組織分子性質(zhì)具有高對(duì)比性,是目前評(píng)估身體結(jié)構(gòu)常用的方法。在一篇對(duì)肌少癥系統(tǒng)回顧中發(fā)現(xiàn),納入的15篇文章中有9篇用DXA作為肌肉評(píng)估的方法[27]。DXA的局限性是不能準(zhǔn)確評(píng)估肌肉的質(zhì)量,即對(duì)肌肉脂肪浸潤狀態(tài)的評(píng)估,并且DXA的測(cè)量可能受到患者水合狀態(tài)的影響[4]。CT可以用來同時(shí)評(píng)估肌肉的體積和質(zhì)量,因肌肉的密度和脂肪浸潤的程度相關(guān)聯(lián)。同時(shí)DXA測(cè)量只能用于全身肌肉量的測(cè)量,而CT可以應(yīng)用于身體局部位置的測(cè)量。MRI的組織分辨率高,可清晰顯示掃描層面的骨骼肌輪廓及肌內(nèi)脂肪成分,除了可以提供與CT相同的關(guān)于肌肉內(nèi)脂肪浸潤的信息外,還能夠提供肌肉水腫、纖維浸潤、纖維收縮性和彈性等額外數(shù)據(jù)[28-29],是目前評(píng)估肌肉質(zhì)量最準(zhǔn)確的方法,可以作為骨骼肌測(cè)量評(píng)估的金標(biāo)準(zhǔn)。同時(shí)MRI中的彌散張量成像(DTI)最初應(yīng)用于跟蹤神經(jīng)纖維,但越來越多應(yīng)用于骨骼肌肉環(huán)境[30]。然而CT測(cè)量因?yàn)榉派湫暂^高,MRI因成本較高,在臨床動(dòng)態(tài)評(píng)估中均受限。在臨床應(yīng)用中,DXA的優(yōu)勢(shì)超過缺點(diǎn),EWGSOP指導(dǎo)中認(rèn)為DXA可以作為臨床應(yīng)用的第一工具,而CT和MRI可以作為科研應(yīng)用[3]。BIA因操作簡(jiǎn)單、價(jià)格便宜、無輻射的優(yōu)點(diǎn)也可用于肌少癥肌量的評(píng)估,但容易受身體活動(dòng)、飲食、飲水等多種因素影響,結(jié)果可能不夠準(zhǔn)確。
骨骼肌力量的測(cè)方法包括握力測(cè)量、膝蓋彎曲/伸展測(cè)量、等速肌力測(cè)試、最大呼氣量測(cè)量等。其中握力是測(cè)量上肢肌肉力量的可靠且簡(jiǎn)單的指標(biāo),有研究通過測(cè)量偏癱側(cè)手和對(duì)側(cè)手的最大握力來評(píng)價(jià)急性缺血性腦卒中患者的組織損傷程度和骨骼肌組織代謝損傷[19]。對(duì)于腦卒中患者,常存在偏癱側(cè)肢體失用狀態(tài)導(dǎo)致握力的評(píng)估受限,然而有研究發(fā)現(xiàn)單獨(dú)評(píng)估非偏癱側(cè)的握力也可作為中風(fēng)后功能進(jìn)步的獨(dú)立預(yù)測(cè)因子[31]。膝蓋彎曲/伸展測(cè)試可以反映下肢肌力;等速肌力測(cè)試能反映日常生活中的肌肉功能,需要采用專用等速測(cè)量儀測(cè)量;對(duì)于無呼吸系統(tǒng)疾病者,可測(cè)量最大呼氣量,反映呼吸肌功能。
對(duì)于肌肉功能評(píng)估,可以應(yīng)用簡(jiǎn)易體能狀況量表(short physical performance battery protocol and score sheet,SPPB)、站起步行試驗(yàn)(timed get-up-and-go test,TGUG)、6 min步行試驗(yàn)、爬樓試驗(yàn)(stair climb power test,SCPT)。然而80%的中風(fēng)患者存在下肢功能的受限,測(cè)量結(jié)果顯著受偏癱側(cè)肢體的影響,導(dǎo)致這些評(píng)估僅適用于能獨(dú)立行走的中風(fēng)患者。而對(duì)于不能獨(dú)立行走的腦卒中患者,下肢肌力測(cè)試可以采用坐位或仰臥位方法進(jìn)行,其可靠性較高[32]。
4 肌少癥的干預(yù)
4.1 康復(fù)治療
運(yùn)動(dòng)是治療骨骼肌減少癥最有效的方法[32],運(yùn)動(dòng)訓(xùn)練通過降低氧化應(yīng)激、抑制炎癥反應(yīng),促進(jìn)線粒體生物合成、提高IGF-1/肌肉生長抑素比、增強(qiáng)胰島素敏感性途徑對(duì)骨骼肌產(chǎn)生有益作用[33-34]。最近一項(xiàng)回顧性研究表明,對(duì)腦卒中患者進(jìn)行運(yùn)動(dòng)干預(yù)可以逆轉(zhuǎn)偏癱和對(duì)側(cè)上肢的肌肉力量和肌力下降,同時(shí)力量訓(xùn)練也能提高步速,改善預(yù)后[35]。對(duì)于因偏癱不能主動(dòng)運(yùn)動(dòng)的患者,可采用理療、全身振動(dòng)、功能電刺激、聲波等物理療法,具體作用機(jī)制和應(yīng)用條件還需要進(jìn)一步研究。
4.2 補(bǔ)充營養(yǎng)
大多數(shù)中風(fēng)患者伴有營養(yǎng)不良,一項(xiàng)回顧性研究顯示,能量攝入不足的老年腦卒中患者運(yùn)動(dòng)和功能預(yù)后較差[36]。研究發(fā)現(xiàn),通過補(bǔ)充富含亮氨酸的氨基酸8周,老年腦卒中肌少癥患者顯著增加了肌肉的質(zhì)量和力量,日?;顒?dòng)得到改善[37]。但如果不結(jié)合運(yùn)動(dòng)訓(xùn)練,補(bǔ)充富含亮氨酸的氨基酸并不能起到作用[38]。這意味著,單純的營養(yǎng)補(bǔ)充劑并不能使所有的患者受益,營養(yǎng)補(bǔ)充劑結(jié)合抗阻運(yùn)動(dòng)可以更好地改善肌肉質(zhì)量。研究表明,在中風(fēng)后康復(fù)治療中,接受抗氧化劑的患者康復(fù)效果沒有顯著差異,但隨訪1年內(nèi)患者死亡率有下降趨勢(shì)[39]。維生素E和維生素D對(duì)肌少癥患者肌力恢復(fù)有正向作用[40-41],鈣、鎂、硒等礦物質(zhì)營養(yǎng)物質(zhì)也被證明可預(yù)防骨骼肌減少癥[42]。
4.3 藥物治療
對(duì)于肌少癥治療的藥物方面研究比較有限,研究發(fā)現(xiàn)低劑量的睪酮可以增加肌肉質(zhì)量,減少脂肪重量,而高劑量的睪酮可以同時(shí)增加肌肉質(zhì)量和力量[43]。然而睪酮對(duì)肌肉的有益作用是可逆的[44],因此用于對(duì)腦卒中繼發(fā)性肌少癥的治療仍然存在爭(zhēng)議,還需要進(jìn)一步研究來證明。MK0773是一種選擇性雄激素受體調(diào)節(jié)劑,已被證實(shí)可以提高女性IGF-1水平,改善肌肉質(zhì)量[45],但它的有效性和安全性還需要大范圍的研究來驗(yàn)證[46]。研究發(fā)現(xiàn)生長激素可以增加老年人肌肉質(zhì)量,生長激素聯(lián)合睪酮可以在8周內(nèi)增加肌肉質(zhì)量,17周達(dá)到最大肌肉力量[47],但安全性還需要進(jìn)一步觀察。研究發(fā)現(xiàn)依達(dá)拉奉可以抑制急性腦卒中廢用性肌萎縮的進(jìn)展,改善腦卒中患者的運(yùn)動(dòng)功能和預(yù)后[47],具體的應(yīng)用還需要更多的研究來證明。
5 總結(jié)
腦卒中繼發(fā)性的骨骼肌減少癥可導(dǎo)致患者生活質(zhì)量嚴(yán)重下降、住院率和死亡率的增加,但目前對(duì)它的流行病學(xué)、發(fā)病機(jī)制、篩查和治療的研究還比較有限,體育鍛煉、營養(yǎng)補(bǔ)充和藥物治療結(jié)合的方式可能對(duì)卒中相關(guān)性肌少癥患者產(chǎn)生有利的影響。未來研究中可更多探索肌少癥的早期篩查及預(yù)防干預(yù)方法,以優(yōu)化卒中后康復(fù)。
參考文獻(xiàn)
[1] Rosenberg IH. Sarcopenia: origins and clinical relevance[J]. J Nutr, 1997, 127(5 Suppl): 990S-991S.
[2] Pacifico J, Geerlings MAJ, Reijnierse EM, et al. Prevalence of sarcopenia as a comorbid disease: a systematic review and meta-analysis[J]. Exp Gerontol, 2020, 131: 110801.
[3] Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(4): 601.
[4] Albano D, Messina C, Vitale J, et al. Imaging of sarcopenia: old evidence and new insights[J]. Eur Radiol, 2020, 30(4): 2199-2208.
[5] Reijnierse EM, Trappenburg MC, Leter MJ, et al. The impact of different diagnostic criteria on the prevalence of sarcopenia in healthy elderly participants and geriatric outpatients[J]. Gerontology, 2015, 61(6): 491-496.
[6] Su Y, Yuki M, Otsuki M. Prevalence of stroke-related sarcopenia: a systematic review and meta-analysis[J]. J Stroke Cerebrovasc Dis, 2020, 29(9): 105092.
[7] Collaborators GBDLRoS, Feigin VL, Nguyen G, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016[J]. N Engl J Med, 2018, 379(25): 2429-2437.
[8] Kelly-Hayes M, Beiser A, Kase CS, et al. The influence of gender and age on disability following ischemic stroke: the Framingham study[J]. J Stroke Cerebrovasc Dis, 2003, 12(3): 119-126.
[9] Arasaki K, Igarashi O, Ichikawa Y, et al. Reduction in the motor unit number estimate (MUNE) after cerebral infarction[J]. J Neurol Sci, 2006, 250(1/2): 27-32.
[10] Ryan AS, Buscemi A, Forrester L, et al. Atrophy and intramuscular fat in specific muscles of the thigh: associated weakness and hyperinsulinemia in stroke survivors[J]. Neurorehabil Neural Repair, 2011, 25(9): 865-872.
[11] Carin-Levy G, Greig C, Young A, et al. Longitudinal changes in muscle strength and mass after acute stroke[J]. Cerebrovasc Dis, 2006, 21(3): 201-207.
[12] Nikoli? M, Malnar-Dragojevi? D, Bobinac D, et al. Age-related skeletal muscle atrophy in humans: an immunohistochemical and morphometric study[J]. Coll Antropol, 2001, 25(2): 545-553.
[13] Canepari M, Pellegrino MA, DAntona G, et al. Single muscle fiber properties in aging and disuse[J]. Scand J Med Sci Sports, 2010, 20(1): 10-19.
[14] De Deyne PG, Hafer-Macko CE, Ivey FM, et al. Muscle molecular phenotype after stroke is associated with gait speed[J]. Muscle Nerve, 2004, 30(2): 209-215.
[15] Tan LJ, Liu SL, Lei SF, et al. Molecular genetic studies of gene identification for sarcopenia[J]. Hum Genet, 2012, 131(1): 1-31.
[16] Kortebein P, Ferrando A, Lombeida J, et al. Effect of 10 days of bed rest on skeletal muscle in healthy older adults[J]. JAMA, 2007, 297(16): 1772-1774.
[17] Bernhardt J, Dewey H, Thrift A, et al. Inactive and alone: physical activity within the first 14 days of acute stroke unit care[J]. Stroke, 2004, 35(4): 1005-1009.
[18] Foley NC, Martin RE, Salter KL, et al. A review of the relationship between dysphagia and malnutrition following stroke[J]. J Rehabil Med, 2009, 41(9): 707-713.
[19] Knops M, Werner CG, Scherbakov N, et al. Investigation of changes in body composition, metabolic profile and skeletal muscle functional capacity in ischemic stroke patients: the rationale and design of the Body Size in Stroke Study(BoSSS)[J]. J Cachexia Sarcopenia Muscle, 2013, 4(3): 199-207.
[20] Beyer I, Mets T, Bautmans I. Chronic low-grade inflammation and age-related sarcopenia[J]. Curr Opin Clin Nutr Metab Care, 2012, 15(1): 12-22.
[21] Emsley HC, Smith CJ, Gavin CM, et al. An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis[J]. J Neuroimmunol, 2003, 139(1/2): 93-101.
[22] Reid MB, Li YP. Tumor necrosis factor-alpha and muscle wasting: a cellular perspective[J]. Respir Res, 2001, 2(5): 269-272.
[23] Ryan AS, Ivey FM, Serra MC, et al. Sarcopenia and physical function in middle-aged and older stroke survivors[J]. Arch Phys Med Rehabil, 2017, 98(3): 495-499.
[24] Springer J, Schust S, Peske K, et al. Catabolic signaling and muscle wasting after acute ischemic stroke in mice: indication for a stroke-specific sarcopenia[J]. Stroke, 2014, 45(12): 3675-3683.
[25] Drey M, Krieger B, Sieber CC, et al. Motoneuron loss is associated with sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(6): 435-439.
[26] Li X, Shin H, Zhou P, et al. Power spectral analysis of surface electromyography (EMG) at matched contraction levels of the first dorsal interosseous muscle in stroke survivors[J]. Clin Neurophysiol, 2014, 125(5): 988-994.
[27] English C, McLennan H, Thoirs K, et al. Loss of skeletal muscle mass after stroke: a systematic review[J]. Int J Stroke, 2010, 5(5): 395-402.
[28] Fischer MA, Pfirrmann CW, Espinosa N, et al. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality[J]. Eur Radiol, 2014, 24(6): 1366-1375.
[29] Grimm A, Nickel MD, Chaudry O, et al. Feasibility of dixon magnetic resonance imaging to quantify effects of physical training on muscle composition - a pilot study in young and healthy men[J]. Eur J Radiol, 2019, 114: 160-166.
[30] Chianca V, Albano D, Messina C, et al. Diffusion tensor imaging in the musculoskeletal and peripheral nerve systems: from experimental to clinical applications[J]. Eur Radiol Exp, 2017, 1(1): 12.
[31] Yi Y, Shim JS, Oh BM, et al. Grip strength on the unaffected side as an independent predictor of functional improvement after stroke[J]. Am J Phys Med Rehabil, 2017, 96(9): 616-620.
[32] Li W, Yue T, Liu Y. New understanding of the pathogenesis and treatment of stroke-related sarcopenia[J]. Biomed Pharmacother, 2020, 131: 110721.
[33] Phu S, Boersma D, Duque G. Exercise and sarcopenia[J]. J Clin Densitom, 2015, 18(4): 488-492.
[34] Nascimento CM, Ingles M, Salvador-Pascual A, et al. Sarcopenia, frailty and their prevention by exercise[J]. Free Radic Biol Med, 2019, 132: 42-49.
[35] Hunnicutt JL, Gregory CM. Skeletal muscle changes following stroke: a systematic review and comparison to healthy individuals[J]. Top Stroke Rehabil, 2017, 24(6): 463-471.
[36] Kokura Y, Wakabayashi H, Nishioka S, et al. Nutritional intake is associated with activities of daily living and complications in older inpatients with stroke[J]. Geriatr Gerontol Int, 2018, 18(9): 1334-1339.
[37] Yoshimura Y, Bise T, Shimazu S, et al. Effects of a leucineenriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: a randomized controlled trial[J]. Nutrition, 2019, 58: 1-6.
[38] Verhoeven S, Vanschoonbeek K, Verdijk LB, et al. Longterm leucine supplementation does not increase muscle mass or strength in healthy elderly men[J]. Am J Clin Nutr, 2009, 89(5): 1468-1475.
[39] Garbagnati F, Cairella G, De Martino A, et al. Is antioxidant and n-3 supplementation able to improve functional status in poststroke patients? Results from the Nutristroke Trial[J]. Cerebrovasc Dis, 2009, 27(4): 375-383.
[40] Khor SC, Abdul Karim N, Ngah WZ, et al. Vitamin E in sarcopenia: current evidences on its role in prevention and treatment[J]. Oxid Med Cell Longev, 2014, 2014: 914853.
[41] Lappe JM, Binkley N. Vitamin D and sarcopenia/falls[J]. J Clin Densitom, 2015, 18(4): 478-482.
[42] van Dronkelaar C, van Velzen A, Abdelrazek M, et al. Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review[J]. J Am Med Dir Assoc, 2018, 19(1): 6-11; e13.
[43] Kovacheva EL, Hikim AP, Shen R, et al. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways[J]. Endocrinology, 2010, 151(2): 628-638.
[44] OConnell MD, Roberts SA, Srinivas-Shankar U, et al. Do the effects of testosterone on muscle strength, physical function, body composition, and quality of life persist six months after treatment in intermediate-frail and frail elderly men?[J]. J Clin Endocrinol Metab, 2011, 96(2): 454-458.
[45] Papanicolaou DA, Ather SN, Zhu H, et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia[J]. J Nutr Health Aging, 2013, 17(6): 533-543.
[46] Morley JE. Pharmacologic options for the treatment of sarcopenia[J]. Calcif Tissue Int, 2016, 98(4): 319-333.
[47] Blackman MR, Sorkin JD, Munzer T, et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial[J]. JAMA, 2002, 288(18): 2282-2292.