• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨烯增強傳統(tǒng)砂巖文物修復材料性能研究

    2021-03-11 10:16喬榛王捷孫博王逢睿丁梓涵楊天宇
    土木建筑與環(huán)境工程 2021年1期
    關鍵詞:石墨烯力學性能

    喬榛 王捷 孫博 王逢睿 丁梓涵 楊天宇

    摘 要:川渝地區(qū)分布有8 000余處石窟和摩崖造像,大部分鑿刻于砂巖中,長期環(huán)境作用導致砂巖性能劣化,對賦存文化遺產(chǎn)的安全造成威脅。為了提升傳統(tǒng)砂巖文物修復材料的性能,將石墨烯納米片加入傳統(tǒng)修復材料中,運用傳統(tǒng)工藝制備出“CH@G”灰漿。結(jié)果表明,加入石墨烯納米片的CH@G灰漿的力學性能和體積穩(wěn)定性較傳統(tǒng)材料明顯提高。當石墨烯納米片的添加量為質(zhì)量百分比0.07%時,樣品力學性能最佳,56 d抗壓強度、抗折強度和抗拉強度分別為4.21、2.21、0.47 MPa,相對于傳統(tǒng)修復材料,強度分別提升了7.36%、19.46%、51.61%。FT-IR、Raman和XRD結(jié)果表明,石墨烯納米片對固化反應產(chǎn)物影響較小,并且可以在早期加速水化反應,從而提升早期強度。SEM結(jié)果表明,石墨烯納米片作為一種調(diào)節(jié)相,促使灰漿形成均勻致密的微觀結(jié)構(gòu)。

    關鍵詞:砂巖文物;灰漿;石墨烯;力學性能

    1 Introduction

    There are more than 8 000 grottoes and cliff statues located in Sichuan and Chongqing. These are mainly carved out of the thick sandstone and mudstone strata of the Jurassic Period of the Mesozoic Era. The most famous stone cultural relics are the Leshan Giant Buddha and the Dazu rock carvings[1]. The sandstone cultural relics have deteriorated over time due to both environmental causes and human activity, and conservation work has been carried out several times in the past decades in an effort to preserve them[2]. In 2001, Chinese experts used traditional materials to repair the head, chest and abdomen of the Leshan Giant Buddha.

    The mortar used for the conservation of traditional sandstone cultural relics is a cementitious material composed of lime, sand, slag and a small amount of cement. Cementitious materials possess relatively high compressive strength, but lack toughness and volume stability[3-5]. The traditional materials used in the chest and abdomen areas of the Leshan Giant Buddha show some deterioration due to multiple factors. The deterioration of the chest and abdomen (exfoliation, hollow, crack and water infiltration) is shown in Fig.1.

    Graphene, which has a high elastic modulus (1 TPa) and excellent mechanical properties (130 GPa)[6-10], is considered an ideal candidate for improving the mechanical properties of cementitious material, and previous results indicate that adding graphene to cementitious matrices can enhance the toughness of the resultant composites[11-15].

    In this paper, traditional mortar used in the conservation of sandstone cultural relics is named CH mortar due to its Chinese name “Chui Hui”. Graphene is used to improve their mechanical properties, and the mortars with graphene are defined as CH@G mortars. Mechanical properties, shrinkage rate, ultrasonic wave velocity, the composition of the products, morphology and the mechanism of the graphene effect are investigated.

    2 Experimental Section

    2.1 Materials

    2.1.1 CH mortar

    The raw materials of the CH mortar were lime, slag, sand and a small amount of cement. Mixing and ramming were employed to make the particles distribute uniformly.

    The cement and lime were local products. The X-Ray Diffraction (XRD) results are shown in Table 1. The sand was purchased from Xiamen ISO Standard Sand Co, Ltd.. The slag, which was steel mill waste, was purchased from Desheng Steel Co., Ltd. in Leshan. The particle size distribution curves of the slag and sand are shown in Fig.2.

    2.1.2 Graphene

    Graphene sheets was purchased from Deyang Carbonene Co. in Sichuan province. The microstructure and chemical composition were tested by Transmission Electron Microscope (TEM), High Resolution Transmission Electron Microscope (HRTEM) and X-ray Photoelectron Spectroscopy (XPS). As shown in Fig.3 (a), the microstructure of graphene is similar to overlapping nano-fibers. Fig.3 (b) shows the HRTEM image of the graphene sheet. The sheet has 6~7 single carbon layers. As shown in Fig.3 (c), the intensity of the C1s peak is greater than that of the O1s peak. The C1s spectrum contains four peaks, including peak A (C=C) at 284.4 eV, peak B (C—O) at 286.9 eV, peak C (C=O) at 287.7 eV, and peak D (COOH) at 288.8 eV.

    2.2 Specimen preparation

    The preparation procedureis illustrated in Fig.4. First, graphene and hexadecyl trimethyl ammonium bromide (CTAB) were dispersed into 50 mL deionized water and ultrasonicated for 10 min. Next, cement and lime were mixed and stirred, and slag and sand were added after 1 min of low speed stirring. Finally, the graphene dispersion was dropped into the CH mortar. Ramming was employed to make the particle distribution more uniform after mixing. The mixture was molded to different types of specimens for testing and characterization.

    Table 2 presents the recipes for preparations of various CH and CH@G mortars. The weight percentages of the graphene sheets in the mortars were 0.01%, 0.03%, 0.05%, 0.07% and 0.10% of all raw materials (lime, cement, slag and sand). The water binder ratios of all specimens were 0.30. The size of the samples for compressive strength was 70.7 mm×70.7 mm×70.7 mm, and the flexural strength test samples were 40 mm×40 mm×160 mm. The Brazilian disc test was used to test the tensile strength of the samples, and the size of the samples was φ50 mm×100 mm.

    All samples for testing and characterization were cured in an environment (parameters: 8:00—20:00, 20 ℃, RH 65%, 20:00—8:00, 15 ℃, RH 75%) similar to that of the Leshan Giant Buddha area, and the parameters of the curing condition were controlled by a temperature and humidity curing box (BG/TH-100, Shanghai Bogong Equipment Co. Ltd.).

    2.3 Experimental methods

    2.3.1 Shrinkage rate and ultrasonic wave velocity

    The shrinkage rate of the specimens (40 mm×40 mm×160 mm) at different ages was measured by an electronic micrometer with an accuracy of 0.001 mm. The ultrasonic wave velocity of the samples (φ=50 mm, height=100 mm) at different ages was obtained by an RSM-SY5 (T) nonmetal acoustic detector.

    2.3.2 Mechanical properties

    Compressive strength, flexural strength and tensile strength were tested on a universal mechanical testing machine.The flexural strength of 40 mm×40 mm×160 mm samples was determined with a central-loading method, and then the compressive strength test was conducted after the flexural test on the remaining samples. The rate of loading was 2 mm/min. All test results were the average value of three replicate samples.

    2.3.3 Characterization

    The microstructure of all samples was examined by scanning electron microscope (Hitachi S-4800, Japan) and transmission electron microscope (Hillsboro, Tecnai G2 F20). Chemical state assignment was performed using X-ray photoelectron spectroscopy (Waltham, Thermal Scientific Escalab 250 Xi). Surface characterizations of specimens were obtained by FT-IR spectra analysis (Bruker, Tensor 27), Raman spectra analysis (France, LabRAM HR) and X-ray diffraction (Rigaku, D/max-2400).

    3 Results and discussion

    3.1 Shrinkage rate

    The shrinkage rates of all samples are shown in Fig.5. The shrinkage rate of the CH specimen increases rapidly during 0-7 d, and then slowly increases from 8 d to 14 d. Finally, the value remains almost constant after 15 d. The CH@G specimens show a tendency similar to that of the CH specimen, but all shrinkage rate values are lower than those of the CH specimen, indicating that the addition of grapheme can enhance the volume stability of the CH@G specimens. When percentage of graphene added is 0.07 wt%, the specimen has the lowest shrinkage rate (0.39%) and the attenuation is 34.74% compared to the CH specimen (0.59%).

    3.2 Ultrasonic wave velocity

    Ultrasonic wave velocity tests were employed to reflect the degree of solidification of the samples[16]. As shown in Fig.6, all specimen values first decrease and then increase. Finally, the value becomes stable. At 0 d, each sample has a high initial value due to the water filling in the pores. During 1-3 d, the water in the pores is absorbed by the cement and lime, and the wave velocity drops rapidly due to the loose and porous microstructure. At 4-14 d, the wave velocity of each specimen is simultaneously improved as the cement and lime solidify, and the velocity value increases as graphene is added. In the last period (15~28 d), the wave velocities become stable. At 28 d, the velocities of the CH@G specimens are higher than those of the CH specimen. The velocity of the CH@G-4 specimen is 1 670 m/s, which is the highest value among all the samples, and the increasement is 15.17% compared to the CH specimen.

    3.3 Mechanical properties

    3.3.1 Compressive strength

    As shown in Fig.7, the compressive strength of the CH specimen at 56 d is only 3.94 MPa. The compressive strengths of the CH@G specimens increase with the addition of graphene, and the highest strength is obtained at 0.07 wt%. The strength completion degree is used to describe the hardening rate of each sample. The compressive strength value of each sample at 56 d is used as the reference value in the compressive strength completion degree curve[17]. The hardening rate gets faster in the CH@G specimens. The compressive strength completion degree of the CH and the CH@G specimens (1-5) at 7 d are 52.30%, 60.80%, 62.69%, 65.90%, 66.11% and 65.78%, respectively, suggesting that the addition of graphene could accelerate the hydration of the CH@G specimens in the early days.

    3.3.2 Flexural strength

    The flexural strengths are shown in Fig.8. The flexural strengths of the CH specimen are 0.89 MPa (3 d), 1.34 MPa (7 d), 1.60 MPa (28 d) and 1.85 MPa (56 d). With the addition of graphene, the flexural strength at 56 d increased for different degrees and the largest increasement is 19.46% obtained in the CH@G-4 sample. The 56 d flexural strength values of each sample are used as the reference value in the flexural strength completion degree curve. The flexural strength completion degree curve shows a tendency similar to that of the compressive strength completion degree curve. The flexural strength completion degrees at 7 d are 72.40% (CH), 74.71% (CH@G-1), 75.22% (CH@G-2), 76.92% (CH@G-3), 76.94% (CH@G-4), and 76.33% (CH@G-5), indicating that the addition of graphene has the potential to enhance the hydration reaction.

    3.3.3 Tensile strength

    As shown in Fig.9, the tensile strength of the CH specimen at 3 d, 7 d, 28 d and 56 d are 0.13 MPa, 0.18 MPa, 0.24 MPa, and 0.31 MPa, respectively. The tensile strength of the CH@G specimens increases with the addition of graphene. The CH@G-4 sample exhibits the highest strength value (0.47 MPa), and the increasement is 51.61%. The result shows that the addition of graphene to the CH@G specimens has a significant influence on the tensile strength. The 56 d tensile strength value of each sample is used as the reference value in the tensile strength completion degree curve. The tensile strength completion degree of the CH specimen at 7 d is 58.1%. With the addition of graphene, the tensile strength completion degrees of the CH@G specimens, which are 60.00%, 60.00%, 64.12%, 61.73% and 62.23%, change a little at each dosage of graphene (0.01%, 0.03%, 0.05%, 0.07% and 0.10%).

    3.4 Products characteristics

    3.4.1 FT-IR spectra

    The FT-IR spectra of graphene, CH mortar and CH@G mortars at 28 d are presented in Fig.10. As shown in Fig.10, a characteristic broad band that is responsible for hydroxyl stretching can be observed around 3 450 cm-1. The —COOH carbonyl stretching at 1 730 cm-1for graphene is very weak, likely because the absorption is slight and is obscured by the range band of C=C at 1 630 cm-1 [18-19]. The spectra of the CH mortar and the CH@G mortars have similar characteristic peaks such as 3 460 cm-1 (—OH), 1 470 cm-1 (O—C—O) and 778 cm-1(O—C—O), 950 cm-1(C—S—H) and 510 cm-1 (Si—O—Si). The results indicate that the addition of graphene has little influence on the composition of the products. However, the characteristic peaks of graphene can rarely be observed in the FT-IR spectra of the CH@G mortars. The Raman spectra are employed to further analyze the existence of graphene in the CH@G mortars.

    3.4.2 Raman spectra

    The Raman spectra of graphene, CH mortar and CH@G mortars at 28 d are shown in Fig.11. The spectrum of graphene contains three peaks, namely D peak at 1 350 cm-1, G peak at 1 582 cm-1 and 2D peak at 2 700 cm-1. The D peak and 2D peak represent the high-frequency E2g phonon at the center of the Brillouin zone, and the G peak corresponds to the breathing modes of six-atom rings[20]. The spectrum of the CH mortar has four characteristic peaks, including [CO3] bending vibration, [CO3] symmetric stretching vibration, C bending vibration and O bending vibration, and similar characteristic peaks are observed in the spectra of the CH@G mortars. The results confirm that the addition of graphene has little influence on the composition of the products. A weakened peak at 1 550 cm-1, the G peak of graphene, can be observed in the spectra of CH@G-2, CH@G-3, CH@G-4 and CH@G-5, and the intensity of this peak increased as the percentage of graphene added increased. It suggests that the graphene has been successfully added into the CH@G mortars.

    3.4.3 XRD

    XRD patterns of CH mortar, CH@G-2 mortar and CH@G-4 mortar curing at different ages are shown in Fig.12. The specimens are mainly composed of Ca(OH)2, CaCO3, SiO2, AFt and unhydrated C3S, but C-S-H could not be indexed by XRD due to its amorphous property[21]. The peak intensity of unhydrated C3S can be used to analyze the hydration rate of each sample. As shown in Fig.12 (a), the peak intensity of unhydrated C3S in the CH specimen at 1 d is a little higher than those specimens of CH@G-2 and CH@G-4, indicating that the hydration rate of the CH mortar is equivalent to that of the CH@G-2 and CH@G-4 mortars at the first period (0-1 d). From Fig.12 (b), the peak intensity of unhydrated C3S in the CH specimen at 3 d is much higher than those specimens of CH@G-2 and CH@G-4, and the peak shows a decreasing trend with the increasing contents of graphene. The results suggest that the hydration rate of the CH mortar is much slower than that of the CH@G-2 mortar and the CH@G-4 mortar at the second period (1-3 d). The hydration rate of the CH mortar is slower than that of the CH@G-2 mortar and the CH@G-4 mortar at the third period (3-7 d), as shown in Fig.12 (c). In the fourth period, the peak intensity of the unhydrated C3S in the CH mortar is as great as those of the CH@G-2 mortar and the CH@G-4 mortar.

    The peak of Ca(OH)2 at 18° can be used to analyze the amount of Ca(OH)2 due to its good crystallinity[22]. The intensity of Ca(OH)2 in CH at 1 d is as high as that in the CH@G-2 and CH@G-4, meaning that the hydration rate of each sample is similar to that in first period. The intensity of Ca(OH)2 in the CH at 3 d is higher than that in CH@G-2 and CH@G-4, indicating that the hydration rate of the CH@G specimens is quicker than that of the CH specimen. The trend shows a tendency similar to the change of C3S. The results of XRD demonstrate that graphene could enhance the hydration of cement in the early days, leading to higher strength of the CH@G mortars.

    3.5 Product morphology

    As shown in Fig.13 (a), the CH specimen is mainly the crystal aggregation of laminated Ca(OH)2 and fibrous C—S—H, and the whole microstructure is loose. Fig.13 (b), (c) show the morphology of the CH@G-2 specimen and the CH@G-3 specimen, and the microstructure of the two specimens is similar to that of the CH specimen.

    As shown in Fig.13 (d), a small amount of graphene sheets exist between particles, and the microstructure is still loose, indicating that the effect of the graphene is not significant at this content. From Fig.13 (e), graphene sheets can be observed in the CH@G-4 specimen, and the microstructure of the CH@G-4 specimen is more uniform and dense compared with the CH specimen. As shown in Fig.13 (f), more graphene sheets can be observed, but the graphene shows a tendency to agglomerate. It can be concluded that the effect of graphene in the CH@G-5 specimen is

    3.6 Mechanism analysis

    According to the experimental results and the discussion above, the possible mechanism by which the addition of graphene influences the mechanical properties of CH mortar can be illustrated as follows (Fig.14). In the hydration process, a complex reaction is carried out among C2S, C3S, C3A and C4AF. The products of hydration are AFt, AFm, Ca(OH)2 and C—S—H. The corresponding reactions are expressed by Eqs. (1)~(4).

    Graphene sheets involve active groups (—OH, —COOH, and —SO3H) after being functionalized by CTAB, and acid-based reactions take place between these active groups and Ca(OH)2, leading to a strong covalent force on the interface between the graphene and the CH matrix[6]. The reaction sites and patterns are simultaneously controlled by the graphene, which is called the template effect[23]. The products of hydration grow forward from the surface of the graphene in the same direction, exhibit in an ordered way, and form a uniform and compacted microstructure. The resultant products improve the strength and volume stability of the CH@G mortars. Once the microstructure starts to crack or lose stability, they would disperse into the pores and cracks as filler to retard crack propagation.

    4 Conclusion

    Grapheneis used to enhance the mechanical properties of CH@G mortars in this study. With the increase of graphene sheets, the mechanical properties of the CH@G mortars are enhanced. The specimen with the highest strength is found at 0.07 wt% level of graphene addition, where the compressive strength, flexural strength and tensile strength at 56 d are 4.21 MPa, 2.21 MPa and 0.47 MPa, respectively. FT-IR and Raman spectra show that the addition of graphene has little influence on the composition of the products, and from the XRD results, the graphene could enhance the hydration in the early days.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Sichuan Science and Technology Program (No. 2020YFS0391) and Key Research Project of China Railway Academy Co. Ltd. (No. 2019-KJ011-Z010-A2, No. 2020-KJ009-Z009-A2).

    References:

    [1] WEI J P, ZHU B L. Study on the sandstone weathering sensitivity caused by the changes of temperature and humidity [J]. Advanced Materials Research, 2011, 243-249: 645-649.

    [2] LI J H, LIU Z L, YU H, et al. The geological heritage of mount Emei in Sichuan Province and its geological significance [J]. Advances in Earth Science, 2015, 30(6): 691-699.

    [3] SINGH A P, MISHRA M, CHANDRA A, et al. Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application [J]. Nanotechnology, 2011, 22(46): 465701.

    [4] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite [J]. Cement and Concrete Composites, 2015, 58: 140-147.

    [5] DU H J, PANG S D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet [J]. Cement and Concrete Research, 2015, 76: 10-19.

    [6] CAO M L, ZHANG H X, ZHANG C. Effect of graphene on mechanical properties of cement mortars [J]. Journal of Central South University, 2016, 23(4): 919-925.

    [7] LIU H T, JIN J Z, YU Y J, et al. The mechanical properties and micro-structure of oil well cement enhanced by graphene oxide [J]. Materials Science Forum, 2018, 916: 200-204.

    [8] JIANG R S, WANG B M. Mechanical properties and microstructure of graphene-cement composites [J]. Key Engineering Materials, 2017, 748: 295-300.

    [9] LING X, WU J X, XU W G, et al. Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy [J]. Small, 2012, 8(9)1365-1372

    [10] ZHANG S, ZHANG X W, LIU X K, et al. Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles [J]. Applied Physics Letters, 2014, 104(12): 121109.

    [11] PANG H, CHEN T, ZHANG G M, et al. An electrically conducting polymer/graphene composite with a very low percolation threshold [J]. Materials Letters, 2010, 64(20): 2226-2229.

    [12] BLANTER Y M, MARTIN I. Transport through normal-metal-graphene contacts [J]. Physical Review B, 2007, 76(15): 155433.

    [13] WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites [J]. ACS Nano, 2011, 5(4): 3182-3190.

    [14] ALKHATEB H, ALOSTAZ A, CHENG A, et al. Materials genome for graphene-cement nanocomposites [J]. Journal of Nanomechanics and Micromechanics, 2013, 3(3): 67-77.

    [15] LV S, MA Y J, QIU C C, et al. Regulation of GO on cement hydration crystals and its toughening effect [J]. Magazine of Concrete Research, 2013, 65(20): 1246-1254.

    [16] CARETTE J, STAQUET S. Monitoring the setting process of mortars by ultrasonic P and S-wave transmission velocity measurement [J]. Construction and Building Materials, 2015, 94: 196-208.

    [17] WANG N, CHEN W W, ZHANG J K, et al. Evolution of properties under realistic curing conditions of calcined ginger nut grouting mortars used in anchoring conservation of earthen sites [J]. Journal of Cultural Heritage, 2019, 40: 69-79.

    [18] QIAO Z, MAO J. Multifunctional poly (melamine-urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity [J]. Materials Science and Engineering: B, 2017, 226: 86-93.

    [19] QIAO Z, MAO J. Enhanced thermal properties with graphene oxide in the urea-formaldehyde microcapsules containing paraffin PCMs [J]. Journal of Microencapsulation, 2017, 34(1): 1-9.

    [20] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nature Nanotechnology, 2013, 8(4): 235-246.

    [21] LUO K, LI J, LU Z Y, et al. Effect of nano-SiO2 on early hydration of natural hydraulic lime [J]. Construction and Building Materials, 2019, 216: 119-127.

    [22] QIAO Z, SUN B, WANG F, et al. Age performance of Leshan Giant Buddha restoration material by metakaolin modified [J]. Bulletin of the Chinese Ceramic Society, 2020 39(2): 543-551.

    [23] LV S, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites [J]. Construction and Building Materials, 2013, 49: 121-127.

    (編輯 章潤紅)

    猜你喜歡
    石墨烯力學性能
    聚氨酯/聚磷酸銨復合泡沫阻燃性能的優(yōu)化方法綜述
    廢棄塑料制品改性瀝青混凝土力學性能研究
    Mg元素對A356合金力學性能影響
    Mg元素對A356合金力學性能影響
    氧化石墨烯在純棉織物上的抗菌應用
    石墨烯負載納米銀復合材料的制備及催化性能研究
    功率芯片表面絕緣層厚度對石墨烯散熱效果的影響
    綜合化學實驗設計:RGO/MnO復合材料的合成及其電化學性能考察
    基于短纖維增強的復合氣壓砂輪基體性能研究
    石墨烯量子電容的理論研究
    看免费av毛片| 99re6热这里在线精品视频| 久久中文字幕一级| 99香蕉大伊视频| 多毛熟女@视频| 热99国产精品久久久久久7| 少妇粗大呻吟视频| 久久中文看片网| 国产成人精品久久二区二区91| 99精品久久久久人妻精品| 成人18禁高潮啪啪吃奶动态图| 老熟妇乱子伦视频在线观看 | 一个人免费在线观看的高清视频 | 国产精品1区2区在线观看. | 亚洲欧美激情在线| 1024香蕉在线观看| 欧美日本中文国产一区发布| 国产精品.久久久| 日韩,欧美,国产一区二区三区| 午夜福利在线免费观看网站| 极品人妻少妇av视频| 看免费av毛片| 狠狠精品人妻久久久久久综合| 欧美黄色片欧美黄色片| 国产一区二区三区av在线| av一本久久久久| 人妻人人澡人人爽人人| 无遮挡黄片免费观看| videosex国产| 夜夜夜夜夜久久久久| 91精品伊人久久大香线蕉| 999精品在线视频| 久久中文看片网| 丝袜人妻中文字幕| 黄片播放在线免费| 免费在线观看影片大全网站| 欧美日本中文国产一区发布| 美女福利国产在线| 日韩制服丝袜自拍偷拍| 叶爱在线成人免费视频播放| 欧美黄色淫秽网站| 一边摸一边抽搐一进一出视频| 国产一区有黄有色的免费视频| 99精国产麻豆久久婷婷| 日韩中文字幕视频在线看片| 国产精品熟女久久久久浪| 免费黄频网站在线观看国产| 亚洲欧美精品自产自拍| 欧美日韩亚洲国产一区二区在线观看 | 国产精品一区二区在线观看99| 69精品国产乱码久久久| 亚洲国产欧美网| 男人舔女人的私密视频| 久久中文字幕一级| 国产成人啪精品午夜网站| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品亚洲av一区麻豆| 美国免费a级毛片| 日本五十路高清| 91成年电影在线观看| 一进一出抽搐动态| 99久久99久久久精品蜜桃| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av高清一级| 成人国语在线视频| 欧美日韩精品网址| 亚洲,欧美精品.| 久久九九热精品免费| 久久国产精品人妻蜜桃| 国产高清视频在线播放一区 | 老司机深夜福利视频在线观看 | 国产人伦9x9x在线观看| 丝袜在线中文字幕| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 亚洲精品第二区| 久久精品国产亚洲av香蕉五月 | 天天添夜夜摸| 成人三级做爰电影| 日韩 亚洲 欧美在线| 久久久精品免费免费高清| 老鸭窝网址在线观看| 国产成人啪精品午夜网站| 水蜜桃什么品种好| 亚洲久久久国产精品| 国产一区二区三区av在线| xxxhd国产人妻xxx| 精品人妻一区二区三区麻豆| 亚洲精品中文字幕一二三四区 | 老司机在亚洲福利影院| 欧美老熟妇乱子伦牲交| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 丝瓜视频免费看黄片| 国产精品自产拍在线观看55亚洲 | 99热国产这里只有精品6| 看免费av毛片| 丁香六月天网| 母亲3免费完整高清在线观看| 免费av中文字幕在线| 秋霞在线观看毛片| 性高湖久久久久久久久免费观看| 狂野欧美激情性xxxx| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 久久性视频一级片| 丁香六月欧美| 涩涩av久久男人的天堂| 在线看a的网站| 亚洲欧洲日产国产| 美女视频免费永久观看网站| 国内毛片毛片毛片毛片毛片| 国产精品欧美亚洲77777| 国产日韩欧美视频二区| 国产精品.久久久| 国产区一区二久久| 国产日韩欧美在线精品| 久久久久国内视频| av在线播放精品| 黑人巨大精品欧美一区二区蜜桃| 欧美在线一区亚洲| 国产高清国产精品国产三级| 自线自在国产av| 99国产综合亚洲精品| 精品久久蜜臀av无| 欧美精品亚洲一区二区| 黄色视频不卡| 成人三级做爰电影| 每晚都被弄得嗷嗷叫到高潮| 成在线人永久免费视频| 大片电影免费在线观看免费| 在线观看www视频免费| www.av在线官网国产| 亚洲国产av新网站| 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| 99热网站在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲av美国av| 精品一区二区三区四区五区乱码| 久热爱精品视频在线9| 99精品欧美一区二区三区四区| 亚洲人成电影免费在线| 国产在视频线精品| 久久av网站| 国产色视频综合| 日本猛色少妇xxxxx猛交久久| 久久国产亚洲av麻豆专区| 老司机在亚洲福利影院| 久久久久久久国产电影| 1024香蕉在线观看| 亚洲七黄色美女视频| 热99re8久久精品国产| 脱女人内裤的视频| 99热全是精品| 国产欧美日韩一区二区三 | 日韩中文字幕视频在线看片| 在线观看免费高清a一片| 在线观看www视频免费| 宅男免费午夜| 国产精品久久久久久人妻精品电影 | 777米奇影视久久| 久久国产精品影院| 大香蕉久久网| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱视频在线免费观看| 欧美黑人欧美精品刺激| 精品国产一区二区久久| 久热爱精品视频在线9| 19禁男女啪啪无遮挡网站| 在线av久久热| 999精品在线视频| 亚洲九九香蕉| 亚洲情色 制服丝袜| 亚洲全国av大片| 亚洲精品中文字幕一二三四区 | 欧美亚洲日本最大视频资源| 在线看a的网站| 亚洲情色 制服丝袜| 亚洲少妇的诱惑av| 久久性视频一级片| 国产精品久久久久久精品电影小说| 久久av网站| 两人在一起打扑克的视频| 水蜜桃什么品种好| 黄色视频,在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久精品古装| 叶爱在线成人免费视频播放| 久久99热这里只频精品6学生| 国产精品麻豆人妻色哟哟久久| 又大又爽又粗| 两性午夜刺激爽爽歪歪视频在线观看 | 性少妇av在线| 一级黄色大片毛片| 51午夜福利影视在线观看| 中国国产av一级| 99久久人妻综合| 1024视频免费在线观看| 亚洲精品国产av成人精品| 国产又色又爽无遮挡免| 精品国产一区二区久久| 婷婷色av中文字幕| 亚洲精华国产精华精| 国产免费视频播放在线视频| 日韩视频在线欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 不卡av一区二区三区| 一本一本久久a久久精品综合妖精| 免费不卡黄色视频| 12—13女人毛片做爰片一| 亚洲欧美精品自产自拍| 精品高清国产在线一区| 男女床上黄色一级片免费看| 亚洲国产中文字幕在线视频| 97在线人人人人妻| 国产熟女午夜一区二区三区| 亚洲专区国产一区二区| 肉色欧美久久久久久久蜜桃| 窝窝影院91人妻| 在线观看免费视频网站a站| 欧美人与性动交α欧美精品济南到| 亚洲精品国产av成人精品| 欧美黑人欧美精品刺激| 欧美少妇被猛烈插入视频| 黑人巨大精品欧美一区二区蜜桃| 又大又爽又粗| 手机成人av网站| videosex国产| 精品少妇久久久久久888优播| 一个人免费看片子| 精品熟女少妇八av免费久了| 黑人巨大精品欧美一区二区mp4| 亚洲性夜色夜夜综合| 国产高清国产精品国产三级| 成年动漫av网址| 午夜老司机福利片| 亚洲熟女毛片儿| 中文字幕人妻丝袜制服| 黄色毛片三级朝国网站| 久久av网站| 中文精品一卡2卡3卡4更新| 国产成人欧美| a在线观看视频网站| 无限看片的www在线观看| 欧美黄色片欧美黄色片| 男女国产视频网站| 巨乳人妻的诱惑在线观看| 操出白浆在线播放| 亚洲精品在线美女| 免费看十八禁软件| 美女国产高潮福利片在线看| 精品国产乱码久久久久久男人| 亚洲欧美日韩高清在线视频 | 午夜福利在线观看吧| netflix在线观看网站| 精品乱码久久久久久99久播| 法律面前人人平等表现在哪些方面 | 日韩大码丰满熟妇| 男人爽女人下面视频在线观看| av有码第一页| 国产99久久九九免费精品| 成年动漫av网址| 少妇人妻久久综合中文| 国产欧美日韩一区二区三区在线| 青草久久国产| 精品少妇一区二区三区视频日本电影| av网站免费在线观看视频| 热re99久久国产66热| 宅男免费午夜| 一级片'在线观看视频| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看| 国产精品久久久久久精品电影小说| 国产男女超爽视频在线观看| 男男h啪啪无遮挡| 欧美激情 高清一区二区三区| 午夜激情久久久久久久| 免费黄频网站在线观看国产| 亚洲av男天堂| 国产一级毛片在线| 国产黄频视频在线观看| 一级黄色大片毛片| 最近最新免费中文字幕在线| 老熟妇乱子伦视频在线观看 | 中文字幕av电影在线播放| 另类亚洲欧美激情| 欧美另类一区| 国产日韩欧美在线精品| 久久久久视频综合| 伊人久久大香线蕉亚洲五| 最新的欧美精品一区二区| 免费在线观看视频国产中文字幕亚洲 | svipshipincom国产片| 国产亚洲av片在线观看秒播厂| 中文欧美无线码| 99久久99久久久精品蜜桃| 美女午夜性视频免费| av网站免费在线观看视频| 法律面前人人平等表现在哪些方面 | 国产xxxxx性猛交| 又大又爽又粗| 丁香六月欧美| 一个人免费看片子| 中国美女看黄片| 久久国产精品人妻蜜桃| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久男人| 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| 女性生殖器流出的白浆| 精品欧美一区二区三区在线| 少妇 在线观看| 国产欧美亚洲国产| 成人影院久久| 午夜福利一区二区在线看| 少妇的丰满在线观看| 老熟女久久久| 视频区图区小说| 丝袜在线中文字幕| 午夜精品久久久久久毛片777| 日日夜夜操网爽| 深夜精品福利| 国产精品一区二区免费欧美 | 男男h啪啪无遮挡| 日本黄色日本黄色录像| 国产av国产精品国产| 国产91精品成人一区二区三区 | 精品少妇一区二区三区视频日本电影| 视频在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 伊人亚洲综合成人网| 超碰成人久久| 亚洲一码二码三码区别大吗| 欧美精品啪啪一区二区三区 | 啦啦啦视频在线资源免费观看| 免费在线观看完整版高清| √禁漫天堂资源中文www| 欧美在线黄色| 国产男女内射视频| 考比视频在线观看| 高清在线国产一区| 国产欧美日韩一区二区三 | 日本欧美视频一区| 婷婷丁香在线五月| h视频一区二区三区| av又黄又爽大尺度在线免费看| 极品少妇高潮喷水抽搐| 99久久精品国产亚洲精品| 日韩制服丝袜自拍偷拍| 色婷婷av一区二区三区视频| 丁香六月天网| 久久久久国产一级毛片高清牌| 男女午夜视频在线观看| 久久这里只有精品19| 悠悠久久av| 一区在线观看完整版| 国产精品久久久久久精品古装| 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 国产精品成人在线| 每晚都被弄得嗷嗷叫到高潮| 视频区图区小说| 亚洲全国av大片| 18禁黄网站禁片午夜丰满| 狠狠精品人妻久久久久久综合| 成年人黄色毛片网站| 在线十欧美十亚洲十日本专区| 19禁男女啪啪无遮挡网站| 青春草亚洲视频在线观看| 国产日韩欧美在线精品| 国产成人av教育| 99热全是精品| 男女之事视频高清在线观看| 一级毛片女人18水好多| 少妇精品久久久久久久| 欧美日韩成人在线一区二区| 精品久久久精品久久久| 国产一卡二卡三卡精品| 日本vs欧美在线观看视频| 又紧又爽又黄一区二区| 国产精品自产拍在线观看55亚洲 | 国产福利在线免费观看视频| 青青草视频在线视频观看| 无遮挡黄片免费观看| 男人操女人黄网站| 欧美精品啪啪一区二区三区 | 免费不卡黄色视频| 在线观看www视频免费| 中文字幕人妻丝袜制服| 亚洲色图综合在线观看| 欧美变态另类bdsm刘玥| 亚洲综合色网址| 精品国产一区二区三区四区第35| 欧美国产精品一级二级三级| 亚洲第一青青草原| 啦啦啦中文免费视频观看日本| 亚洲精品国产精品久久久不卡| 国精品久久久久久国模美| 日韩熟女老妇一区二区性免费视频| 午夜日韩欧美国产| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久 | 不卡av一区二区三区| 高清黄色对白视频在线免费看| 丝袜脚勾引网站| 视频在线观看一区二区三区| 国产一级毛片在线| 亚洲国产av影院在线观看| 日本91视频免费播放| 国产男人的电影天堂91| 欧美午夜高清在线| xxxhd国产人妻xxx| 国产精品自产拍在线观看55亚洲 | 国产成人a∨麻豆精品| 久久女婷五月综合色啪小说| 中文字幕精品免费在线观看视频| a级毛片在线看网站| 亚洲成人免费电影在线观看| 免费在线观看黄色视频的| 国产在线一区二区三区精| 少妇人妻久久综合中文| 日韩电影二区| 久久久久久久久免费视频了| 国产精品.久久久| 在线观看舔阴道视频| 国产亚洲精品久久久久5区| 国产精品熟女久久久久浪| 一级片免费观看大全| 亚洲三区欧美一区| 视频区图区小说| 亚洲成人免费av在线播放| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久精品精品| 久久久国产精品麻豆| 夜夜骑夜夜射夜夜干| 狠狠狠狠99中文字幕| 久久久久国产精品人妻一区二区| 两性夫妻黄色片| 亚洲 国产 在线| 成人国语在线视频| 日韩欧美一区二区三区在线观看 | 在线观看免费午夜福利视频| av在线app专区| 欧美一级毛片孕妇| 久久天堂一区二区三区四区| 亚洲色图综合在线观看| 大香蕉久久网| 日本av手机在线免费观看| 一本一本久久a久久精品综合妖精| 久久综合国产亚洲精品| 国产精品一区二区在线观看99| 麻豆av在线久日| 久久人人爽人人片av| 香蕉国产在线看| 女性被躁到高潮视频| 丝袜美腿诱惑在线| 国产日韩一区二区三区精品不卡| avwww免费| 十分钟在线观看高清视频www| 黄色 视频免费看| 亚洲国产欧美一区二区综合| 国产亚洲精品一区二区www | 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| av在线播放精品| 91精品三级在线观看| 亚洲情色 制服丝袜| 热99久久久久精品小说推荐| 亚洲avbb在线观看| 在线观看一区二区三区激情| 日本一区二区免费在线视频| 国产精品久久久久久精品古装| 桃红色精品国产亚洲av| 国产精品免费视频内射| 男女下面插进去视频免费观看| 久久精品亚洲熟妇少妇任你| 99精国产麻豆久久婷婷| 老司机影院成人| 免费高清在线观看视频在线观看| 国产一级毛片在线| 国产熟女午夜一区二区三区| 欧美日韩亚洲高清精品| 日韩中文字幕视频在线看片| kizo精华| 成人手机av| 亚洲精品一区蜜桃| 黑人猛操日本美女一级片| 国产欧美日韩精品亚洲av| 午夜91福利影院| 亚洲国产欧美一区二区综合| 在线亚洲精品国产二区图片欧美| 欧美一级毛片孕妇| 亚洲成av片中文字幕在线观看| 天天躁日日躁夜夜躁夜夜| 最近最新免费中文字幕在线| 12—13女人毛片做爰片一| 视频区图区小说| www.自偷自拍.com| 最近中文字幕2019免费版| 久久久久国内视频| 亚洲熟女毛片儿| 久久九九热精品免费| 精品国产超薄肉色丝袜足j| 嫁个100分男人电影在线观看| 一级a爱视频在线免费观看| 日韩大码丰满熟妇| 亚洲欧美激情在线| 久久精品亚洲av国产电影网| 亚洲五月色婷婷综合| 亚洲精品自拍成人| 激情视频va一区二区三区| 亚洲精品自拍成人| 欧美日韩av久久| 欧美精品人与动牲交sv欧美| 五月天丁香电影| 日本a在线网址| 亚洲欧美清纯卡通| 精品免费久久久久久久清纯 | 亚洲欧美精品自产自拍| 欧美精品啪啪一区二区三区 | 亚洲精品国产色婷婷电影| 在线永久观看黄色视频| 欧美精品av麻豆av| 欧美老熟妇乱子伦牲交| 久久影院123| 免费在线观看完整版高清| 黄片播放在线免费| 捣出白浆h1v1| 国产免费视频播放在线视频| 视频区欧美日本亚洲| 午夜91福利影院| 老鸭窝网址在线观看| 91字幕亚洲| 免费av中文字幕在线| videosex国产| 亚洲精品成人av观看孕妇| 日本撒尿小便嘘嘘汇集6| 热99久久久久精品小说推荐| 午夜91福利影院| 超色免费av| 新久久久久国产一级毛片| 成人18禁高潮啪啪吃奶动态图| 俄罗斯特黄特色一大片| 在线观看www视频免费| 爱豆传媒免费全集在线观看| 亚洲成av片中文字幕在线观看| 一本大道久久a久久精品| 日本av免费视频播放| 国产又爽黄色视频| 亚洲 欧美一区二区三区| 99国产精品一区二区蜜桃av | 999精品在线视频| 国产男人的电影天堂91| 亚洲精品国产精品久久久不卡| 777久久人妻少妇嫩草av网站| 国产国语露脸激情在线看| 考比视频在线观看| 欧美乱码精品一区二区三区| 成年人黄色毛片网站| 啦啦啦免费观看视频1| 国精品久久久久久国模美| 啪啪无遮挡十八禁网站| 久久精品成人免费网站| 亚洲精品一卡2卡三卡4卡5卡 | 99re6热这里在线精品视频| 我的亚洲天堂| 午夜福利免费观看在线| 国产老妇伦熟女老妇高清| 桃红色精品国产亚洲av| 亚洲av成人不卡在线观看播放网 | 国产淫语在线视频| 丰满迷人的少妇在线观看| 亚洲中文av在线| 国产亚洲精品一区二区www | 日本欧美视频一区| e午夜精品久久久久久久| 一区福利在线观看| 天堂8中文在线网| 黄色视频,在线免费观看| 色老头精品视频在线观看| 青草久久国产| 国产深夜福利视频在线观看| 午夜激情久久久久久久| 亚洲,欧美精品.| 国产成人免费无遮挡视频| 国产精品一区二区在线观看99| 丰满少妇做爰视频| 国产福利在线免费观看视频| 黑人巨大精品欧美一区二区mp4| 后天国语完整版免费观看| 成年av动漫网址| 中文字幕色久视频| 久久毛片免费看一区二区三区| 色视频在线一区二区三区| 国产男女超爽视频在线观看| 岛国在线观看网站| 亚洲五月婷婷丁香| 亚洲av成人不卡在线观看播放网 | 免费少妇av软件| 制服人妻中文乱码| 亚洲av日韩精品久久久久久密| 中文字幕精品免费在线观看视频| 老鸭窝网址在线观看| 亚洲国产欧美日韩在线播放| 女人精品久久久久毛片| 精品人妻在线不人妻| 久久99热这里只频精品6学生| 亚洲人成77777在线视频| 手机成人av网站| 两人在一起打扑克的视频| 啦啦啦 在线观看视频| 国产视频一区二区在线看| 少妇的丰满在线观看| 欧美日韩中文字幕国产精品一区二区三区 |