• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma?

    2021-03-19 03:20:52LinWei位琳BoLiu劉博FangPingWang王芳平HengZhang張恒andWenShanDuan段文山
    Chinese Physics B 2021年3期
    關(guān)鍵詞:劉博張恒文山

    Lin Wei(位琳), Bo Liu(劉博), Fang-Ping Wang(王芳平), Heng Zhang(張恒), and Wen-Shan Duan(段文山)

    College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    Keywords: ion-acoustic solitary waves,particle-in-cell simulation,bounded plasmas

    1. Introduction

    Nonlinear waves exist in many physical systems, such as in water,[1]optics,[2,3]and plasmas.[4-6]They have played important roles in the study of plasma physics.[7-10]They have attracted a great deal of interest because of their widely occurrence in active galactic nuclei,[11-14]pulsar magnetosphere,[15,16]solar atmosphere, and the inner regions of the accretion disks surrounding the central black holes[17-19]in the past few decades. Many authors pay attention to nonlinear waves, especially ion-acoustic solitary waves (IASWs), due to their importance in modern plasma physics.[20-22]IASWs have been theoretically and experimentally studied in various laboratory and space plasmas.[23-32]

    Many researchers have investigated the characteristics of IASWs described by both the KdV equation and the nonlinear Schr¨odinger equation (NLSE) to study the phenomenon observed in various laboratory and space plasma applications.[33-40]On the other hand, a large number of numerical simulation studies have been done for IASWs by using PIC method to check the theoretical results.[41-44]For instance,Kakad et al.[42]have studied the characteristics of the ion-acoustic solitons such as amplitude, width and speed by both fluid and PIC simulations. They found that PIC and fluid results are almost consistent with small amplitude initial density perturbations. Qi et al.[43]have investigated the head-on collision between two IASWs by using the PIC simulation method in a plasma containing hot electrons and cold ions,and it is found that the PIC results are reliable if the amplitudes of both the colliding solitary waves are small enough. Sharma et al.[44]have studied the formation and propagation of large amplitude ion-acoustic solitons using a one-dimensional PIC method,and it suggests that when Mach numbers are low,the PIC simulation results are in close agreement with the KdV soliton solutions.

    Although IASWs have been studied extensively by both theoretical and numerical methods, most of these studies are for unbounded plasmas. However, the plasmas in the laboratory are usually bounded in finite geometry. Studies of IASWs in a bounded plasma are meaningful because of its importance in laboratory experiments and industrial applications. Some theoretical studies have been done for solitary waves in bounded plasmas,[45-49]such as KdV solitary waves,etc.Following these theoretical works,we study not only KdV solitary waves, but also dark envelope solitons in a bounded plasma by using the PIC simulation method and considering dissipation effects of the plasma fluid. Our intention in the present paper is to verify the analytical results by PIC numerical simulation.Using the reductive perturbation technique,we obtain a modified-KdV equation and a modified-NLSE to describe the damping IASWs.We also investigate how the cylinder radius and the viscosity coefficient of the plasma affect the characteristics of IASWs.

    The layout of this paper is as follows: The analytical study on the IASWs by using the reductive perturbation method is given in Section 2. In Section 3, we introduce the PIC simulation method. The PIC simulation results and the analytical ones are both discussed and compared in Section 4.Finally,our discussion and conclusion are given in Section 5.

    2. Basic equations

    We consider a two-component electron-ion plasma which is bounded in a finite cylinder with radius R.[45-49]Taking cylindrical coordinates,the equations of the motion of ion fluid are

    where niand neare the ion and electron number densities, r,θ,and x are the radial,polar angle,and axial coordinates,t is the time. υr, υθ, and υxrepresent the components of the ion velocity in the cylindrical coordinate system. miis the mass of the ions. γ is the adiabatic coefficient, Tiis the ion temperature. ν is the viscosity coefficient of the plasma. ? is the electrostatic potential. nesatisfies Boltzmann distribution ne=ne0exp(e?/kBTe),kBis the Boltzmann constant,Teis the electron temperature.

    We consider a symmetrical cylinder in the present paper.We assume that υr= υθ= 0, i.e., υx=V(r,x,t), which is usually satisfied in some special cases, such as the external magnetic field is large enough.[47,48]Under these assumptions,equations(1)-(3)can be modified as follows:

    The dimen

    In the following, we focus on the case that 1/k ?R,where k is the wavenumber. Notice that in this limit, the axial and radial equations are completely independent. Accordingly,we take[45-48]

    Substituting Eqs.(10)-(12)into Eq.(9),we obtain the following equations:

    where equation (13) is a Bessel equation whose solution is a Bessel function Y0(r)=J0(βr),with ζ =?β2. ζ is the eigenvalue of Bessel equation. β will be determined by the boundary condition which will be given later.Thus,equation(7)-(9)become

    We consider the first boundary condition J0(βR)=0,i.e.,the potential at the boundary is zero.By solving the eigenvalue problem of the Bessel function,we obtain β =3π/4R. In addition,as we consider the second or third boundary conditions,only the value of β changes,the others are the same as the first boundary condition.

    By averaging the physical quantities on the radial direction,we reduce the model to a one-dimensional case,in which the influence of the radius R is included in the parameter β.

    2.1. Modified-KdV equation

    In order to study the KdV solitary waves in a plasma,we introduce the following stretched coordinates according to the reductive perturbation technique: ξ =ε(x ?ct),τ =ε3t,and ν =ε3ν0,where ε is a dimensionless parameter which stands for the strength of the nonlinearity,c is the velocity of the linear wave. Then,the dependent variables are expanded as follows:

    Substituting Eq.(18)into Eqs.(15)-(17), in the first order of ε,we obtain

    In the next higher order,we obtain the modified-KdV equation

    where

    If D=0, equation (22) is a standard KdV equation, its solution is

    If D/=0,equation(22)describes a damping KdV solitary wave,its approximate solution is[50,51]

    2.2. Modified-NLSE

    In order to study the envelope solitary waves in a plasma,we introduce the following stretched coordinates: ξ =ε(x ?υgt), τ =ε2t, ν =ε2ν0, where υgis the group velocity. All the physical quantities are expanded as follows:

    By substituting these expansions into Eqs.(15)-(17),we have the following results: the dispersion relation

    the group velocity

    and finally the modified-NLSE

    where the dispersion coefficient P and the nonlinearity coefficient Q are as follows:

    the damping coefficient D is

    If D=0,equation(28)is a standard NLSE.When PQ <0,its solution is

    If D/=0,equation(28)is a modified-NLSE,its approximate solution(PQ <0)is

    3. Particle-in-cell method

    The one-dimensional PIC simulation method is applied to study the propagation of the KdV solitary waves and the dark envelope solitons in a viscous bounded plasma in this work.During the simulation, the ions are regarded as kinetic particles, while electrons are modeled as Boltzmann distributed background. Generally, real systems contain extremely lots of particles. In order to make simulations efficient, superparticles(SPs)are used. Each SP has a weight factor S specifying the number of real particles contained. The whole simulation region is divided into grid cells. At each time step, the velocities and positions of SPs are weighted to all the grids to calculate the charge density.Once the charge density obtained,the Poisson equation(electrostatic model)will be solved to derive the potential of each grid,and the electric field E at each grid is further derived. Then, each SP will be driven by the electric field, and the new position and velocity are obtained according to the motion equation. The equation of motion of the system is Newton’s equation

    where qE is the electric field force, ?(γ′/n)(?n/?x) is the pressure of ion fluid,?νβ2υ is the viscous force.

    In addition,we need to give the value of the parameter β in the PIC simulation,which is determined by the radius of the cylinder. That is,the bounded plasma is reflected on β in the PIC simulation.

    3.1. Initial condition of the damping KdV solitary wave

    In the PIC simulation,initial conditions are chosen from the analytical solution expressed in Eq.(24)at t=0. The initial values of the number density and the velocity of the ions are

    respectively. The fixed boundary conditions are used. The parameters chosen in the simulation are as follows: Δx=0.3,Δt =0.0125, the number of grid cells is Nx=10000 and the number of SPs contained per cell is 50, the total length of xaxis is Lx=ΔxNx. ε =0.2, γ′=0.003,x0=4Lx/15. This initial disturbance will evolve as the time increases.

    3.2. Initial condition of the damping dark envelope soliton

    In the PIC simulation,initial conditions are chosen from the analytical solution expressed in Eq.(39)at t=0. The initial values of the number density and the velocity of the ions are given below:

    respectively. The boundary conditions along the x-axis are periodic. The parameters chosen in the simulation are as follows: Δx = 0.3, Δt = 0.0125, the number of grid cells is Nx=30000 and the number of SPs contained per cell is 50,the total length of x axis is Lx=ΔxNx. ε =0.01, γ′=0.003,k=0.1,x0=Lx/4. This initial disturbance will evolve as the time increases.

    4. PIC simulation results

    4.1. KdV solitary wave

    Fig.1. The PIC simulation results of the evolution of the KdV solitary wave at different time, where ε =0.2, ψ0 =0.1, γ′ =0.003, R=50, ν =0.4,D=0.056.

    Fig.2. The dependence of the amplitude on the time for KdV solitary waves with ε =0.2,ψ0 =0.1,γ′ =0.003. (a)R=50,ν =0,D=0,Ds =0; (b)R=50, ν =0.4, D=0.056, Ds =0.053; (c)R=50, ν =1.0, D=0.139,Ds=0.134. The red lines represent the analytical results,and the blue dots represent the simulation results. Simulation results for amplitudes are compared with analytical expression (Eq. (24)) and observed that both results are in good agreement,as shown in above graph.

    Furthermore, the dependence of the damping coefficient D(as well as Ds)on both the cylinder radius R and the viscosity coefficient ν is shown in Fig.3.It is noted that the damping coefficient decreases as the cylinder radius R increases,while it increases as the viscosity coefficient ν increases. It is also found that the simulation results and analytical ones are almost consistent.

    Fig.3. Comparisons of the damping coefficient between the simulation results and the analytical ones. (a) The dependence of damping coefficient D on the cylinder radius R, where ε =0.2, ψ0 =0.1, γ′ =0.003, ν =1.0;(b)the dependence of damping coefficient D on the viscosity coefficient ν,where ε=0.2,ψ0=0.1,γ′=0.003,R=50.The red lines are the analytical results,and the blue dots are the simulation results.

    4.2. Dark envelope solitary wave

    The evolution of the dark envelope solitary waves under the effects of the viscous force in the PIC simulation is shown in Fig.4 at different times. The initial amplitude is ψ0=0.00115. It can be observed that as time increases, the amplitude of this dark envelope solitary wave decreases. In order to get more insight into how the amplitudes of the dark envelope solitary waves attenuate,figure 5 shows the variation of the amplitudes with the time under different system parameters. Notice that when there is a viscous force,the amplitude decreases exponentially with time. We also define the same damping coefficient Dsfrom the PIC simulation as that of the KdV solitary wave. It is noted from Fig.5 that the simulation results are close in good agreement with the analytical ones,i.e.,Ds≈D. Also,it is found that the larger the damping coefficient,the stronger the attenuation of the wave.

    Fig.4. The PIC simulation results of the evolution of the dark envelope solitary waves at different times, where ε =0.01, k=0.1, γ′ =0.003,R=50,ν =0.4,D=0.056.

    Fig.5. The dependence of the amplitude on time for dark envelope solitary waves with ε =0.01,k=0.1,γ′=0.003. (a)R=50,ν =0,D=0,Ds=0;(b)R=50,ν =0.4,D=4.44,Ds =4.62; (c)R=50,ν =1.0,D=11.10,Ds =11.00. The red lines represent the analytical results,and the blue dots represent the simulation results. Simulation results for amplitudes are compared with analytical expression(Eq.(39))and observed that both results are in good agreement,as shown in the above graph.

    Fig.6. Comparisons of the damping coefficient between the simulation results and the analytical ones. (a) The dependence of damping coefficient D on the cylinder radius R, where ε =0.01, k=0.1, γ′ =0.003, ν =1.0;(b)the dependence of damping coefficient D on the viscosity coefficient ν,where ε=0.01,k=0.1,γ′=0.003,R=50. The red lines are the analytical results,and the blue dots are the simulation results.

    In order to understand how the damping coefficient depends on the system parameters, figure 6 shows the dependence of the damping coefficient D(or Ds)on the cylinder radius R and the viscosity coefficient ν.It is noted that the damping coefficient decreases as the cylinder radius R increases,while it increases as the viscosity coefficient ν increases. It is also found that the analytical results are consistent with the simulation results.

    5. Discussion and conclusion

    In this paper,we have studied some nonlinear waves of a viscous plasma composed of Boltzmann distributed electrons and ions fluid confined in a finite cylinder. By averaging the physical quantities on the radial direction in some cases, we reduce this system to a simple one-dimensional case. It is found that the effects of the bounded geometry(the radius of the cylinder in this case) can be included in the damping coefficient or the equivalent parameter β which also depends on what kind of the boundary condition.

    Furthermore, one-dimensional PIC simulation method has been applied to study the formation and propagation of the damping KdV solitary waves and dark envelope solitary waves in a viscous bounded plasma. It is observed that the amplitudes of both the KdV solitary waves and the dark envelope solitary waves decrease exponentially as time increases.We define a damping coefficient Dsin the PIC simulation. It is found that the numerical results are in good agreement with the analytical ones, i.e., Ds≈D. The dependence of damping coefficient on both the cylinder radius R and the viscosity coefficient ν is also obtained numerically by using the PIC simulation method,which is consistent with the analytical results. It also suggests that the damping coefficient decreases as the cylinder radius increases, while increases as the viscosity coefficient increases. In the future, we will try to do three-dimensional PIC simulation in the cylindrical coordinates. Our present one-dimensional model is the result of the simplification of the three-dimensional model. We consider a symmetrical cylinder ignoring the angular motion and take the average value in the radial direction. When we only focus on the axial motion of the particles,the three-dimensional PIC simulation in the cylindrical coordinate becomes the onedimensional PIC simulation in the Cartesian coordinate. The one-dimensional model is a special case of symmetry, while the three-dimensional model is a general situation.

    There are debates for a long time about whether the solitary wave exists in a bounded plasma.[52,53]Present paper tries to answer this question. We distinguish whether the solitary wave exists by the following method. We define that the solitary wave does not exist in a bounded plasma if the amplitude of the solitary wave becomes less than half of its initial value after it propagates the distance of five Debye lengths.On the other hand,the solitary wave exists in the system. By using this definition, we find a critical damping coefficient Dc=Ciln2/5λD. It seems that when D <Dc, the solitary wave can propagate, while it can not propagate in a bounded plasma when D >Dc.

    Finally, our results have potential applications in laboratory experiments.[47-49]For example, if a wave is excited at one end of a finite cylindrical tube,we can detect it at the other end of the cylindrical tube in a micro-gravity condition.Therefore,the damping coefficient can be obtained by measuring the wave amplitudes at both ends of the cylindrical tube. Then the viscosity coefficient of the plasma can be indirectly obtained from the relationship between the damping coefficient and the viscosity coefficient of the plasma.

    猜你喜歡
    劉博張恒文山
    Differences between two methods to derive a nonlinear Schr?dinger equation and their application scopes
    詩與象
    詩與學(xué)
    Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft
    A mathematical analysis: From memristor to fracmemristor
    Investigation of the confinement of high energy non-neutral proton beam in a bent magnetic mirror
    文竹
    Quantum Fisher Information Gap for Systems with Nonlinear Hamiltonians?
    霧和霾的十大區(qū)別
    地理教育(2015年12期)2015-12-07 11:58:30
    Holocene paleoearthquake activity along the 2008 Wenchuan earthquake ruptures of the Beichuan and Pengguan faults
    欧美亚洲日本最大视频资源| 欧美人与善性xxx| 国产精品av久久久久免费| 亚洲av中文av极速乱| av片东京热男人的天堂| 国产免费一区二区三区四区乱码| 久久久久久久国产电影| av有码第一页| 观看av在线不卡| 国产精品一区二区在线不卡| 国产黄色视频一区二区在线观看| 两个人免费观看高清视频| 精品国产一区二区三区久久久樱花| 国产 一区精品| 久久ye,这里只有精品| 丝袜脚勾引网站| 国产野战对白在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品国产亚洲av高清涩受| 在线观看免费高清a一片| 国产无遮挡羞羞视频在线观看| 国产色婷婷99| av网站免费在线观看视频| 国产成人欧美在线观看 | 美女国产高潮福利片在线看| 精品国产一区二区三区四区第35| 美女大奶头黄色视频| 中文字幕色久视频| 老司机亚洲免费影院| 精品亚洲乱码少妇综合久久| 国产精品一区二区在线观看99| 69精品国产乱码久久久| 午夜福利视频精品| 女的被弄到高潮叫床怎么办| 伦理电影大哥的女人| 日本色播在线视频| 日本wwww免费看| 欧美日韩视频高清一区二区三区二| 一级a爱视频在线免费观看| 国产色婷婷99| 交换朋友夫妻互换小说| 国产成人欧美在线观看 | 免费少妇av软件| 人体艺术视频欧美日本| 在线观看三级黄色| 九色亚洲精品在线播放| 久久毛片免费看一区二区三区| 午夜福利网站1000一区二区三区| 日韩制服骚丝袜av| av电影中文网址| 女人高潮潮喷娇喘18禁视频| 免费观看人在逋| 99久久精品国产亚洲精品| 91精品伊人久久大香线蕉| 悠悠久久av| 99re6热这里在线精品视频| 大香蕉久久成人网| 我的亚洲天堂| 18禁动态无遮挡网站| 捣出白浆h1v1| 国产熟女午夜一区二区三区| 精品少妇内射三级| 91成人精品电影| 国产av码专区亚洲av| 成人国产麻豆网| 国精品久久久久久国模美| 国产精品久久久久久久久免| 99国产综合亚洲精品| 如日韩欧美国产精品一区二区三区| 9色porny在线观看| 中文字幕亚洲精品专区| 亚洲av电影在线进入| 日韩精品有码人妻一区| 亚洲欧美清纯卡通| 波多野结衣av一区二区av| 国产熟女欧美一区二区| 日韩大片免费观看网站| 国产精品一区二区精品视频观看| 人妻一区二区av| 欧美日韩视频精品一区| 国产人伦9x9x在线观看| 欧美亚洲日本最大视频资源| 丝袜美腿诱惑在线| 欧美中文综合在线视频| 日韩中文字幕欧美一区二区 | 日本av免费视频播放| 综合色丁香网| 黑人巨大精品欧美一区二区蜜桃| 99国产综合亚洲精品| 狂野欧美激情性xxxx| 五月天丁香电影| 久久狼人影院| 只有这里有精品99| 亚洲国产av新网站| 婷婷色综合大香蕉| 午夜日韩欧美国产| 卡戴珊不雅视频在线播放| 中文字幕人妻丝袜一区二区 | 考比视频在线观看| 日韩熟女老妇一区二区性免费视频| 成人毛片60女人毛片免费| 精品国产一区二区久久| 国产精品免费大片| 美女福利国产在线| 国产精品一二三区在线看| 午夜福利乱码中文字幕| 亚洲在久久综合| 欧美日韩亚洲综合一区二区三区_| 中文天堂在线官网| 日韩制服骚丝袜av| 久久综合国产亚洲精品| 国产 精品1| 亚洲图色成人| 亚洲第一青青草原| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 一级毛片电影观看| 久久韩国三级中文字幕| 久久久久国产精品人妻一区二区| 九九爱精品视频在线观看| 久久久精品免费免费高清| 精品国产露脸久久av麻豆| 一区二区三区精品91| 久久久久国产一级毛片高清牌| 在线观看免费高清a一片| 亚洲精品在线美女| 国产精品久久久人人做人人爽| 国产伦理片在线播放av一区| 观看av在线不卡| 欧美日韩国产mv在线观看视频| 少妇精品久久久久久久| 在线观看免费日韩欧美大片| 99九九在线精品视频| 国产成人系列免费观看| 久久性视频一级片| 美国免费a级毛片| 日韩 欧美 亚洲 中文字幕| 亚洲精品自拍成人| 大片免费播放器 马上看| 精品亚洲成a人片在线观看| 天堂中文最新版在线下载| 国产精品 欧美亚洲| 国产亚洲一区二区精品| 99国产综合亚洲精品| 国产亚洲欧美精品永久| 韩国av在线不卡| 国产一区二区激情短视频 | 久久性视频一级片| 欧美 亚洲 国产 日韩一| 婷婷色av中文字幕| 成人亚洲欧美一区二区av| 大码成人一级视频| 老汉色∧v一级毛片| 90打野战视频偷拍视频| 亚洲精品国产色婷婷电影| 美女视频免费永久观看网站| 肉色欧美久久久久久久蜜桃| 亚洲自偷自拍图片 自拍| 久久婷婷青草| 免费观看a级毛片全部| 丝袜美足系列| 亚洲视频免费观看视频| 色婷婷av一区二区三区视频| 欧美成人午夜精品| 丝袜美腿诱惑在线| 国产精品一区二区在线不卡| 欧美av亚洲av综合av国产av | 亚洲精品中文字幕在线视频| 夫妻性生交免费视频一级片| 男女国产视频网站| 十八禁高潮呻吟视频| 交换朋友夫妻互换小说| 丝袜美足系列| 深夜精品福利| 精品午夜福利在线看| 青春草国产在线视频| 女人久久www免费人成看片| 可以免费在线观看a视频的电影网站 | 国产成人欧美| 在线看a的网站| 久久综合国产亚洲精品| 精品国产一区二区三区四区第35| 日韩不卡一区二区三区视频在线| 久久久久国产精品人妻一区二区| 中文字幕另类日韩欧美亚洲嫩草| av国产精品久久久久影院| 午夜福利视频在线观看免费| 日本av免费视频播放| 亚洲欧美清纯卡通| 国产在线免费精品| 在线观看国产h片| 亚洲美女搞黄在线观看| 国产黄色免费在线视频| 欧美国产精品va在线观看不卡| 人妻一区二区av| 亚洲免费av在线视频| 亚洲欧美精品综合一区二区三区| 午夜福利免费观看在线| 成人漫画全彩无遮挡| 成年av动漫网址| 美女大奶头黄色视频| 黄色毛片三级朝国网站| 另类亚洲欧美激情| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 夫妻性生交免费视频一级片| 久久久久久久久免费视频了| 国产精品香港三级国产av潘金莲 | 高清不卡的av网站| 热99久久久久精品小说推荐| 桃花免费在线播放| 老司机靠b影院| 久久99一区二区三区| 啦啦啦中文免费视频观看日本| av在线老鸭窝| 免费在线观看黄色视频的| 欧美国产精品va在线观看不卡| 亚洲久久久国产精品| 极品人妻少妇av视频| 狂野欧美激情性bbbbbb| 欧美日韩一区二区视频在线观看视频在线| 欧美久久黑人一区二区| 美女中出高潮动态图| 亚洲熟女精品中文字幕| 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| 亚洲,一卡二卡三卡| 三上悠亚av全集在线观看| 国产欧美亚洲国产| 色婷婷av一区二区三区视频| 黄色视频在线播放观看不卡| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 中文字幕精品免费在线观看视频| 亚洲国产看品久久| av在线观看视频网站免费| 国产人伦9x9x在线观看| 国产精品嫩草影院av在线观看| tube8黄色片| 精品国产露脸久久av麻豆| 十分钟在线观看高清视频www| 亚洲精品国产av成人精品| 亚洲国产毛片av蜜桃av| 狠狠婷婷综合久久久久久88av| 亚洲美女视频黄频| 两个人看的免费小视频| 黄色 视频免费看| 亚洲av日韩精品久久久久久密 | 精品国产乱码久久久久久男人| 久久久精品94久久精品| 在线观看一区二区三区激情| 亚洲美女视频黄频| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av高清一级| xxxhd国产人妻xxx| 热99久久久久精品小说推荐| 成人三级做爰电影| 伊人久久国产一区二区| 欧美日韩福利视频一区二区| 啦啦啦啦在线视频资源| 亚洲一区二区三区欧美精品| 亚洲欧美中文字幕日韩二区| 国产有黄有色有爽视频| 99久久综合免费| 18禁国产床啪视频网站| 欧美日韩亚洲国产一区二区在线观看 | 免费黄色在线免费观看| 国产女主播在线喷水免费视频网站| 国产免费视频播放在线视频| 男女床上黄色一级片免费看| av天堂久久9| 亚洲少妇的诱惑av| 欧美日韩福利视频一区二区| 国产一级毛片在线| 街头女战士在线观看网站| 亚洲四区av| www.av在线官网国产| 国产亚洲午夜精品一区二区久久| 天天躁狠狠躁夜夜躁狠狠躁| 日本wwww免费看| 久久久久久免费高清国产稀缺| 国产女主播在线喷水免费视频网站| netflix在线观看网站| 精品人妻熟女毛片av久久网站| 亚洲国产中文字幕在线视频| 青春草视频在线免费观看| 成人国产麻豆网| 超碰97精品在线观看| 交换朋友夫妻互换小说| 男人爽女人下面视频在线观看| 性高湖久久久久久久久免费观看| 亚洲 欧美一区二区三区| 蜜桃在线观看..| 国产一区亚洲一区在线观看| 新久久久久国产一级毛片| 美女主播在线视频| 久久人人爽人人片av| 午夜福利网站1000一区二区三区| 女性被躁到高潮视频| 夫妻性生交免费视频一级片| 国产1区2区3区精品| kizo精华| 丰满乱子伦码专区| h视频一区二区三区| 少妇的丰满在线观看| 久久精品国产a三级三级三级| 日本av免费视频播放| 侵犯人妻中文字幕一二三四区| 亚洲欧美精品自产自拍| 午夜福利影视在线免费观看| 国产男女超爽视频在线观看| 精品少妇内射三级| 久久女婷五月综合色啪小说| 中文字幕精品免费在线观看视频| 亚洲国产精品999| 精品午夜福利在线看| 男女午夜视频在线观看| 精品一区二区免费观看| 97在线人人人人妻| 桃花免费在线播放| 午夜福利视频在线观看免费| 少妇的丰满在线观看| 亚洲伊人色综图| 一区在线观看完整版| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| 国产老妇伦熟女老妇高清| 欧美激情高清一区二区三区 | 欧美精品人与动牲交sv欧美| av电影中文网址| 国产成人精品在线电影| 大片免费播放器 马上看| 九草在线视频观看| 91精品国产国语对白视频| 亚洲成av片中文字幕在线观看| 国产高清国产精品国产三级| 免费在线观看完整版高清| √禁漫天堂资源中文www| 欧美av亚洲av综合av国产av | kizo精华| 国产精品女同一区二区软件| 亚洲精品美女久久久久99蜜臀 | 美女视频免费永久观看网站| 免费观看a级毛片全部| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 亚洲欧美一区二区三区国产| 又大又爽又粗| 一区二区三区激情视频| 国产一区二区三区av在线| 建设人人有责人人尽责人人享有的| 国产黄色免费在线视频| 国产亚洲一区二区精品| 波多野结衣一区麻豆| 国产精品国产三级国产专区5o| 国产精品 国内视频| 亚洲精品日本国产第一区| 中文字幕另类日韩欧美亚洲嫩草| 欧美国产精品va在线观看不卡| 国产伦人伦偷精品视频| 日本欧美国产在线视频| 中文天堂在线官网| 亚洲五月色婷婷综合| 亚洲国产欧美一区二区综合| 99热全是精品| 欧美日韩视频精品一区| 狠狠精品人妻久久久久久综合| 波多野结衣一区麻豆| 老汉色∧v一级毛片| 亚洲熟女精品中文字幕| 男人舔女人的私密视频| 美女主播在线视频| 久久精品国产a三级三级三级| 久久久精品国产亚洲av高清涩受| 丁香六月天网| 日韩中文字幕视频在线看片| 午夜福利乱码中文字幕| 制服人妻中文乱码| 精品少妇黑人巨大在线播放| 亚洲色图综合在线观看| 老司机影院毛片| 欧美乱码精品一区二区三区| 国产成人精品久久久久久| 精品国产国语对白av| 波野结衣二区三区在线| 2021少妇久久久久久久久久久| 精品国产乱码久久久久久男人| 中文字幕精品免费在线观看视频| 亚洲精品aⅴ在线观看| 亚洲精品日本国产第一区| 永久免费av网站大全| 我要看黄色一级片免费的| 国产有黄有色有爽视频| 久久久久精品性色| 亚洲激情五月婷婷啪啪| 超碰97精品在线观看| 69精品国产乱码久久久| 十八禁高潮呻吟视频| 最新在线观看一区二区三区 | 欧美老熟妇乱子伦牲交| 我的亚洲天堂| 国产免费现黄频在线看| 亚洲国产最新在线播放| 大话2 男鬼变身卡| 最近的中文字幕免费完整| 日韩大码丰满熟妇| 另类精品久久| 少妇人妻 视频| 韩国精品一区二区三区| 日韩中文字幕视频在线看片| 少妇被粗大的猛进出69影院| 人人妻人人添人人爽欧美一区卜| 精品酒店卫生间| 国产成人a∨麻豆精品| 精品国产一区二区三区久久久樱花| 最近手机中文字幕大全| 日韩人妻精品一区2区三区| 少妇 在线观看| 丝袜人妻中文字幕| 丰满饥渴人妻一区二区三| 两性夫妻黄色片| 亚洲国产成人一精品久久久| 亚洲国产av影院在线观看| 男女午夜视频在线观看| 欧美中文综合在线视频| 亚洲成av片中文字幕在线观看| 久久97久久精品| 国产精品一区二区在线观看99| 一本久久精品| 亚洲国产欧美一区二区综合| 国产精品久久久久久精品古装| 少妇被粗大猛烈的视频| 国产亚洲av片在线观看秒播厂| 日韩不卡一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久| 国产精品免费大片| 男女床上黄色一级片免费看| 午夜日韩欧美国产| 国产成人精品久久二区二区91 | 男女免费视频国产| 国产日韩欧美视频二区| 又大又黄又爽视频免费| 少妇精品久久久久久久| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品视频女| 韩国高清视频一区二区三区| 精品国产一区二区久久| 精品国产一区二区三区四区第35| 久久热在线av| 亚洲人成77777在线视频| 欧美国产精品va在线观看不卡| 日韩一本色道免费dvd| 建设人人有责人人尽责人人享有的| 亚洲一卡2卡3卡4卡5卡精品中文| 97在线人人人人妻| 国产亚洲午夜精品一区二区久久| 尾随美女入室| 亚洲国产欧美网| 亚洲av日韩在线播放| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 18禁观看日本| 啦啦啦在线观看免费高清www| 国产av一区二区精品久久| 黑人欧美特级aaaaaa片| 亚洲成人av在线免费| 色婷婷久久久亚洲欧美| 黄片无遮挡物在线观看| 乱人伦中国视频| 中文精品一卡2卡3卡4更新| 亚洲人成网站在线观看播放| 中文字幕av电影在线播放| 大陆偷拍与自拍| 女性被躁到高潮视频| 欧美日韩成人在线一区二区| av线在线观看网站| 国产精品三级大全| 在线天堂中文资源库| 亚洲国产最新在线播放| 1024视频免费在线观看| 国产爽快片一区二区三区| 国产精品亚洲av一区麻豆 | av在线播放精品| 欧美激情高清一区二区三区 | 人人妻人人澡人人看| 精品亚洲成国产av| 久久久久精品国产欧美久久久 | 精品人妻在线不人妻| 国产精品无大码| 日韩一区二区三区影片| 久久天躁狠狠躁夜夜2o2o | av卡一久久| 岛国毛片在线播放| 日本爱情动作片www.在线观看| 伊人久久大香线蕉亚洲五| 日韩一本色道免费dvd| 国产成人免费无遮挡视频| 亚洲av男天堂| 国产亚洲一区二区精品| 狠狠婷婷综合久久久久久88av| 色综合欧美亚洲国产小说| 精品亚洲乱码少妇综合久久| 婷婷色麻豆天堂久久| 女性被躁到高潮视频| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| 国产伦人伦偷精品视频| 午夜91福利影院| 欧美xxⅹ黑人| 亚洲精品中文字幕在线视频| 99久久精品国产亚洲精品| 国产精品久久久人人做人人爽| 黄色毛片三级朝国网站| 美女大奶头黄色视频| 中文字幕亚洲精品专区| 国产精品免费大片| 女人久久www免费人成看片| 男人爽女人下面视频在线观看| 男人操女人黄网站| 国产又爽黄色视频| 免费观看性生交大片5| 亚洲欧美一区二区三区黑人| 老汉色∧v一级毛片| 久久久久视频综合| 欧美人与善性xxx| 夜夜骑夜夜射夜夜干| 成人手机av| 波多野结衣av一区二区av| 亚洲情色 制服丝袜| 中文字幕另类日韩欧美亚洲嫩草| 热re99久久精品国产66热6| 一级毛片 在线播放| 蜜桃在线观看..| 久久精品国产综合久久久| 日韩人妻精品一区2区三区| 伊人久久大香线蕉亚洲五| 夫妻午夜视频| 日韩熟女老妇一区二区性免费视频| a 毛片基地| 人人妻人人澡人人看| 人妻 亚洲 视频| 嫩草影院入口| 男女边摸边吃奶| 免费黄网站久久成人精品| 免费av中文字幕在线| 午夜福利在线免费观看网站| 欧美成人午夜精品| 成人国语在线视频| 男女床上黄色一级片免费看| 国产精品嫩草影院av在线观看| 免费观看a级毛片全部| 男人添女人高潮全过程视频| 国产99久久九九免费精品| 大话2 男鬼变身卡| 三上悠亚av全集在线观看| 亚洲欧洲日产国产| 女性生殖器流出的白浆| 在线免费观看不下载黄p国产| 免费不卡黄色视频| 熟女av电影| 亚洲自偷自拍图片 自拍| 亚洲天堂av无毛| 精品国产一区二区三区四区第35| 黄色毛片三级朝国网站| 亚洲av中文av极速乱| 国产亚洲av片在线观看秒播厂| 国产成人av激情在线播放| 国产成人精品久久二区二区91 | av在线观看视频网站免费| 一个人免费看片子| 我的亚洲天堂| 欧美精品一区二区大全| 99久久人妻综合| 丰满迷人的少妇在线观看| 亚洲七黄色美女视频| 如何舔出高潮| 美女扒开内裤让男人捅视频| 女性生殖器流出的白浆| 国产精品国产三级国产专区5o| 狂野欧美激情性xxxx| 九草在线视频观看| 亚洲精品第二区| 久久久久视频综合| 国产成人精品福利久久| 亚洲精品成人av观看孕妇| 中国三级夫妇交换| 亚洲国产日韩一区二区| 最近的中文字幕免费完整| 国产97色在线日韩免费| 亚洲精品美女久久av网站| 亚洲欧美一区二区三区国产| 最新在线观看一区二区三区 | 亚洲av日韩在线播放| 国产精品久久久久久久久免| 黑人猛操日本美女一级片| 国产熟女欧美一区二区| 女的被弄到高潮叫床怎么办| 国产片内射在线| 欧美激情高清一区二区三区 | 久久久国产一区二区| 欧美最新免费一区二区三区| 日韩一区二区三区影片| 中文精品一卡2卡3卡4更新| 午夜福利免费观看在线| 热re99久久精品国产66热6| 国产男女内射视频| 国产精品.久久久| 黄网站色视频无遮挡免费观看| 啦啦啦在线观看免费高清www| 国产精品一区二区在线观看99| 免费看av在线观看网站| 欧美中文综合在线视频| 精品国产乱码久久久久久男人| 在线亚洲精品国产二区图片欧美| 搡老乐熟女国产|