• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A mathematical analysis: From memristor to fracmemristor

    2022-06-29 09:12:52WuYangZhu朱伍洋YiFeiPu蒲亦非BoLiu劉博BoYu余波andJiLiuZhou周激流
    Chinese Physics B 2022年6期
    關(guān)鍵詞:劉博激流

    Wu-Yang Zhu(朱伍洋) Yi-Fei Pu(蒲亦非) Bo Liu(劉博) Bo Yu(余波) and Ji-Liu Zhou(周激流)

    1College of Computer Science,Sichuan University,Chengdu 610065,China

    2College of Physics and Engineering,Chengdu Normal University,Chengdu 611130,China

    3Chengdu University of Information Technology,Chengdu 610225,China

    Keywords: fractional calculus,fractional-order memristor,fracmemristor,memristor

    1. Introduction

    In 1971, Leon O. Chua predicted the existence of memristor[1,2]theoretically according to the combinatorial completeness principle of basic circuit variables, and called memristor the fourth basic circuit element lost by human beings. However, no actual physical element was found at that time. In 2008,[3]the team led by the American scientist R.Stanley Williams produced a TiO2device at the nanoscale,which was proved by analysis to be a memristor physical entity, shocking the international electrical and electronic field. Worldwide research on memristor has been initiated.Chua[2,4,5]argued for a broader definition that included all 2-terminal non-volatile memory devices based on resistance switching.Recently,memristor systems have been extended to memory capacitor(memcapacitor)and memory inductor(meminductor). Memristor can perform both storage and computation functions at the same time,becoming a key component of future non-Von Neumann computing systems that integrate information storage and computation. In computer science,neural network,[6]biological engineering,[7]communication engineering and nonlinear circuits[1,8]and other fields, it has a wide range of application prospects,and attracts people’s attention and research.

    For nearly 300 years, fractional calculus has become an important branch of mathematical analysis. How to apply fractional calculus to modern signal analysis and processing is a new branch of science which is seldom studied in the world at present. The fractional calculus is a kind of calculus whose operation order is non-integer, which has longterm memory, non-locality and weak singularity.[9,10]Moreover, the fractional parameters can increase the extra degree of freedom of the system. Because of these advantages of fractional order calculus, many systems combine fractional order calculus circuit and system, including fractional reactance approximation[11]circuit,[12]fractional order oscillation circuit,[13]fractional order control circuit,[10]fractional order chaos circuit,[14]fractional order memristor circuit[15,16]and so on.

    In 2009, Chen[16]firstly applied fractional calculus to memristors. Chen proposed the current fractional-ordercontrolled memristor,which means the memoried chargeqis fractional-order. And then, sorts of current fractional-order memristive elements[16–20]are proposed. The fractional order model has been proven to be more suitable for describing systems with historical memory.[21]From the Chua’s axiomatic element system[1–3]and according to constitutive relation,logical consistency, axiomatic completeness and formal symmetry,we can assume that there should be a capacitive fractionalorder memristor and an inductive fractional-order memristor corresponding to the capacitive fractor and inductive fractor,respectively. Pu[12,13]proposed the factor which extended the Chua’s periodic table to fractional-order. Then, Pu[14,15,22]proposed the fracmemristor, naturally transition from a fractional reactance to a fractional memristor. Also, some researchers apply the Chua’s circuit with some fractional-order circuit elements.[23–25]The circuit exhibits complex chaotic phenomena.

    The arrangement of this paper is as follows. In Section 2, we mainly deduce the relationship between integerorder memristive systems, including memristor, memcapacitor,and meminductor. Then,we give the positions of memristor memcapacitor, meminductor on the Chua’s periodic table and the schematic diagrams of them. In Section 3, we firstly introduce the most commonly used fractional-order improved memristor, the current or voltage fractional-order-controlled memristor. Afterwards, a novel modified memristor by using the fractional reactance is introduced.

    2. Ideal integer-order memristive elements

    In 1971,Leon O.Chua[1,2]made a theoretical derivation of the relationships between the four basic circuit elements voltageu, currenti, chargeqand fluxφ. There are a total of six relationships between two combinations of these four basic physical quantities{i,q,u,φ},namely,

    Leon O. Chua could not find a passive circuit element which can directly represent the relationship between the pair(q,φ). From the perspective of axiomatic completeness,Leon O. Chua argued that it was necessary to define a circuit element to represent the constitutive relation between them. He named the new circuit element memory-resistor(memristor),

    2.1. Memristor

    When the fluxφis a single-valued function of the chargeq,the above definition(7)can be rewritten as

    Following the derivation of current-controlled memristor, the voltage-current expression (14) of voltage-controlled memristor is obtained.RMis the memristor’s resistance and fluxφis the integration of the currentuover time. So, the resistance of the voltage-controlled memristor is related to the history of the voltage applied to the terminals of the memristor. Therefore,the current-controlled memristor is also called flux-controlled memristor

    The resistor, current-controlled memristor and voltagecontrolled memristor have mathematically similar expressions for their formulas. The resistor is a memoryless element,and resistance is a constant. The resistanceRMof the currentcontrolled memristor is a function of chargeq, and its resistance varies with charge. The resistanceRMof the voltagecontrolled memristor is a function of fluxφ,and its resistance varies with fluxφ. Figure 1 shows the schematic diagrams of the circuit elements of resistor, charge-controlled memristor and voltage-controlled memristor.

    Fig.1. Circuit element schematic diagrams of resistor,current-controlled memristor, and voltage-controlled memristor. (a) The resistance of the resistor R is a constant,(b)the current-controlled memristor RM remembers the history of current i and varies with the charge q,(c)the voltagecontrolled memristor RM remembers the history of voltage u and varies with the flux φ.

    Fig.2. HP memristor structure.

    The memristor structure implemented by the Hewlett Packard (HP) Laboratories research team in May 2008 is shown in Fig. 2. It shows the structure of the HP memristor.The middle part is based on TiO2material. The material has a TiO2-xlayer doped with oxygen atom vacancies on the left side and an undoped TiO2layer on the right side. Assuming that the width of the body of the memristor isDand the width of the dopant layer isW, when excitation is applied to port 2 of the memristor, the current flowing through the memristor causes the oxygen vacancies in the TiO2-xlayer doped with oxygen vacancies to move towards the undoped TiO2layer,resulting in a change in the resistance of the memristor,and the direction of movement of the oxygen vacancies in the dopant layer is related to the direction of current flow through the memristor. It is assumed that the current flows from port A to port B in the forward direction and from port B to port A in the reverse direction. When the current flows in the forward direction, the movement of the oxygen vacancy causes the doping layer widthWto widen and the resistance of the memristor to decrease,and the memristor has a minimum resistanceRonwhenWis infinitely close toD. When the current flows in the opposite direction, the movement of the oxygen vacancy leads to a narrowing of the doping layer widthWand a high resistance of the memristor, and whenWis infinitely close to 0, the memristor has a maximum valueRoff. When the current is disconnected,the oxygen vacancy inside the resistor does not move and does not return to its initial state. It remains in the instantaneous state of the power failure. In HP memristor,the current–voltage relationship is expressed as

    2.2. The Chua’s periodic table of all two-terminal circuit elements

    By abstracting the resistor(4),inductor(6),capacitor(5)and memristor equations(11),(14),we get

    whereα,β >0 means numerical differentiation,α,β <0 means numerical integration,and

    TheR,C,L, andMin Eq. (19) represent resistor, capacitor,inductor, and memristor, respectively. Usingαas thex-axis andβas they-axis, construct a Cartesian coordinate system to form the Chua’s periodic table[5]of all two-terminal circuit elements. In Fig.3, point(0,0)represents resistor, point(0,-1)represents capacitor,point(-1,0)represents inductor and point (-1,-1) represents memristor. A pair of (α,β)can represent a unique circuit element. The two elements(α,β)=(-1,-2)and(α,β)=(-2,-1)are memory capacitor(memcapacitor)and memory inductor(meminductor).

    Fig.3. The Chua’s periodic table of all two-terminal circuit elements.

    Imitating the derivation of the memristor in Subsection 2.1,we can obtain the following equations for the currentcontrolled and voltage-controlled memcapacitors:

    whereCMis a function of the fluxφor chargeD-1q(t).

    Capacitor, charge-controlled memcapacitor and voltagecontrolled memcapacitor have similar mathematical expressions. The difference is that the value of the capacitor is fixed,while the charge-controlled and voltage-controlled memcapacitor have a memory effect. The charge-controlled memcapacitor remembers the integral value of the charge flowing through itD-1t q,the voltage-controlled memcapacitor remembers the history of the voltage change across the capacitor,the magnetic fluxφ. Their circuit schematic diagrams are shown in Fig.4.

    Fig. 4. Circuit element schematic diagrams of (a) capacitor, (b) currentcontrolled memcapacitor,and(c)voltage-controlled memcapacitor.

    Imitating the derivation of the memristor in Subsection 2.1,we can obtain the equations for the current-controlled and voltage-controlled meminductors as

    whereLMis a function of the fluxD-1t φor chargeq(t).

    Inductor, charge-controlled meminductor and voltagecontrolled meminductor have similar mathematical expressions. The difference is that the value of the inductor is fixed,while the charge-controlled and voltage-controlled meminductors have a memory effect. The charge-controlled meminductor remembers the value of the chargeqflowing through it,and the voltage-controlled meminductor remembers the history of the flux around the meminductorD-1t φ. Their circuit schematic diagrams are shown in Fig.5.

    Fig. 5. Circuit schematic diagrams of (a) inductor, (b) current-controlled meminductor,and(c)voltage-controlled meminductor.

    2.3. Application of memristors in chaotic systems

    As memristors are non-linear devices, they can be used to construct chaotic circuits. In recent years, the design of chaotic systems based on memristors has become one of the hot directions in memristor research.The most common memristor chaotic system is the use of memristor to replace nonlinear components in a Chua’s circuit. Itoh and Chua[26]firstly used a flux-controlled segmented linear function as a model for a memristor,replacing the non-linear Chua’s diode in the Chua’s circuit,Bao Bo Cheng has made various attempts at chaotic systems, transient chaos in smooth memristor oscillator,[27]two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability.[28]

    Figure 6 shows the use of a current-controlled memristor and a voltage-controlled memristor instead of Chua’s diode in Chua’s oscillator,respectively. The memristor Chua’s oscillator has more complex dynamic behaviors than the traditional Chua’s oscillator.

    Fig. 6. Chua’s oscillator with (a) current-controlled memristor and (b)voltage-controlled memristor.

    3. Fractional-order memristive device

    Fractional calculus has many excellent properties. Fractional calculus is a kind of calculus whose operation order is non-integer, which has long-term memory, non-locality and weak singularity. Moreover,the fractional parameters can increase the extra degree of freedom of the system.αandβare required to be negative integers in the Chua’s periodic table,so some researchers consider using fractional calculus to extend the Chua’s periodic table and extendαandβto the real number field(Fig.7).

    Fig.7. The fractional order of the Chua’s periodic table of all two-terminal circuit elements.

    3.1. Introduction to fractional calculus

    The fractional calculus came into being at the same time as the classical calculus. In 1695, the German mathematician Leibniz and the French mathematician L. Hoptial corresponded to each other to discuss the meaning of the derivative when it became 1/2. Fractional calculus is an extension of integer-order calculus, which extends the order of calculus from the integer domain to the fraction, even to the real number domain and complex number domain. The most commonly used is the Grunwald–Letnikov definition(GL definition).[9,29]It follows that

    wheref(x)is a differ-integrable function,[a,x]is the duration off(x),andvis the order of fractional calculus.v >0 means the fractional derivative, andv <0 means the fractional integral.

    3.2. Current fraction-order-controlled and voltage fraction-order-controlled memristor

    In Eq.(8),the integer-order current-controlled memristor,the fluxφis a single-valued function of the chargeq. Some researchers[10,30]have assumed that the chargeqis not the first-order integral of the current[Eq.(2)],but thev-order integral of the current [Eq. (25)], 0<v <1. By this method,a new memristive element, current fraction-order-controlled memristor (CFM), is proposed.q(v)in Eq. (25) means thev-order derivative of chargeq,not thev-power ofq.

    In Eq.(26),RMis the memristance of memristor,the same with integer-order current-controlled memristor. CFM follows the voltage–current relationship of the first-order currentcontrolled memristors(14),but the driving functionxis different.xof CFM is a function of thev-order derivative of chargeq(v).

    When the driving functionxis a function of the fractionalorder derivative of fluxφ(v), a voltage fractional-ordercontrolled memristor(VFM)can be obtained as

    Schematic diagrams of current fraction-order-controlled memristor (CFM) and voltage fractional-order-controlled memristor(VFM)are shown in Fig.8.The difference between CFM, VFM and memristor in Fig. 1 is small, except that the driving function of CFM is thev-order differential of chargeq(v),while the driving function of current-controlled memristor is chargeq, the driving function of VFM is thev-order differential of fluxφ(v), and the driving function of voltagecontrolled memristor is fluxφ.

    By using the same extended method of current fractionorder-controlled memristor, current fraction-order-controlled memcapacitor (CFMC),[10]voltage fraction-order-controlled memcapacitor(VFMC),current fraction-order-controlled meminductor (CFMI) and voltage fraction-order-controlled meminductor(VFMI)can be deduced as

    Current fraction-order-controlled meminductor is given in Eq. (32), whereLMis the meminductance of meminductor,the same with integer-order meminductor.q(v)meansv-order derivative of charge. In Eq. (33)),φ(v)means thev-order derivative of flux.

    Fig.8. (a)Current fraction-order-controlled memristor,(b)voltage fractionorder-controlled memristor.

    Circuit schematic diagrams of CFMC,VFMC,CFMI and VFMI are shown in Fig. 9. Schematic diagrams of CFMC,VFMC, CFMI and VFMI are almost the same as CMC,VMC, CMI and VMI, except the memorized charge changing from integer-order to fractional-order,and the memorized flux changing from integer-order to fractional-order.

    Fig. 9. (a) Current fraction-order-controlled memcapacitor, (b) voltage fraction-order-controlled memcapacitor, (c) current fraction-ordercontrolled meminductor,(d)voltage fraction-order-controlled meminductor.

    3.3. Capacitive fractor and inductive fractor

    Applying the Laplace transform to both sides of resistor(4), capacitor (5) and inductor (6), we get Eq. (34), and the conclusion (35). Naturally, what are represented by the line segmentS1between resistorRand capacitorC, and the line segmentS2between resistorRand inductorLin Fig.4.

    3.4. Capacitive and inductive fracmemristor

    Another question, what are represented by the line segmentS4between memristorRMand capacitorC, and the line segmentS3between memristorRMand inductorLin Fig.9? Pu[12–14]gives the derivation.S3stands for inductive fracmemristor andS4stands for capacitive fracmemristor.

    Reanalyze the memristor Eq.(11)from a signal and system viewpoint. We rewrite the current-controlled memristor formula to obtain

    where symbol* denotes convolution, andH[q(t)] denotes the transmission function of a memristor. We getu(s) =r[q(s)]i(s),by implementing a multiplication in Laplace transform domain.r[q(s)] =L{H[q(t)]}is the reactance of this memristor. We have derived a general expression for the capacitive factor(36)and inductive factor(37)in Subsection 3.3.

    Fig. 10. (a) Current-controlled capacitive fracmemristor and (b) voltagecontrolled capacitive fracmemristor,where means the v-order capacitive fracmemristance.

    Following the capacitive fracmemristor modification above, we replace impedancerin inductive factor (37) withr[q(s)]andr[φ(s)],

    Fig. 11. (a) Current-controlled inductive fracmemristor and (b) voltagecontrolled inductive fracmemristor, where ) means the v-order inductive fracmemristance.

    3.5. Impact of fractional order on the performance of fracmemristor

    Without loss of generality,let us take a current-controlled capacitive fracmemristor as an example to analyze the electrical characteristics of the fracmemristor. Let us assume that the input causal current sourcesI(t)=sin(at)u(t)applied across a memristor and a fracmemristor are identical,whereais frequency. Let us illustrate the effect of the fractional-ordervon the electrical characteristics of a fracmemristor. Let us set the frequencya=1 rad/s and the time duration ofI(t) be equal to 6π. To illustrate theV–Icurves of the memristor and the fracmemristor in the same plot,the experimental values of the fracmemristor are divided by 1000. To avoid completely overlapping theV–Icurve of a fracmemristor with that of memristor and inconvenience of demonstration,let us setv=0.01,whenv=0.Thus,theV–Icurve of the idealv-order capacitive fracmemristor can be shown in Fig.12.

    From Fig.12,we can observe that if the initial state of an ideal capacitive fracmemristor is zero and it is stimulated by a bipolar periodic signal with zero starting value. In Fig.12(a)when the fractional-orderv →0,an ideal capacitive fracmemristor degenerates to an ideal memristor. In Fig. 12(c),V–Icurve of an ideal 1/4-order capacitive fracmemristor has also a pinched hysteresis loop start from the original point of (0,0). However, pinched point of the multiple-valued Lissajous curves is no longer fixed at the point of (0, 0). In Fig. 12(g),when the fractional-orderv >2/3, the pinched point disappears.Electrical characteristics of an arbitrary-order fracmemristor depend on the convolution of its input current history and its fractional calculus. Thus, a capacitive fracmemristor and inductive fracmemristor can be considered in a certain way as a nonlinear interpolation of the memristor and capacitor and that of the memristor and inductor,respectively. Thus,the fingerprints of an arbitrary-order fracmemristor is different from that of a memristor.

    Fig.12. Curve of ideal v-order capacitive fracmemristors: (a)0.01-order one;(b)0.1-order one;(c)1/4-order one;(d)1/3-order one;(e)1/2-order one;(f)2/3-order one;(g)3/4-order one;(h)1-order one.

    3.6. Application of fracmemristors in chaotic systems

    While scholars have investigated the use of memristors to replace Chua’s oscillator, there has also been research into the use of fractional order memristors to replace the nonlinear components in Chua’s chaotic circuits. In 2010,Ivo[31]firstly applied a current fractional order controlled memristor to the Chua’s chaotic circuit, replacing the Chua’s diode in the Chua’s chaotic circuit with a current fractional-order controlled memristor. A schematic diagram is shown in Fig. 13,whereFdenotes the current fractional order controlled memristor. In addition to replacing the non-linear components,Radwanet al.[31–33]changed the set of partial differential equations of the Chua’s chaotic circuit to fractional order as well, and the system exhibited more transient properties than the Chua’s chaotic circuit.

    Fig.13. Chua’s oscillator with fracmemristor.

    4. Conclusion

    This paper introduces the development process of memristor,memcapacitor and meminductor in detail,and gives the related mathematical derivation from integer-order Chua’s periodic table to fractional-order Chua’s periodic table. Currently, there have been a lot of relevant studies on memristor controlled by fractional-order current or voltage, but few follow-up studies have been conducted on fracmemristor. Fracmemristor has many aspects to be studied, including: (1) basic properties, such as voltage–current characteristics,voltage step response,current step response,frequency characteristics,system properties,power consumption,and index definition; (2) application circuit, such as memory resistance in the analog-to-digital converter,digital-to-analog converter, sample holder, oscillator, modulation and demodulation circuit,power amplifier circuit,high frequency small signal amplifier circuit and other possible application potential;(3) chaotic system, such as the study of the characteristics of the chaotic system and circuit constructed by the memristor,and explore its application potential in information encryption and transmission;(4)neural network,such as the synaptic circuit, neuron circuit and the characteristics of neural network circuit composed of fracmemristor and its related theory and practice research; (5)simulator: continue to study the analog circuit realization of fracmemristor, especially the realization of simpler analog circuit;(6)digital realization:study the digital system realization of fracmemristor,and improve the highest frequency of its processing signal; (7) the simulation of natural phenomena and processes: excavate whether the phenomena and processes of existing systems in nature have the mathematical characteristics of memristor, and excavate the existence of fracmemristor in nature; (8)physical realization:excavate the physical realization of fracmemristor,and explore the possibility of realization from the perspectives of materials,biology,chemistry,etc.

    Acknowledgments

    Project supported in part by the National Natural Science Foundation of China (Grant No. 62171303), China South Industries Group Corporation(Chengdu)Fire Control Technology Center Project(non-secret)(Grant No.HK20-03),and the National Key Research and Development Program Foundation of China(Grant No.2018YFC0830300).

    猜你喜歡
    劉博激流
    Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft
    薇甘菊光能利用及葉綠素合成在不同光照強度下的響應(yīng)
    《莽原激流》
    藝術(shù)家(2021年7期)2021-08-20 02:58:06
    周激流教授作“新一代信息技術(shù)漫談”學(xué)術(shù)報告
    吲哚布芬片在難治性小兒腎病綜合征治療中的應(yīng)用價值分析
    Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma?
    逐激流
    老友(2019年9期)2019-10-23 03:31:58
    Quantum Fisher Information Gap for Systems with Nonlinear Hamiltonians?
    《家》:激流奔騰年代的一首長歌
    巴金《激流三部曲》的循環(huán)敘事
    日本爱情动作片www.在线观看 | 国产伦人伦偷精品视频| 国产伦精品一区二区三区视频9| 国产av在哪里看| 在线天堂最新版资源| 免费观看精品视频网站| 欧美色欧美亚洲另类二区| 欧美激情在线99| 国产伦精品一区二区三区视频9| 国产一级毛片七仙女欲春2| a级一级毛片免费在线观看| 亚洲成a人片在线一区二区| 男女之事视频高清在线观看| 男女做爰动态图高潮gif福利片| 免费观看在线日韩| 日韩在线高清观看一区二区三区 | 亚洲欧美日韩高清在线视频| 国产成人aa在线观看| 国国产精品蜜臀av免费| 国产黄片美女视频| 国产aⅴ精品一区二区三区波| 精品一区二区三区视频在线| 我要搜黄色片| 国产精品一及| 波多野结衣高清无吗| 看免费成人av毛片| 国产精品一区二区免费欧美| 1024手机看黄色片| 国产精品女同一区二区软件 | 亚洲av电影不卡..在线观看| 国内久久婷婷六月综合欲色啪| 最近最新中文字幕大全电影3| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 色5月婷婷丁香| 亚洲av五月六月丁香网| 国产精品一区二区性色av| 欧美日韩精品成人综合77777| 亚洲国产欧洲综合997久久,| 色综合站精品国产| 色精品久久人妻99蜜桃| 无人区码免费观看不卡| 欧洲精品卡2卡3卡4卡5卡区| 国产伦精品一区二区三区四那| h日本视频在线播放| 一区二区三区激情视频| av在线观看视频网站免费| 精品久久久久久久久亚洲 | 女人被狂操c到高潮| 啦啦啦观看免费观看视频高清| 伊人久久精品亚洲午夜| 国产女主播在线喷水免费视频网站 | 日韩精品青青久久久久久| 18禁黄网站禁片免费观看直播| 亚洲av成人av| 91久久精品国产一区二区成人| 热99re8久久精品国产| 91精品国产九色| 又爽又黄a免费视频| 国产探花在线观看一区二区| 国产av麻豆久久久久久久| 在线播放无遮挡| 国产精品国产高清国产av| 女同久久另类99精品国产91| 波多野结衣高清无吗| 淫秽高清视频在线观看| 成年女人毛片免费观看观看9| 国产成人一区二区在线| 欧美bdsm另类| 国产精品久久久久久av不卡| 国产精品永久免费网站| 三级男女做爰猛烈吃奶摸视频| 九九久久精品国产亚洲av麻豆| 免费搜索国产男女视频| 又黄又爽又刺激的免费视频.| 国产熟女欧美一区二区| 精品午夜福利在线看| 一本一本综合久久| 国产精品人妻久久久久久| 精品人妻偷拍中文字幕| 欧美日韩乱码在线| 欧美国产日韩亚洲一区| 国产亚洲精品久久久久久毛片| 亚洲av.av天堂| 99riav亚洲国产免费| 国产aⅴ精品一区二区三区波| 亚洲第一区二区三区不卡| 国产男人的电影天堂91| 别揉我奶头~嗯~啊~动态视频| a级一级毛片免费在线观看| 久久欧美精品欧美久久欧美| av视频在线观看入口| 成人亚洲精品av一区二区| 少妇高潮的动态图| 亚洲av.av天堂| 国产亚洲精品久久久com| 精品一区二区三区av网在线观看| 12—13女人毛片做爰片一| 琪琪午夜伦伦电影理论片6080| 美女 人体艺术 gogo| netflix在线观看网站| 村上凉子中文字幕在线| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 国产极品精品免费视频能看的| АⅤ资源中文在线天堂| 欧美3d第一页| 在线天堂最新版资源| 长腿黑丝高跟| 欧美3d第一页| 国产老妇女一区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产色片| 欧美绝顶高潮抽搐喷水| 亚洲av免费在线观看| 欧美色视频一区免费| 亚洲av中文字字幕乱码综合| 日本黄大片高清| 97超视频在线观看视频| 国产精品嫩草影院av在线观看 | 国产色爽女视频免费观看| 亚洲电影在线观看av| 色吧在线观看| 午夜福利在线观看吧| 免费看av在线观看网站| 国产精品电影一区二区三区| 两个人的视频大全免费| 亚州av有码| 久久国内精品自在自线图片| .国产精品久久| 国产爱豆传媒在线观看| 日日撸夜夜添| 毛片一级片免费看久久久久 | 变态另类成人亚洲欧美熟女| 久久人人精品亚洲av| 亚洲自偷自拍三级| 亚洲va在线va天堂va国产| 老司机福利观看| 又黄又爽又免费观看的视频| 此物有八面人人有两片| 精品久久久久久久久av| 久久国内精品自在自线图片| 亚洲天堂国产精品一区在线| 国产精品98久久久久久宅男小说| 亚洲精品日韩av片在线观看| 免费看美女性在线毛片视频| 国产人妻一区二区三区在| 99热精品在线国产| 国产精品久久久久久久电影| 国产一区二区在线观看日韩| 一区二区三区四区激情视频 | 日韩,欧美,国产一区二区三区 | 久久久久久久久大av| 久久精品综合一区二区三区| 欧美一区二区亚洲| 亚洲七黄色美女视频| 99国产精品一区二区蜜桃av| av女优亚洲男人天堂| 亚洲在线观看片| 国产精品久久久久久久电影| 国产主播在线观看一区二区| 偷拍熟女少妇极品色| 99热6这里只有精品| 日日夜夜操网爽| 成人av一区二区三区在线看| 国产黄a三级三级三级人| 精品一区二区三区视频在线| 久久久久久久久久久丰满 | 亚洲精品亚洲一区二区| 深夜a级毛片| 久久精品影院6| 亚洲av日韩精品久久久久久密| 亚洲av一区综合| 免费观看的影片在线观看| 直男gayav资源| 国产熟女欧美一区二区| 午夜a级毛片| 天堂av国产一区二区熟女人妻| 国产高清不卡午夜福利| 精品国产三级普通话版| 欧美激情在线99| 精品午夜福利视频在线观看一区| 亚洲精品乱码久久久v下载方式| 老女人水多毛片| 中文字幕高清在线视频| 女同久久另类99精品国产91| 国产精品国产三级国产av玫瑰| 久久午夜亚洲精品久久| 久久久精品大字幕| 国内精品美女久久久久久| 国产精品国产三级国产av玫瑰| а√天堂www在线а√下载| 日本欧美国产在线视频| xxxwww97欧美| 午夜免费男女啪啪视频观看 | 成人高潮视频无遮挡免费网站| 久久久久国产精品人妻aⅴ院| 亚洲精品在线观看二区| 美女黄网站色视频| 亚洲aⅴ乱码一区二区在线播放| 日韩亚洲欧美综合| 99久国产av精品| 联通29元200g的流量卡| 亚洲性久久影院| 网址你懂的国产日韩在线| 国产午夜福利久久久久久| 久久久午夜欧美精品| 久久精品国产自在天天线| 色吧在线观看| 亚洲七黄色美女视频| 最后的刺客免费高清国语| 午夜激情欧美在线| 别揉我奶头 嗯啊视频| 波多野结衣巨乳人妻| 成年版毛片免费区| 一区二区三区高清视频在线| 国产亚洲精品久久久久久毛片| 亚洲乱码一区二区免费版| 国产蜜桃级精品一区二区三区| 国产国拍精品亚洲av在线观看| 久久久精品欧美日韩精品| 日韩欧美精品免费久久| 少妇人妻精品综合一区二区 | 国产成人一区二区在线| 国产黄片美女视频| ponron亚洲| 国产伦精品一区二区三区视频9| 嫩草影院新地址| 久久6这里有精品| 国产精品日韩av在线免费观看| 露出奶头的视频| 夜夜爽天天搞| 久久99热6这里只有精品| 免费黄网站久久成人精品| 国产aⅴ精品一区二区三区波| 国产av不卡久久| 九色成人免费人妻av| 搡老妇女老女人老熟妇| 亚洲欧美日韩高清专用| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦观看免费观看视频高清| 亚洲成人久久性| 九九久久精品国产亚洲av麻豆| 色播亚洲综合网| 乱码一卡2卡4卡精品| 我的老师免费观看完整版| 欧美性感艳星| 如何舔出高潮| 99视频精品全部免费 在线| 亚洲内射少妇av| x7x7x7水蜜桃| 在线播放无遮挡| av在线观看视频网站免费| 午夜亚洲福利在线播放| 色av中文字幕| 国产欧美日韩精品一区二区| 99久久九九国产精品国产免费| 国产高清三级在线| 99久国产av精品| 久久久久久久久久成人| 在线观看免费视频日本深夜| 亚洲自拍偷在线| 麻豆国产97在线/欧美| 一夜夜www| 97超级碰碰碰精品色视频在线观看| 国产在线男女| 国产亚洲精品久久久久久毛片| 久久欧美精品欧美久久欧美| 久久这里只有精品中国| 综合色av麻豆| 亚洲精品久久国产高清桃花| 日本黄色片子视频| 天天一区二区日本电影三级| 男女做爰动态图高潮gif福利片| 亚洲av成人av| 亚州av有码| 乱人视频在线观看| 亚洲欧美激情综合另类| 久久久久久久亚洲中文字幕| 日韩,欧美,国产一区二区三区 | 久久人人爽人人爽人人片va| 日本撒尿小便嘘嘘汇集6| 亚洲av二区三区四区| 国产亚洲91精品色在线| 老司机午夜福利在线观看视频| 亚洲经典国产精华液单| 国产高清激情床上av| 成人性生交大片免费视频hd| 日韩一区二区视频免费看| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 久久国产精品人妻蜜桃| 男人舔奶头视频| 我要看日韩黄色一级片| 91麻豆av在线| 国产高清视频在线播放一区| 国产伦人伦偷精品视频| 亚洲av成人精品一区久久| 人人妻,人人澡人人爽秒播| 色综合站精品国产| 最近在线观看免费完整版| 尤物成人国产欧美一区二区三区| .国产精品久久| 亚洲精品色激情综合| 在线观看午夜福利视频| 国产日本99.免费观看| 别揉我奶头 嗯啊视频| 国产精品98久久久久久宅男小说| 国产91精品成人一区二区三区| 久久6这里有精品| 国产单亲对白刺激| 欧美+日韩+精品| 亚洲精品成人久久久久久| 日韩强制内射视频| 亚洲四区av| 亚洲人成网站高清观看| av天堂中文字幕网| 久久国产乱子免费精品| 久久久久久大精品| 18禁黄网站禁片午夜丰满| 成人综合一区亚洲| 国产爱豆传媒在线观看| 亚洲一级一片aⅴ在线观看| 久久久久国内视频| av在线老鸭窝| 日本免费一区二区三区高清不卡| 99国产精品一区二区蜜桃av| 小蜜桃在线观看免费完整版高清| 少妇被粗大猛烈的视频| 久9热在线精品视频| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| 久久草成人影院| 动漫黄色视频在线观看| 麻豆国产97在线/欧美| 久99久视频精品免费| 啦啦啦韩国在线观看视频| 三级国产精品欧美在线观看| 亚洲一级一片aⅴ在线观看| 国产人妻一区二区三区在| 波多野结衣巨乳人妻| 亚洲国产精品sss在线观看| 欧美xxxx黑人xx丫x性爽| 免费在线观看日本一区| 精品人妻1区二区| 91在线精品国自产拍蜜月| 老师上课跳d突然被开到最大视频| 我的老师免费观看完整版| 欧美性感艳星| 高清在线国产一区| 欧美日韩黄片免| 黄色视频,在线免费观看| 又爽又黄a免费视频| 亚洲av中文av极速乱 | 精品久久久久久久久久免费视频| 成人国产一区最新在线观看| 69人妻影院| 亚洲人成网站高清观看| 亚洲成人精品中文字幕电影| 亚洲精品影视一区二区三区av| 免费观看精品视频网站| 成人国产麻豆网| 夜夜夜夜夜久久久久| 人妻夜夜爽99麻豆av| 日本a在线网址| 国产色婷婷99| 少妇被粗大猛烈的视频| 日韩中文字幕欧美一区二区| 99热网站在线观看| 狂野欧美白嫩少妇大欣赏| 99视频精品全部免费 在线| 岛国在线免费视频观看| 精品久久久噜噜| 免费看a级黄色片| 久久九九热精品免费| 国产乱人伦免费视频| 我要看日韩黄色一级片| 成熟少妇高潮喷水视频| 亚洲电影在线观看av| 制服丝袜大香蕉在线| 十八禁国产超污无遮挡网站| 午夜福利高清视频| 18禁在线播放成人免费| 色av中文字幕| 日本成人三级电影网站| 亚洲精品色激情综合| 亚洲欧美日韩高清专用| 欧美最黄视频在线播放免费| 12—13女人毛片做爰片一| 成年女人永久免费观看视频| xxxwww97欧美| 看免费成人av毛片| 九九久久精品国产亚洲av麻豆| www.www免费av| 久久精品国产亚洲av天美| 亚洲国产高清在线一区二区三| 中文字幕熟女人妻在线| 国内久久婷婷六月综合欲色啪| 波多野结衣高清无吗| 国产精品久久久久久av不卡| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩无卡精品| 岛国在线免费视频观看| 别揉我奶头 嗯啊视频| 悠悠久久av| 性插视频无遮挡在线免费观看| 亚洲天堂国产精品一区在线| 欧美日韩黄片免| 久久精品综合一区二区三区| 99热这里只有是精品在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品国产成人久久av| 直男gayav资源| 国产免费一级a男人的天堂| 国产黄色小视频在线观看| 观看免费一级毛片| eeuss影院久久| 18禁黄网站禁片午夜丰满| 国产伦一二天堂av在线观看| 香蕉av资源在线| 免费看日本二区| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产高清在线一区二区三| 久久精品综合一区二区三区| 久久草成人影院| 一级黄色大片毛片| 国产一区二区激情短视频| 一级av片app| 熟女电影av网| 精品久久国产蜜桃| 久久精品国产99精品国产亚洲性色| 欧美不卡视频在线免费观看| 亚洲综合色惰| 成人av在线播放网站| 久久久久免费精品人妻一区二区| 少妇丰满av| 男人和女人高潮做爰伦理| 免费在线观看日本一区| 可以在线观看毛片的网站| 日韩欧美国产一区二区入口| 深爱激情五月婷婷| 国产单亲对白刺激| 亚洲欧美日韩东京热| 最新中文字幕久久久久| 嫩草影院入口| 一本精品99久久精品77| 久久精品91蜜桃| a级毛片a级免费在线| 少妇人妻精品综合一区二区 | 亚洲无线观看免费| 波多野结衣高清无吗| 天美传媒精品一区二区| 蜜桃亚洲精品一区二区三区| 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 国产亚洲av嫩草精品影院| 午夜精品一区二区三区免费看| 国产高潮美女av| 国产精品女同一区二区软件 | 欧美日韩综合久久久久久 | 国产精品女同一区二区软件 | 亚洲精品亚洲一区二区| 国产伦人伦偷精品视频| 在线播放国产精品三级| 欧美日韩黄片免| 18禁在线播放成人免费| 日本在线视频免费播放| 国产女主播在线喷水免费视频网站 | 无遮挡黄片免费观看| 亚洲欧美日韩卡通动漫| 国产高清三级在线| 男女啪啪激烈高潮av片| 久久6这里有精品| 亚洲欧美日韩高清在线视频| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 联通29元200g的流量卡| av中文乱码字幕在线| 亚洲五月天丁香| 成人美女网站在线观看视频| 在线观看av片永久免费下载| 免费在线观看日本一区| 1000部很黄的大片| 日日干狠狠操夜夜爽| 联通29元200g的流量卡| 久久国产乱子免费精品| 一本一本综合久久| 欧美人与善性xxx| 亚洲一级一片aⅴ在线观看| 久久99热6这里只有精品| 日本成人三级电影网站| 露出奶头的视频| 九色国产91popny在线| 国产精品一及| 亚洲avbb在线观看| 久久精品国产自在天天线| 精品一区二区三区视频在线| 亚洲色图av天堂| 91久久精品国产一区二区三区| 精品99又大又爽又粗少妇毛片 | 深爱激情五月婷婷| 中文字幕人妻熟人妻熟丝袜美| 久久久久久九九精品二区国产| 国产高清有码在线观看视频| 国产色爽女视频免费观看| av中文乱码字幕在线| 日韩高清综合在线| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 午夜爱爱视频在线播放| 国产毛片a区久久久久| 国产欧美日韩精品亚洲av| 亚洲av电影不卡..在线观看| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 91在线观看av| 亚洲精品色激情综合| 成年女人毛片免费观看观看9| 国产高清不卡午夜福利| 亚洲狠狠婷婷综合久久图片| 国产又黄又爽又无遮挡在线| 国产三级在线视频| 禁无遮挡网站| 天天一区二区日本电影三级| 变态另类丝袜制服| 精品久久久久久成人av| 亚洲 国产 在线| www.www免费av| 成人永久免费在线观看视频| 在线免费观看的www视频| 成年女人毛片免费观看观看9| 亚洲成人久久性| 最近最新免费中文字幕在线| 人人妻人人看人人澡| 亚洲精品色激情综合| 天堂影院成人在线观看| 美女黄网站色视频| 国产成人a区在线观看| 色吧在线观看| 日本在线视频免费播放| 国产午夜精品久久久久久一区二区三区 | 日韩欧美国产在线观看| 国产真实伦视频高清在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 国产精品自产拍在线观看55亚洲| 亚洲av成人精品一区久久| 欧美bdsm另类| 在线看三级毛片| 久久精品人妻少妇| 欧美色视频一区免费| 麻豆成人av在线观看| а√天堂www在线а√下载| 午夜免费男女啪啪视频观看 | 无遮挡黄片免费观看| 精品人妻熟女av久视频| 少妇高潮的动态图| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久精免费| 他把我摸到了高潮在线观看| 亚洲欧美精品综合久久99| 日韩精品青青久久久久久| 国产欧美日韩一区二区精品| 九九在线视频观看精品| 丝袜美腿在线中文| 免费看光身美女| 欧美性猛交╳xxx乱大交人| 欧美最黄视频在线播放免费| 日韩欧美一区二区三区在线观看| 成人亚洲精品av一区二区| 国产精品福利在线免费观看| 欧美xxxx性猛交bbbb| 精品一区二区三区人妻视频| 桃红色精品国产亚洲av| 在线观看66精品国产| 岛国在线免费视频观看| 一个人看视频在线观看www免费| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩精品一区二区| 丰满乱子伦码专区| 国产精品不卡视频一区二区| 两个人视频免费观看高清| 在线观看66精品国产| 国产欧美日韩一区二区精品| 午夜福利高清视频| 51国产日韩欧美| av天堂在线播放| 国产中年淑女户外野战色| 欧美又色又爽又黄视频| 日本黄色片子视频| 午夜福利18| 如何舔出高潮| 少妇丰满av| 在线播放国产精品三级| 精品一区二区免费观看| 啦啦啦观看免费观看视频高清| 舔av片在线| 国内精品一区二区在线观看| 天天躁日日操中文字幕| 日韩中文字幕欧美一区二区| 国产人妻一区二区三区在| 无遮挡黄片免费观看| 男人狂女人下面高潮的视频| 久久精品夜夜夜夜夜久久蜜豆| 日本三级黄在线观看| 精品一区二区免费观看| 一本精品99久久精品77| 五月玫瑰六月丁香| 美女被艹到高潮喷水动态| 国产精品三级大全| 91在线观看av| 色播亚洲综合网| av天堂中文字幕网| 国产欧美日韩一区二区精品|