• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Differences between two methods to derive a nonlinear Schr?dinger equation and their application scopes

    2024-02-29 09:19:02YuXiChen陳羽西HengZhang張恒andWenShanDuan段文山
    Chinese Physics B 2024年2期
    關(guān)鍵詞:張恒文山

    Yu-Xi Chen(陳羽西), Heng Zhang(張恒), and Wen-Shan Duan(段文山)

    College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    Keywords: dusty plasmas,nonlinear waves,particle-in-cell simulation

    1.Introduction

    Wave phenomena are a very common physical phenomenon that exist in many different systems, ranging from microscopic to macroscopic scales, from molecules to astronomical bodies.[1–6]Typical examples include plasma waves,[7–23]optical communications,[24–27]collective motion of particles in granular matter,[28,29]optical and acoustic wave phenomena in Bose–Einstein condensates,[30–36]etc.

    Wave phenomena can be divided into two types: linear waves and nonlinear waves.The nonlinear waves usually can be approximately described by KdV equation[37–43]and NLSE.[44–50]These two equations can describe many different types of nonlinear wave phenomena.

    It is worth noting that there are multiple methods available to obtain NLSE, such as the reductive perturbation method,[51–53]Krylov–Bogoliubov–Mitropolsky (KBM)method,[54–56]canonical transformation method,[57]inverse scattering transform method,[58]and so on.

    The present paper is focused on two different methods to obtain the NLSE:One is to indirectly derive the NLSE,which is first to derive a KdV equation and then derive the NLSE step by step from the KdV equation,[59–64]while the other is to directly derive the NLSE from the original equation.[44–50,65,66]Although both methods can describe nonlinear waves, it is currently unknown whether the nonlinear waves described by these two methods are the same and which method is more accurate.Therefore,this is a problem that requires further study.

    We investigated this problem based on dusty plasma and obtained the following results: First, the dispersion relation and group velocity of the envelope waves obtained by the two methods are different.Second,we used PIC numerical simulation method[67–74]to verify the two methods and found that both methods are correct for small amplitude envelope waves.Third, we investigated the dependence of wave amplitude on the perturbation parameterεε′for the first method and the dependence of wave amplitude on the perturbation parameterεfor the second method.The perturbation parameterε′actually stands for the quantity of ?fd/fd0,where ?fdrepresents the perturbed amplitude of the perturbations, whilefd0represent its corresponding amplitude at equilibrium state.For small amplitude, ?fd/fd0is small enough, i.e.,ε′is small enough.The parameterεactually stands for the quantity ofλD/λ,whereλDrepresent the Debye length,whileλrepresents the wavelength of the envelope waves.For long wave length approximation,εis small enough.[70,73–76]Our results show that as the perturbation parameters increases,the envelope waves amplitude gradually increases.In addition, we found that as the envelope wave amplitude increases,the deviation between numerical and analytical results gradually increases.We determined the applicable scope of each method based on the deviation between numerical and analytical results and found that the method of directly deriving NLSE from the original equations has a wider applicable scope than that of step-by-step deriving NLSE from KdV equation.Lastly,we investigated the dependence of envelope width on wave amplitude numerically and analytically.

    2.Theoretical model

    We now study dust acoustic waves in two-temperatureion dusty plasma which contain negatively charged dust particles, free electrons, and two different kinds of free ions.One kind of ions is high-temperature, while the other is lowtemperature.Charge neutrality condition at equilibrium isnil0+nih0=Zd0nd0+ne0, wherenα0is the number density of unperturbed particles of speciesα.α=il,ih,e,and d represent the low-temperature ion, the high-temperature ion, the free electron,and the dust particles,respectively.Zd0is the unperturbed number of charges residing on the dust grain measured in the unit of electron charge.Suppose that the dusty plasma is unmagnetized and collisionless.We now consider one-dimensional dust acoustic wave propagating in thexdirection.The dimensionless equations of motion of the system can be given as follows:[77]

    wherendandudrefer to the number density and the velocity of dust fluid.φis the electrostatic potential.γ′=γTd/Zd0Teff.ne=νesβ1φ,nil=μle-sφ, andnih=μhe-sβ2φare the number densities of electrons,lower temperature ions,and higher temperature ions respectively,ν=ne0/(Zd0nd0),μl =nil0/(Zd0nd0),μh=nih0/(Zd0nd0),β1=Til/Te,β2=Til/Tih, ands= 1/(vβ1+μ1+μhβ2).Te,Til,Tih, andTdare the temperatures of the electrons, the low temperature ions,the high temperature ions,and the dust particles respectively.Teffis the effective temperature which satisfy 1/Teff=(ne0/Te+nil0/Til+nih0/Tih)/Zd0nd0.

    All physical quantities in Eqs.(1)–(3) are normalized ones.They are normalized as follows:ndis normalized bynd0,nil,nih, andneare all byZd0nd0,ZdbyZd0,xby the Debye lengthλD=(kBε0Teff/nd0Zd0e2)2,tby the inverse of dust plasma frequencyω-1=(ε0md/nd0Zd02e2)1/2,udby the dust-acoustic speedcd=(kBzd0Teff/md)1/2,φbykBTeff/e,kBis boltzmann constant,ε0is vacuum permittivity.[77]

    3.Derivation of NLSE for the system

    To study nonlinear waves in a nonlinear system, two main methods are commonly used.One is to derive a KdV equation for localized waves using the reductive perturbation technique in the limit of small but finite amplitude and long wavelength.[37–43]The other method is to derive an NLSE when there are background waves present.[44–50]

    There are also two different methods to derive an NLSE.One method involves first deriving a KdV equation and then obtaining an NLSE from the KdV equation.[59–64]The other method is to derive the NLSE from the original equation of motion,[44–50,65,66]for example, by obtaining an NLSE from hydrodynamical equations.A fundamental question is whether the NLSE and its solutions obtained from these two different methods are the same, and which one is more accurate.This paper aims to address these questions.

    3.1.Derivation of NLSE from the CKdV equation

    In this section, we will derive the NLSE from a coupled KdV (CKdV) equation for this system.Then we will compare its solutions with numerical results.Additionally,we will discuss the application scope of the analytical solution.

    First, we derive a CKdV equation.By using the following expansionsξ=ε′(x-v0t),τ=ε′3t,nd=1+ε′2nd1+ε′4nd2+···,ud=ε′2ud1+ε′4ud2+···,andφ=ε′2φ1+ε′4φ2+···,whereε′is a small parameter,v0is the velocity of the dust acoustic KdV solitary waves.We then can obtainnd1=-φ1,ud1=-v0φ1,v02=1+γ′,and the KdV equation

    Generally,we can use the KdV equation to approximately describe nonlinear waves in dusty plasmas.However, when the coefficients in the KdV equation are zero, the equation is no longer applicable.To address this specific condition of nonlinear wave behavior, we derived a new equation called the CKdV equation.The CKdV equation is an extension of the KdV equation that overcomes the limitation of zero coefficients.These coefficients can be tuned according to specific physical conditions, allowing the CKdV equation to more accurately describe the nonlinear wave in dusty plasmas,including phenomena that cannot be covered by the KdV equation.[77]whereX=ε(ξ-Vτ),T=ε2τ,Vis the group velocity.Substituting Eq.(6)into the CKdV equation of Eq.(5),we obtain the dispersion relationω=-Bk3,group velocityV=-3Bk2,φ(1,0)=0,φ(1,l)=0 for|l|>1,φ(2,2)=(A/6Bk2)[φ(1,1)]2,φ(2,0)=(A/V)|φ(1,1)|2and NLSE as follows:

    whereP=-3Bk,Q=(A2/6Bk)-Ck.For an NLSE, whenPQ>0, the equation possesses bright envelope soliton solutions.Conversely,whenPQ<0,the equation possesses dark envelope soliton solutions.

    In the present paper,we only consider the case ofPQ>0,i.e.,bright envelope soliton solutions.For this case,there are modulation instability which has been well studied in the previous investigations.[78–81]Therefore,in this paper,we do not do further research on modulation instability.Then,the envelope wave solution of Eq.(7)is as follows:

    3.2.Derivation of NLSE from original hydrodynamical equations

    In this section, we will use a different method for deriving the NLSE from the hydrodynamical equations given in Eqs.(1)–(3).We will also compare the numerical results with the analytical ones.Moreover, we will infer the application scope of the analytical solution.Later,we will also provide a comparison between the two methods employed for deriving the NLSE.

    We use the following transformations

    whereξ=ε(x-Vt),τ=ε2t,Vis the group velocity.Substituting these expansions into Eqs.(1)–(3), we haven(1,1)=-(k2/ω2)φ(1,1),u(1,1)=-(k/ω)φ(1,1),and the dispersion relationω2=k2/(k2+1),n(1,l)=u(1,l)=φ(1,l)=0 when|l|>1,n(1,0)=u(1,0)=φ(1,0)=0,the group velocity

    It is noted from Eq.(14)that the group velocity and phase velocity expressions in the laboratory coordinates are as follows:VG=V+cgε,VP=(ω+εKV+ε2?)/(k+εK).Relations among physical quantities aren=1-(k2/ω2)φ(x,t),u=-(k/ω)φ(x,t).

    4.Comparisons between two different envelope waves obtained from two different methods

    We have obtained two different expressions for envelope nonlinear waves, given by Eqs.(9) and (14), which were obtained from two different methods.One method involved first deriving a CKdV equation and then obtaining the NLSE,while the other method involved directly obtaining the NLSE from the hydrodynamical equations.

    In this section, we will compare the differences between the two solutions and identify the differences.Additionally,we will determine the application scope of the two methods.

    4.1.Comparisons the dispersion relation and the group velocity of the two methods

    Firstly,in order to understand the differences in the envelope waves obtained from the two methods,we compared the dispersion relation and the group velocity of the two methods in Figs.1(a)and 1(b),respectively.

    Fig.1.(a) The dispersion relation obtained from two different methods.(b) The group velocity of the envelope wave obtained from two methods.

    As shown in Fig.1,two different methods have significant different behaviors for dispersion relation and group velocity.The wave frequency of the envelope wave obtained by the first method is smaller than that obtained by the second method for the same wave number.Moreover, the frequencies increase with the increase of the wave number.The group velocity of the envelope wave obtained by the first method is larger than that obtained by the second method for the same wave number.These results suggest that the envelope wave obtained by the two methods are significantly different.The purpose of the present paper is to verify the correctness of these two different methods.If both the two methods are correct, we will further compare the two methods and determine their respective application scope.

    4.2.Comparisons the numerical results and the analytical result between two methods

    In this section, we aim to compare the differences between the two solutions using the PIC numerical method,and then determine the application scope of each solution.

    4.2.1.Particle-in-cell method

    Particle-in-cell (PIC) simulation is commonly used for numerical work in plasma physics and particle dynamics because it provides an effective way to model the behavior of charged particles in a self-consistent electromagnetic field.PIC simulations are particularly well-suited for studying phenomena such as plasma waves,particle acceleration,and interactions between particles and fields.So, we use PIC method to simulate the envelope waves in this paper.

    During the simulation process, the dust grains are represented by a limited number of “super-particles” (SPs), while both electrons and ions are treated as Boltzmann-distributed fluids.Each SP is assigned a weight factor, denoted byS,which represents the number of real particles it represents.Initially, the SPs are uniformly distributed in the simulation space,and their initial weight parameters S and velocities are determined from the initial conditions.[69,70]

    To carry out the simulation,the simulation region is partitioned into several grid cells using the PIC method.As the dust particles move along their trajectories,they constantly exchange information with the background grid.At each time step,the positions and velocities of the SPs are weighted to all the grids,allowing for the calculation of the charge densityρg(or electric current densityJg).Once the charge densityρgis obtained, numerical solutions of either Maxwell’s equations(for the electromagnetic model) or the Poisson–Boltzmann equation (for the electrostatic model) are used to derive the electric field at each grid.In the electrostatic model,the magnetic field is assumed to be zero.[71–73]

    Subsequently,the electric field imposed on each SP is determined, driving each SP according to Newton’s equation.This equation can be numerically solved using the leap-frog algorithm.Finally,the new positions and velocities of each SP are determined,and the simulation process repeats until completion.The summary of a computational cycle of the PIC method is shown in Fig.2.[71,72]

    Fig.2.The summary of a computational cycle of the PIC method.

    4.2.2.The initial conditions for the numerical simulation of the envelope wave

    The simulation parameters we use are as follows:the spatial step is ?x=0.5, the time step is ?t=0.01, the number of grid cells isNx= 30000, the number of super particles contained in per cell is 100, the total length of thexaxis isLx=?xNx,x0=3000.We choose periodic boundary conditions.The other parameters areTe= 5 eV,Til= 0.3 eV,Tih=5 eV,Td=200 K,Zd0=1000,nd0=1.0×1012m-3,nil0=1.0×1014m-3,nih0=1.0×1015m-3,k=0.1,K=0.1,a=1.

    The initial conditions of the first method are given from Eq.(9)as follows:

    The initial conditions of the second method are given from Eq.(14)as follows:

    4.2.3.Comparisons between two methods

    Figure 3 displays the envelope wave obtained by the first method at different timetthrough PIC numerical simulations.The numerical results exhibit excellent agreement with the analytical solutions derived from Eq.(9),as shown in Fig.4.

    Fig.3.The PIC simulation results of the first method at different time t=0,t=2555.59/ω-1,t=5111.18/ω-1,where εε′=0.01,A=0.37.

    Likewise,the numerical results of the envelope wave obtained by the second method at different timetis shown in Fig.5.The numerical results obtained through PIC simulations also show good agreement with the analytical solutions derived from Eq.(14),as depicted in Fig.6.

    Fig.4.The comparisons between PIC simulation results and the analytical ones of the first method at different time t =0,t =2555.59/ω-1,t=5111.18/ω-1,where εε′=0.01,A=0.37.

    It is evident from Figs.3 and 4 that the analytical result of the envelope wave obtained by the first method seems valid,as the numerical results show that it can propagate stably.This suggests that the NLSE obtained by the first method is correct.Similarly,figures 5 and 6 indicate that the analytical result of the envelope wave obtained by the second method is also valid,and therefore,the NLSE obtained by the second method is correct as well.

    While figures 4 and 6 show good agreement between the numerical and analytical results for both methods, it is unclear if this agreement holds for larger amplitude (φm) envelope waves.In order to understand it,we compare the numerical results with that of the analytical ones for larger amplitude waves for both cases by varying the parameter ofεsinceεindirectly stands for the wave amplitude (It is noted from Eqs.(9) and (11) that the amplitudes of the envelope waves contain the parameter ofε), while keeping the other parameters constants.

    Fig.5.The PIC simulation results of the second method at different time t=0,t=2537.59/ω-1,t=5075.19/ω-1,where ε =0.01.

    Fig.6.The comparisons between PIC simulation results and the analytical ones of the second method at different time t=0,t=2537.59/ω-1,t=5075.19/ω-1,where ε =0.01.

    Fig.7.The comparisons between PIC simulation results and the analytical ones at different time t,where φm=0.005.(a)The result of the first method.(b)The result of the second method.

    The waveforms for the numerical and analytical results of the different amplitude envelope waves at different time for two different methods are shown in Figs.7 (φm=0.005), 8(φm=0.015), and 9 (φm=0.025).By examining these figures, we can determine whether the numerical and analytical results are in good agreement for larger amplitude envelope waves.Notice from Figs.7 and 8 that both the numerical and analytical results are in good agreement for larger amplitude waves.However,in Fig.9,the difference between the numerical and analytical results is more obvious for both methods.It appears that as the amplitude of the envelope wave increases the differences between the numerical results and analytical ones become more pronounced.

    To gain further insight into the differences between the PIC numerical results and the analytical ones for both methods,we present the dependence of the wave amplitude(φm)onεε′orεfor the two cases in Fig.11.It can be observed from Fig.11,that the amplitude of the envelope wave increases with increasing ofεε′orε.Asεε′orεincreases,i.e.,wave amplitude increases, the differences between the analytical results and the numerical ones obtained from both methods become larger.In other word, the analytical results are valid if the amplitude is small enough.Based on these results, the application scope of both methods can be determined from Fig.10.Specifically,the first method can be applied whenφm<0.01,while the second method can be applied whenφm<0.015.

    Fig.8.The comparisons between PIC simulation results and the analytical ones at different time t,where φm=0.015.(a)The result of the first method.(b)The result of the second method.

    Fig.9.The comparisons between PIC simulation results and the analytical ones at different time t,where φm=0.025.(a)The result of the first method.(b)The result of the second method.

    Fig.10.Comparisons between the numerical results and the analytical ones.(a)The dependence of the wave amplitude(φm)on the parameter εε′ for the first methods.(b) The dependence of the wave amplitude(φm)on the parameter ε for the second methods.

    Fig.11.Comparisons between the numerical results and the analytical ones of the dependence of the width of envelope waves on the wave amplitude: (a)for the first method and(b)for the second method.

    To further understand the differences between the two methods, the dependence of the width of the envelope waves(W)on the wave amplitude(φm)is shown numerically and analytically in Fig.11.It seems from Fig.11 that the deviation of the wave width between the analytical results and the numerical ones of the first method is obvious when the wave amplitude is larger than 0.01, while the deviation of the second method is still not significant even when the wave amplitude is around 0.02.Therefore, the application scope of the envelope wave obtained from the second method is wider than that from the first method.

    5.Discussion and conclusion

    The present paper chooses a dusty plasma as an example to numerically and analytically study the differences between two different methods of obtaining NLSE.It is found that the envelope waves from the two methods have different dispersion relations, different group velocities.Specifically,the wave frequency of the first method is lower than that of the second one for the same wave number,while the group velocity of the first method is larger than that of the second method for the same wave number.It is noted that the two methods are completely different.

    Additionally, the application scopes of two different methods are shown.The results indicate that the application scope of the envelope wave obtained from the second method is wider than that of the first method.It is suggest that both methods to derive NLSE are correct in the regime of their application scope.In other words, if the amplitude of the envelope solitary wave is smaller that a critical values(the critical values are different for two different methods), the analytical results are valuable to describe the real solutions of the envelopes waves.If the amplitude of the envelope solitary wave is larger than this critical value,the neglected higher order terms in deriving the NLSE play an important role which should not be neglected.

    In conclusion,although both methods are valuable within the range of their respective application scopes,the two envelope wave solutions obtained from the two different methods are completely different.For other systems,both methods may also be used to derive the NLSE and obtain an envelope wave or other nonlinear waves such as Rogue waves,but their solutions are possibly different.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11965019 and 42004131) and the Foundation of Gansu Educational Committee (Grant No.2022QB-178).

    猜你喜歡
    張恒文山
    詩與象
    保證書
    詩與學(xué)
    Investigation of the confinement of high energy non-neutral proton beam in a bent magnetic mirror
    Penguins Are in Danger
    Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma?
    文竹
    文山肉丁
    幼兒100(2018年32期)2018-12-05 05:24:26
    山歌唱文山
    民族音樂(2017年6期)2017-04-19 02:18:19
    霧和霾的十大區(qū)別
    地理教育(2015年12期)2015-12-07 11:58:30
    老司机影院成人| 国产欧美日韩综合在线一区二区| 亚洲国产毛片av蜜桃av| 国产免费视频播放在线视频| 欧美激情极品国产一区二区三区 | 亚洲av免费高清在线观看| 免费高清在线观看日韩| 天美传媒精品一区二区| 欧美性感艳星| 色婷婷久久久亚洲欧美| 中文字幕另类日韩欧美亚洲嫩草| av国产久精品久网站免费入址| 亚洲中文av在线| 日日爽夜夜爽网站| 91精品三级在线观看| 观看美女的网站| 久久精品国产亚洲av涩爱| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 欧美国产精品一级二级三级| 亚洲第一av免费看| 自拍欧美九色日韩亚洲蝌蚪91| 天天影视国产精品| 国产男人的电影天堂91| 青春草视频在线免费观看| 少妇的丰满在线观看| 国产日韩欧美在线精品| 各种免费的搞黄视频| 亚洲第一av免费看| 啦啦啦在线观看免费高清www| 国产日韩欧美在线精品| 国产成人精品婷婷| 午夜免费观看性视频| 国产精品三级大全| 亚洲精品一二三| 精品第一国产精品| 人人妻人人爽人人添夜夜欢视频| 国产综合精华液| 精品人妻熟女毛片av久久网站| 啦啦啦视频在线资源免费观看| 亚洲经典国产精华液单| 亚洲精品国产av成人精品| 你懂的网址亚洲精品在线观看| 国内精品宾馆在线| 久久久久久久久久久久大奶| 最近2019中文字幕mv第一页| 伊人亚洲综合成人网| 欧美成人午夜精品| 母亲3免费完整高清在线观看 | 这个男人来自地球电影免费观看 | www.av在线官网国产| 精品国产国语对白av| 亚洲欧美一区二区三区黑人 | 9色porny在线观看| 国产欧美亚洲国产| 一级毛片我不卡| 男女下面插进去视频免费观看 | av有码第一页| 欧美人与性动交α欧美软件 | 亚洲色图综合在线观看| 亚洲av电影在线进入| 欧美国产精品va在线观看不卡| 2022亚洲国产成人精品| 婷婷成人精品国产| 精品国产一区二区久久| 免费人成在线观看视频色| 在线观看国产h片| 久久精品人人爽人人爽视色| 又黄又粗又硬又大视频| 男女啪啪激烈高潮av片| 国产成人av激情在线播放| 人妻 亚洲 视频| 伦精品一区二区三区| 丝袜喷水一区| av女优亚洲男人天堂| 亚洲精品久久午夜乱码| 亚洲成国产人片在线观看| 黄色配什么色好看| 亚洲欧美中文字幕日韩二区| 一区在线观看完整版| 成人综合一区亚洲| 精品少妇久久久久久888优播| 中文字幕人妻丝袜制服| 激情视频va一区二区三区| 精品一区二区免费观看| 两个人免费观看高清视频| 国产亚洲av片在线观看秒播厂| 人人妻人人添人人爽欧美一区卜| 日本wwww免费看| 国产极品天堂在线| 九九在线视频观看精品| 80岁老熟妇乱子伦牲交| 熟妇人妻不卡中文字幕| 少妇 在线观看| 精品久久久精品久久久| 街头女战士在线观看网站| 亚洲欧美色中文字幕在线| 啦啦啦中文免费视频观看日本| 国产女主播在线喷水免费视频网站| 国产爽快片一区二区三区| 欧美国产精品一级二级三级| 精品国产露脸久久av麻豆| 蜜桃国产av成人99| 色哟哟·www| 大香蕉久久网| 一二三四在线观看免费中文在 | av免费在线看不卡| 色5月婷婷丁香| 欧美人与性动交α欧美软件 | 日本欧美国产在线视频| 亚洲色图 男人天堂 中文字幕 | 久久久久精品人妻al黑| 最近的中文字幕免费完整| 免费不卡的大黄色大毛片视频在线观看| 国产探花极品一区二区| 亚洲国产色片| 亚洲欧美成人综合另类久久久| 久久精品aⅴ一区二区三区四区 | 免费av中文字幕在线| 9色porny在线观看| 亚洲高清免费不卡视频| 久久精品夜色国产| 观看av在线不卡| 午夜免费男女啪啪视频观看| 午夜91福利影院| 街头女战士在线观看网站| 精品一品国产午夜福利视频| 国产成人a∨麻豆精品| 婷婷色麻豆天堂久久| 国产色爽女视频免费观看| 久久97久久精品| 这个男人来自地球电影免费观看 | 日韩人妻精品一区2区三区| 丁香六月天网| 黄色毛片三级朝国网站| 亚洲美女黄色视频免费看| 亚洲丝袜综合中文字幕| 高清欧美精品videossex| 免费播放大片免费观看视频在线观看| 国产毛片在线视频| 亚洲欧美日韩另类电影网站| 亚洲av福利一区| 久久女婷五月综合色啪小说| 日韩一区二区三区影片| 九色成人免费人妻av| 男女边摸边吃奶| 欧美日韩亚洲高清精品| 制服人妻中文乱码| 国产高清不卡午夜福利| 亚洲成人一二三区av| av天堂久久9| 成人毛片a级毛片在线播放| 97在线人人人人妻| 91精品伊人久久大香线蕉| 日韩中字成人| 久久久久国产网址| 婷婷成人精品国产| 综合色丁香网| 亚洲美女黄色视频免费看| 日韩成人伦理影院| 免费黄色在线免费观看| www.熟女人妻精品国产 | 一区二区三区四区激情视频| 大香蕉久久成人网| 中国美白少妇内射xxxbb| 狂野欧美激情性bbbbbb| 久久久国产一区二区| 你懂的网址亚洲精品在线观看| 久久久a久久爽久久v久久| 午夜老司机福利剧场| 日本wwww免费看| 最近中文字幕2019免费版| 亚洲伊人色综图| 亚洲婷婷狠狠爱综合网| 欧美bdsm另类| 免费大片黄手机在线观看| 久久久精品区二区三区| videos熟女内射| 精品一区二区三卡| 久久久a久久爽久久v久久| 国产色爽女视频免费观看| 伊人久久国产一区二区| 免费黄网站久久成人精品| 性色avwww在线观看| 九色成人免费人妻av| 91午夜精品亚洲一区二区三区| 亚洲人成网站在线观看播放| 99热全是精品| xxxhd国产人妻xxx| 少妇被粗大猛烈的视频| 久久精品国产自在天天线| 少妇高潮的动态图| 亚洲国产精品国产精品| 国产精品久久久久成人av| 国产成人精品婷婷| 亚洲成人手机| 最后的刺客免费高清国语| 夜夜骑夜夜射夜夜干| 日韩欧美精品免费久久| 午夜91福利影院| 9191精品国产免费久久| 老司机影院成人| 亚洲欧洲日产国产| 久久99精品国语久久久| 精品人妻熟女毛片av久久网站| 精品亚洲乱码少妇综合久久| 国产精品嫩草影院av在线观看| 日韩中文字幕视频在线看片| 1024视频免费在线观看| 99国产精品免费福利视频| 18禁动态无遮挡网站| 亚洲高清免费不卡视频| 精品久久蜜臀av无| 男的添女的下面高潮视频| 亚洲欧美成人精品一区二区| 丝袜在线中文字幕| 夜夜骑夜夜射夜夜干| 欧美精品国产亚洲| 日韩av在线免费看完整版不卡| 亚洲成av片中文字幕在线观看 | 亚洲熟女精品中文字幕| 大陆偷拍与自拍| 国产色婷婷99| 一级黄片播放器| 观看美女的网站| 中国三级夫妇交换| 一级,二级,三级黄色视频| 色5月婷婷丁香| 99热6这里只有精品| 久久热在线av| 少妇人妻 视频| 男女免费视频国产| 久久毛片免费看一区二区三区| 美女国产高潮福利片在线看| 久久精品国产自在天天线| 新久久久久国产一级毛片| 97精品久久久久久久久久精品| 91在线精品国自产拍蜜月| 黑人高潮一二区| 欧美日韩成人在线一区二区| 国产精品.久久久| 日韩视频在线欧美| 999精品在线视频| 亚洲国产最新在线播放| 久久久精品94久久精品| 亚洲欧洲国产日韩| 天天操日日干夜夜撸| 在线精品无人区一区二区三| 午夜福利视频在线观看免费| 亚洲五月色婷婷综合| 日韩欧美精品免费久久| 青春草亚洲视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品人与动牲交sv欧美| 大香蕉久久网| 久久久精品免费免费高清| 三上悠亚av全集在线观看| a 毛片基地| av国产精品久久久久影院| 国产欧美另类精品又又久久亚洲欧美| 免费高清在线观看视频在线观看| 亚洲经典国产精华液单| 精品人妻在线不人妻| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区国产| 午夜福利视频精品| 国产成人精品婷婷| 亚洲欧洲国产日韩| freevideosex欧美| 精品熟女少妇av免费看| 欧美日本中文国产一区发布| 久久这里有精品视频免费| 97在线人人人人妻| 99热这里只有是精品在线观看| 亚洲国产最新在线播放| 9色porny在线观看| 欧美精品国产亚洲| 又大又黄又爽视频免费| 汤姆久久久久久久影院中文字幕| 高清黄色对白视频在线免费看| 亚洲经典国产精华液单| 日韩在线高清观看一区二区三区| 国产成人精品一,二区| 天天躁夜夜躁狠狠躁躁| 青春草国产在线视频| 曰老女人黄片| 欧美人与性动交α欧美软件 | 午夜福利乱码中文字幕| 又黄又爽又刺激的免费视频.| 一边摸一边做爽爽视频免费| 亚洲av免费高清在线观看| 丰满少妇做爰视频| av卡一久久| 黑人欧美特级aaaaaa片| 久久久精品94久久精品| 777米奇影视久久| 日日撸夜夜添| 夜夜骑夜夜射夜夜干| 熟妇人妻不卡中文字幕| 人妻 亚洲 视频| 精品国产露脸久久av麻豆| 亚洲精品,欧美精品| 成人国产av品久久久| 久久精品国产亚洲av天美| 亚洲国产欧美日韩在线播放| 亚洲av综合色区一区| 97精品久久久久久久久久精品| 亚洲国产日韩一区二区| 黄片播放在线免费| 少妇人妻久久综合中文| 日韩欧美精品免费久久| 久久亚洲国产成人精品v| 日本色播在线视频| 丝袜脚勾引网站| av有码第一页| www.色视频.com| 国产乱来视频区| 日韩熟女老妇一区二区性免费视频| 九色成人免费人妻av| 另类精品久久| 亚洲欧美一区二区三区黑人 | 少妇被粗大猛烈的视频| 人妻少妇偷人精品九色| 中文字幕另类日韩欧美亚洲嫩草| 伦理电影免费视频| 亚洲av在线观看美女高潮| 日韩一本色道免费dvd| 日日摸夜夜添夜夜爱| 成年动漫av网址| 精品人妻偷拍中文字幕| 欧美人与性动交α欧美软件 | av免费在线看不卡| 少妇 在线观看| 国产精品.久久久| 亚洲内射少妇av| 成年av动漫网址| 欧美日韩视频精品一区| 日韩 亚洲 欧美在线| 男女无遮挡免费网站观看| 丝袜人妻中文字幕| 春色校园在线视频观看| 亚洲精品美女久久av网站| 亚洲精品色激情综合| 一区二区三区乱码不卡18| 宅男免费午夜| 久久久精品94久久精品| 免费少妇av软件| 一区在线观看完整版| 人妻系列 视频| 最近中文字幕2019免费版| 久久人人爽av亚洲精品天堂| 精品视频人人做人人爽| 成人国产av品久久久| 国产黄色免费在线视频| av电影中文网址| 欧美人与善性xxx| 久久久精品94久久精品| 丁香六月天网| 国产精品无大码| 大香蕉97超碰在线| 欧美人与善性xxx| 97在线视频观看| 精品人妻一区二区三区麻豆| 日本午夜av视频| 三级国产精品片| 男女免费视频国产| av国产久精品久网站免费入址| 国产在线视频一区二区| 丰满迷人的少妇在线观看| 精品国产一区二区三区四区第35| 亚洲av成人精品一二三区| 51国产日韩欧美| 久久99一区二区三区| 久久 成人 亚洲| 午夜福利,免费看| 又粗又硬又长又爽又黄的视频| 女的被弄到高潮叫床怎么办| 国产av精品麻豆| 国产1区2区3区精品| 少妇被粗大的猛进出69影院 | 久久国产亚洲av麻豆专区| 国产精品不卡视频一区二区| 精品久久久久久电影网| 国产成人欧美| 日韩av不卡免费在线播放| 人妻少妇偷人精品九色| 亚洲精品自拍成人| 亚洲av免费高清在线观看| 国产熟女欧美一区二区| av卡一久久| 看十八女毛片水多多多| 一区二区三区四区激情视频| videosex国产| 亚洲,一卡二卡三卡| 伦精品一区二区三区| 一边亲一边摸免费视频| 精品一区二区三卡| 中国三级夫妇交换| 午夜福利视频在线观看免费| 日本wwww免费看| 中文字幕制服av| av在线观看视频网站免费| 亚洲情色 制服丝袜| 日韩在线高清观看一区二区三区| 97在线视频观看| 亚洲精华国产精华液的使用体验| 国产激情久久老熟女| 午夜福利乱码中文字幕| 日韩中文字幕视频在线看片| 精品国产一区二区三区四区第35| 中国三级夫妇交换| 国产高清三级在线| 国产成人91sexporn| 水蜜桃什么品种好| 中文字幕人妻丝袜制服| 国产片内射在线| 国产精品国产av在线观看| 一本色道久久久久久精品综合| 十八禁高潮呻吟视频| 看非洲黑人一级黄片| 国产 精品1| 精品熟女少妇av免费看| 精品少妇内射三级| 黑丝袜美女国产一区| 高清不卡的av网站| 伦理电影大哥的女人| 人人澡人人妻人| 欧美激情国产日韩精品一区| 久久热在线av| 欧美激情国产日韩精品一区| 青春草亚洲视频在线观看| 97超碰精品成人国产| 欧美精品国产亚洲| 午夜视频国产福利| 夫妻午夜视频| 欧美激情 高清一区二区三区| 久久午夜综合久久蜜桃| 国产精品人妻久久久久久| 搡老乐熟女国产| h视频一区二区三区| 国产精品三级大全| 成年女人在线观看亚洲视频| 精品久久久久久电影网| 伊人久久国产一区二区| 各种免费的搞黄视频| videos熟女内射| 免费在线观看黄色视频的| 高清毛片免费看| 99热国产这里只有精品6| 精品99又大又爽又粗少妇毛片| 日本午夜av视频| 国产深夜福利视频在线观看| 又大又黄又爽视频免费| 丁香六月天网| 一本—道久久a久久精品蜜桃钙片| 一个人免费看片子| 久久精品久久久久久噜噜老黄| 久久精品久久久久久久性| 69精品国产乱码久久久| 婷婷成人精品国产| 免费播放大片免费观看视频在线观看| 午夜精品国产一区二区电影| 极品人妻少妇av视频| 久久人人97超碰香蕉20202| 亚洲欧美成人综合另类久久久| 18禁动态无遮挡网站| 精品人妻偷拍中文字幕| 亚洲精品456在线播放app| 香蕉国产在线看| 成年av动漫网址| 免费在线观看黄色视频的| 免费黄色在线免费观看| 久久99蜜桃精品久久| 18禁动态无遮挡网站| 色吧在线观看| 人妻 亚洲 视频| 精品第一国产精品| 日韩成人伦理影院| 国产精品欧美亚洲77777| 综合色丁香网| 亚洲精品一二三| 久久青草综合色| 国产在线视频一区二区| 精品国产国语对白av| 国产av精品麻豆| 精品一区二区三区视频在线| 中文天堂在线官网| 国产精品国产三级国产专区5o| 国产精品久久久久久久电影| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 国产一区二区在线观看日韩| 国产日韩欧美亚洲二区| 一边亲一边摸免费视频| 成人午夜精彩视频在线观看| 国产成人91sexporn| 国产色爽女视频免费观看| 精品一区二区三区四区五区乱码 | 国产一区二区激情短视频 | av电影中文网址| 一级片免费观看大全| 午夜激情av网站| 欧美精品一区二区免费开放| 亚洲av综合色区一区| 99热网站在线观看| 国产成人精品一,二区| 国产精品一区二区在线不卡| 亚洲,欧美,日韩| 王馨瑶露胸无遮挡在线观看| 肉色欧美久久久久久久蜜桃| 侵犯人妻中文字幕一二三四区| 91午夜精品亚洲一区二区三区| 欧美成人精品欧美一级黄| 哪个播放器可以免费观看大片| 在线观看人妻少妇| 日日撸夜夜添| 久久毛片免费看一区二区三区| 午夜久久久在线观看| 伦精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 乱码一卡2卡4卡精品| 男女国产视频网站| 亚洲成av片中文字幕在线观看 | 成人影院久久| 久久av网站| 人妻人人澡人人爽人人| 午夜福利网站1000一区二区三区| 婷婷色av中文字幕| 日韩精品有码人妻一区| 日韩电影二区| 久久精品久久精品一区二区三区| 免费av不卡在线播放| a 毛片基地| 26uuu在线亚洲综合色| 十八禁高潮呻吟视频| 搡老乐熟女国产| 捣出白浆h1v1| 亚洲国产精品一区三区| www.av在线官网国产| 91精品国产国语对白视频| 亚洲中文av在线| 一本久久精品| 日本与韩国留学比较| 中文字幕制服av| 有码 亚洲区| 国产成人精品福利久久| av电影中文网址| 一区二区三区精品91| 晚上一个人看的免费电影| 日韩中文字幕视频在线看片| 考比视频在线观看| 精品国产国语对白av| 男女边摸边吃奶| 中文字幕亚洲精品专区| 2018国产大陆天天弄谢| 精品一品国产午夜福利视频| 久久精品久久精品一区二区三区| 久久久久久久久久人人人人人人| 97精品久久久久久久久久精品| 日韩人妻精品一区2区三区| 麻豆乱淫一区二区| 国产成人91sexporn| 亚洲欧美色中文字幕在线| 免费av中文字幕在线| 久久av网站| 久久国内精品自在自线图片| 亚洲第一区二区三区不卡| 午夜激情av网站| 亚洲精品日韩在线中文字幕| 亚洲精品中文字幕在线视频| 精品一区二区免费观看| 蜜桃在线观看..| av又黄又爽大尺度在线免费看| 国产精品国产av在线观看| 一级毛片我不卡| 成年美女黄网站色视频大全免费| 国产综合精华液| 99久国产av精品国产电影| freevideosex欧美| videos熟女内射| 国产视频首页在线观看| 人妻一区二区av| 少妇猛男粗大的猛烈进出视频| 伊人亚洲综合成人网| 寂寞人妻少妇视频99o| 99九九在线精品视频| 国产黄色免费在线视频| 晚上一个人看的免费电影| 日本vs欧美在线观看视频| 成年动漫av网址| 视频中文字幕在线观看| 午夜福利网站1000一区二区三区| 99久久综合免费| 一级毛片黄色毛片免费观看视频| 午夜老司机福利剧场| 成人毛片a级毛片在线播放| 国产老妇伦熟女老妇高清| 国产成人精品无人区| 秋霞在线观看毛片| 母亲3免费完整高清在线观看 | 久久女婷五月综合色啪小说| 毛片一级片免费看久久久久| 永久免费av网站大全| 热re99久久精品国产66热6| 亚洲av男天堂| 人妻 亚洲 视频| 青春草亚洲视频在线观看| 在线看a的网站| 亚洲,一卡二卡三卡| 亚洲激情五月婷婷啪啪| 性色avwww在线观看| 视频在线观看一区二区三区| 在线亚洲精品国产二区图片欧美| 18禁裸乳无遮挡动漫免费视频|