• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    平行隧道開挖引起場地沉降的透明土模型試驗(yàn)研究

    2021-03-11 08:49:38劉漢龍鐘海怡顧鑫向鈺周仉文崗
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:砂質(zhì)模型試驗(yàn)損失率

    劉漢龍 鐘海怡 顧鑫 向鈺周 仉文崗

    摘 要:為了便捷現(xiàn)代城市交通,地鐵系統(tǒng)普遍采用平行隧道模式。平行隧道開挖引起的場地沉降預(yù)測一般基于單一隧道工況,利用簡化疊加法生成變形剖面,而沒有考慮兩個(gè)隧道之間的相互作用。采用透明土模型試驗(yàn)技術(shù),自主研發(fā)平行隧道模型試驗(yàn)裝置及試驗(yàn)方法,研究了在砂質(zhì)場地上開挖平行隧道引起的地表和地層沉降特性。通過模型試驗(yàn)探索了平行隧道間距、土體損失率、埋深等要素對地表和地表沉降的影響規(guī)律。在此基礎(chǔ)上,量化了土體損失率和場地沉降值間的數(shù)值關(guān)系。此數(shù)值關(guān)系可為砂質(zhì)場地中平行隧道施工與設(shè)計(jì)提供參考依據(jù),也為隧道間距初選以及埋深的初步確定提供理論支撐。

    關(guān)鍵詞:透明土;平行隧道;模型試驗(yàn);地表沉降;地層沉降

    1 Introduction

    With the rapid development of the modern city, burying the subway tunnels has proven to be an effective way to relieve traffic pressure on the ground. Accurate estimation of ground settlement is vital to ensure safety during the tunnel excavation. To this end, many early scholars have studied both the surface and the subsurface settlement for the excavation of the single tunnel[1-4]. However, single tunnel construction is rarely encountered in practice. Instead, parallel tunnels excavated sequentially are commonly constructed in urban subways to facilitate the movement of traffic in modern cities. In comparison to monitoring the deformation in clays[1-2], the settlement caused by tunneling in granular soils (e.g., sands and gravels) are more difficult and complex when considering key factors such as the relative density, which influences the shape and magnitude of the deformation[5]. Recently, the settlement of single tunnels in sand has been studied through model testing[6] and numerical simulation[7-8]. Yet the deformation induced by sequential excavation of parallel tunnels has not been fully revealed. Therefore, it may be a research hotspot in geotechnical engineering to investigate the deformation induced by the excavations of two parallel tunnels.

    Many studies based on analytical deduction have been carried out to investigate the deformation induced by tunnel excavation, but they mainly aimed at the single tunnel[9-13]. Parallel-tunneling deformation prediction generally utilizes the simplified superposition method with the assumption the deformation arising from the excavation of the 2nd tunnel is unaffected by that of the 1st tunnel. However, previous research, particularly numerical studies that can fully consider the interaction between two tunnels, have indicated that this method may not be directly applicable to estimating the parallel tunneling-induced settlement in practice, since it may underestimate the resultant settlement, which may exert a negative effect on the safety of the nearby constructions[14]. The numerical simulation of tunneling which permits calculating internal soil deformation is widely used in the last decade[14-18]. However, not only is internal soil deformation difficult to validate against the actual measurements, but the key input parameters, which can directly and significantly impact the accuracy of the results, are quite difficult to obtain. Many scholars have focused on in-situ surface settlement induced by sequential excavation of parallel tunnels in a variety of soils. Since the in-situ test is costly and time-consuming, laboratory tests are widely used in performing two-dimensional trap door tests in dry sand[19] and lining installation in a centrifuge[20-21]. However, it is challenging to obtain the inner soil deformation and the failure pattern from the conventional model tests. Moreover, the results from traditional laboratory test are inevitably affected by the boundary conditions and the embedment of the rigid sensors has an effect on instrumentation accuracy due to the arching effect[22-23]. Recently the development of data-driven and soft computing methods, Zhang et al.[24-25] and Shahrour and Zhang[26] predicted the surface settlement induced by earth pressure balance shield tunneling, estimated the lining response for twin-tunnel construction, and performed TBM tunneling optimization. However, this kind of data-based method has an obvious deficiency in revealing the deformation characteristics in tunneling constructions, where the internal physical failure mechanism is often ignored.

    To visualize the interioror the full-filed deformation, an advanced modeling technique using the transparent soil is adopted in this study, which was firstly developed by Allersma[27] and utilized by many scholars worldwide[28-29], including in tunneling by Ahmed and Iskander[30-31]. And the intend of this paper is to explore the parallel-tunnel interaction and its influence on surface and subsurface settlements due to the second tunnel in sandy ground considering the spacing (S) between two tunnels, the magnitude of the volume of ground loss at the tunnel (Vl )and burial depth (H and H0).

    2 Experimental design

    2.1 Testing apparatus

    The model testing system was adopted to monitor the settlement variation during excavation. It consisted of a computer, an optical platform, a charge coupled device (CCD) camera, a disk laser, a plexiglass model tank, and processing software for particle image velocimetry (PIV) digital images. The optical platform was ferromagnetic stainless steel and the inner core structure on the top side offered considerable anti-disturbance capacity. The high resolution of the CCD camera was 1280×960 pixels, which could record the settlement during tunnel excavation continuously operated by the control program of the computer. The disk laser was EP532-3W along with 3 W output power, 532 nm wavelength, 10°-25° light angle and less than 1 mm thickness. The multifunctional model box made of acrylic plexiglass with each surface bonded by strong glue was capable of simulating the single tunnel test, parallel tunnels test and cross tunnels test, for a total of four tunnels (three on the front and one on the side). Additionally, ribs were fixed at the bottom to restrain the deformation.

    2.2 Testing materials

    Fused silica sand, which has similar physical and mechanical properties to the proxy naturally graded sand, was adopted in this study to manufacture the transparent soil samples. The particles were 0.5-1.0 mm in size. The maximum dry density was 1.278 g/cm3, and the minimum was 0.907 g/cm3. The relative density was 55% and the internal friction angle was between 34° and 38°. The pore liquid was mixed with n-dodecane and the 15th mineral white oil with the mass ratio of 1:4 and its refractive index was 1.458 5. The periphery of the tunnel was isolated from the surrounding soil with a self-made film tube made of transparent and highly elastic thermoplastic polyurethane (TPU) film to prevent the pore liquid from flowing out along the tunnel model hole during the test. The drainage method was used to simulate the tunnel excavation process. One end of a rubber tube with a diameter of 50 mm was tied with a wire, and the other end was sleeved on a rubber plug with a drainage tube and tied with a rubber band to prevent potential water leakage. Before the test, the model box was cleaned, and the tunnel model, as well as the waterproof film tube, was set up.

    3 Testing result and analysis

    3.1 Surface settlement

    3.1.1 Surface settlement due to excavation of the 1st tunnel

    Fig.3 presents the measured surface settlement SV_A induced by TA under H (Depth from the surface to the tunnel axis level)/D=2.0 and 5.0, respectively. The normal probability Gaussian curves proposed by Peck[3] were used to fit the measured data. The surface settlement of the 1st tunnel excavation has good agreement with O'Reilly and New[2], which is expected since TA is excavated in a greenfield site and this behavior is reected in the first tunnel settlement for all tests. Moreover, the Gaussian curves give a good fit when Vl=1.455% and 2.911%, then the goodness of the fit declines with the increase in Vl, which coincides with the observations by Marshall et al.[5].

    As seen in Fig.4(a), the maximum surface settlement Smax_Alinearly increases with Vl, which can also be seen in Shahin et al.[34]. From Fig.4(b), the soil volume loss of surface settlement VS_A is smaller than Vl in all performed tests, especially at large Vl and H which is in good agreement with Zheng et al.[35], who points out that the soil within the subsurface ground may exhibit an overall dilating response considering that the tests were conducted in a low-stress condition.

    3.1.2 Surface settlement due to excavation of the 2nd tunnel

    The resultant surface settlement SV of different groups is plotted inFig.5. Fundamentally, the distribution of the resultant ground settlement under H/D=2.0 and 5.0 changes from a “V” shape to a “W” shape step by step as S becomes larger.

    From Fig.5, it is clear that the position corresponding to Smax_A is directly above TA during the tunnel excavation of TA. With the increase of Vl in TB, the position corresponding to Smax_B gradually moves towards the axis of TB and the asymmetry of the settlement trough becomes more significant in T1, T2, T3 and T4 (S=1.5D and 2.0D). But for the tests (T3 and T6) that have larger S, the position corresponding to Smax_B is also just above TB, which means the excavation of TA has little influence on TB.

    From Fig.6, it is clear that for T1, T2, T4 and T5, the corresponding location of the maximum surface settlement X moves toward TB as Vl increases and the asymmetry of the settlement trough also becomes more significant. For T3, the corresponding locations of the maximum surface settlement X remains constant and the excavation of TA has little impact on TB. For T4, although X does not change, the settlement trough curves appear as an inflection point at X=1.5D.

    To further investigate the settlement caused by each excavation, the net surface settlement SV_B induced by TB is shown in Fig.7. The settlement of TB is obtained from the resultant ground settlement subtracting the 1st tunnel settlement. Gaussian curves are again used to fit the experimental data. The goodness-of-fit of the Gaussian curves is shown to decrease with the development of Vl in the TB excavation, which is similar to the observations in the TA excavation.

    Fig.8(a) shows the Smax_B/D-Vl curves gained from the six tests. Basically, a non-linear relationship is found between Smax_B and Vl·Smax_B grows up gradually as Vl developed. Moreover, its magnitude is larger compared with Smax_A as plotted in Fig.3, which is consistent with the conclusion obtained in clayey soils that the larger settlement in the 2nd tunnel excavation is caused by the interaction between the two tunnels[36-37].

    To further illustrate the impact of parallel-tunnel interaction on Smax_B, variations in Smax_B/ Smax_A with different Vl are plotted in Fig.8(b). Basically, S appears to be the most dominant factor influencing the values of Smax_B/Smax_A. The influence of the twin-tunnel interaction is more significant in T1, T2, T4 and T5 (S=1.5D and 2.5D), than in T3 and T6 (S=4.5D) as well as in the case of smaller H(H=2D).

    Fig.9 presents the values of the empirical coefficient for surface settlement k under different Vl for different H/D. Here, kl and kr represent the empirical coefficients of the left and right sides of the settlement trough, respectively. k gradually increases with Vl under the same S. Conversely, it decreases step by step with the increase of S. Moreover, kl gets closer to kr as S increases, indicating that both sides of the settlement trough tend to be symmetrical.

    3.2 Subsurface settlement

    The resultant subsurface settlement Su of different groups is plotted in Fig.10. Basically, the distribution of Group 1 gradually changes from a “W” shape to a “V” shape as H0(Depth from the subsurface to the tunnel axis level)/D becomes larger. And the distribution of Group 2 remains in the shape of a “W”.From Fig.11, it is clear that for Group 1, the corresponding location of the maximum subsurface settlement Xumoves toward TB as Vl increases. The asymmetry of the settlement trough for U1 and U2 becomes more significant, while for U3, the curves of the settlement trough undergo a process from asymmetry to symmetry and then back to asymmetry. As for Group 2, Xu is also just above TB and their settlement trough curves are quite similar, which means the excavation of TA has little influence on TB.

    4 Summary and conclusions

    Based upon the surface and subsurface settlements observed during the transparent soil model test, some useful conclusions are drawn as shown below:

    1) With the increase of the ground volume loss, the Gaussian curve used to predict the ground settlement induced by the excavation of the two parallel tunnels demonstrates a decreasing trend.

    2) The interaction of the parallel tunnels leads to greater maximum surface settlement Smax_B during the excavation of TB compared with that of TA. This effect weakens as the spacing between the parallel tunnels increases.

    3) When S=1.5D and 2.0D, the excavation of the 1st tunnel has a significant effect on the surface settlement of the 2nd tunnel, and the corresponding location of Smax gradually moves towards the axis of the 2nd tunnel with the increase of Vl. Moreover, the asymmetry of the settlement trough becomes more obvious. When S=4.5D, the excavation of the 1st tunnel has a marginal influence on the deformation of the 2nd tunnel.

    4) Under the same S, k gradually increases with the growth of Vl while it declines as S develops. The empirical coefficients k of the left and right sides get closer as S increases.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Chongqing Construction Science and Technology Plan Project (No. 2019-0045), Fundamental Research Funds for the Central Universities (No. 2019CDJDTM0007) and the Graduate Research and Innovation Foundation of Chongqing (Grant No. CYS18024).

    References:

    [1] MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays [J].Geotechnique, 1993, 43(2): 315-320.

    [2] O'REILLY M P, NEW B M. Settlements above tunnels in the United Kingdom - Their magnitudes and prediction [C]//Proceedings of Tunnelling '82 Symposium, Springer, Berlin, 1982: 173-181.

    [3] PECK R B. Deep excavations and tunneling in soft ground [C]//Proceedings of the Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico, Balkema, 1969, 3: 225-290.

    [4] SCHMIDT B. Settlement and ground movement associated with tunneling in soils [D]. Urbana: University of Illinois, 1969.

    [5] MARSHALL A M, FARRELL R P, KLAR A, et al. Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements [J].Geotechnique, 2012, 62(5): 385-399.

    [6] FRANZA A, ZHOU B, MARSHALL A M. The effects of relative tunnel depth and volume loss on vertical settlements above tunnels in dense sands [C]//Fourth Geo-China International Conference. July 25-27, 2016, Shandong, China. Reston, VA, USA: American Society of Civil Engineers, 2016: 125-132.

    [7] YANG B W, BLOODWORTH A. Numerical analysis oftunnelling in sand-A case study of a centrifuge test [C]//Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction, 2018.

    [8] ZHOU B, ELKAYAM I, MARSHALL A. The effect of relative density on tunnelling-induced settlements - DEM simulations versus centrifuge test results[M]// Geomechanics from Micro to Macro. CRC Press, 2014: 589-594.

    [9] BOBET A. Analytical solutions for shallow tunnels in saturated ground [J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266.

    [10] CHI S Y, CHERN J C, LIN C C. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model [J]. Tunnelling and Underground Space Technology, 2001, 16(3): 159-165.

    [11] CHOU W I, BOBET A. Predictions of ground deformations in shallow tunnels in clay [J].Tunnelling and Underground Space Technology, 2002, 17(1): 3-19.

    [12] PARK K H. Analytical solution for tunnelling-induced ground movement in clays [J]. Tunnelling and Underground Space Technology, 2005, 20(3): 249-261.

    [13] VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane [J].Géotechnique, 1996, 46(4): 753-756.

    [14] ADDENBROOKE T, POTTS D M. Twin tunnel interaction: surface and subsurface effects [J]. International Journal of Geomechanics, 2001, 1(2): 249-271.

    [15] GONZLEZ N A, ROUAINIA M, ARROYO M, et al. Analysis of tunnel excavation in London Clay incorporating soil structure [J].Géotechnique, 2012, 62(12): 1095-1109.

    [16] KASPER T, MESCHKE G. A 3D finite element simulation model for TBM tunnelling in soft ground [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(14)1441-1460.

    [17] ZHANG W G, ZHANG R H, WU C Z, et al. State-of-the-art review of soft computing applications in underground excavations [J]. Geoscience Frontiers, 2020, 11(4): 1095-1106.

    [18] CHEN F Y, WANG L, ZHANG W G. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties [J]. Tunnelling and Underground Space Technology, 2019, 88: 276-289.

    [19] VARDOULAKIS I, GRAF B, GUDEHUS G. Trap-door problem with dry sand:A statical approach based upon model test kinematics [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(1): 57-78.

    [20] CHAPMAN D N, AHN S K, HUNT D V L, et al. The use of model tests to investigate the ground displacements associated with multiple tunnel construction in soil [J].Tunnelling and Underground Space Technology, 2006, 21(3/4): 413.

    [21] KIM S H. Interaction between closely spaced tunnels in clay [D]. Oxford, UK: Oxford University, 1996: 242.

    [22] LEE C J, CHIANG K H, KUO C M. Ground movement and tunnel stability when tunneling in sandy ground [J]. Journal of the Chinese Institute of Engineers, 2004, 27(7): 1021-1032.

    [23] XIANG Y Z, LIU H L, ZHANG W G, et al. Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism [J].Tunnelling and Underground Space Technology, 2018, 74: 178-184.

    [24] ZHANG W G, LI H R, WU C Z, et al. Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling [J/OL]. Underground Space, 2020. https://doi.org/10.1016/j.undsp.2019.12.003.

    [25] ZHANG W G, LI Y Q, WU C Z, et al. Prediction of lining response for twin tunnels constructed in anisotropic clay using machine learning techniques [J/OL]. Underground Space, 2020. DOI:10.1016/j.undsp.2020.02.007.

    [26] SHAHROUR I, ZHANG W G. Use of the soft computing techniques for TBM tunnelling optimization [J/OL]. Underground Space, 2020. https://doi.org/10.1016/j.undsp.2019.12.001

    [27] ALLERSMA H. Photo-elastic stress analysis and strains in simple shear[C]//Proc. Iutam Symposium on Deformation and Failure of Granular Materials, 1982: 345-353.

    [28] CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550-564.

    [29] NG C W W, SHI J W, HONG Y. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand [J]. Canadian Geotechnical Journal, 2013, 50(8): 874-888.

    [30] AHMED M, ISKANDER M. Evaluation of tunnel face stability by transparent soil models [J].Tunnelling and Underground Space Technology, 2012, 27(1): 101-110.

    [31] AHMED M, ISKANDER M. Analysis of tunneling-induced ground movements using transparent soil models [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(5): 525-535.

    [32] LIU J Y. Visualizing 3-D internal soil deformation using laser speckle and transparent soil techniques [C]//GeoHunan International Conference 2009. August 3-6, 2009, Changsha, Hunan, China. Reston, VA, USA: American Society of Civil Engineers, 2009: 123-128.

    [33] SADEK S, ISKANDER M, LIU J Y. Geotechnical properties of transparent silica [J]. Canadian Geotechnical Journal, 2002, 39(1): 111-124.

    [34] SHAHIN H M, NAKAI T R, ZHANG F, et al. Behavior of ground and response of existing foundation due to tunneling [J]. Soils and Foundations, 2011, 51(3): 395-409.

    [35] ZHENG G, TONG J B, ZHANG T Q, et al. Experimental study on surface settlements induced by sequential excavation of two parallel tunnels in drained granular soil [J].Tunnelling and Underground Space Technology, 2020, 98: 103347.

    [36] CHAPMAN D, AHN S K, HUNT D V L. Investigating ground movements caused by the construction of multiple tunnels in soft ground using laboratory model tests [J]. Canadian Geotechnical Journal, 2007, 44(6): 631-643.

    [37] DIVALL S, GOODEY R J. Twin-tunnelling-induced ground movements in clay [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2015, 168(3): 247-256.

    (編輯 胡英奎)

    猜你喜歡
    砂質(zhì)模型試驗(yàn)損失率
    農(nóng)業(yè)農(nóng)村部印發(fā)《意見》提出到2025年農(nóng)產(chǎn)品加工環(huán)節(jié)損失率降到5%以下
    砂質(zhì)板巖地層下小斷面盾構(gòu)刀盤結(jié)構(gòu)設(shè)計(jì)方法
    河北省砂質(zhì)岸線修復(fù)現(xiàn)狀及思考
    基于砂質(zhì)海岸帶海水入侵模型試驗(yàn)分析研究
    反推力裝置模型試驗(yàn)臺的研制及驗(yàn)證
    帶有治療函數(shù)及免疫損失率的SIRS流行病模型的動(dòng)力學(xué)分析
    12部使用一年后最廉價(jià)轉(zhuǎn)售車
    海外星云(2016年19期)2016-10-24 11:53:42
    2014~2015年冬季美國蜂群損失調(diào)查
    臺階式短加筋土擋墻行為特征的離心模型試驗(yàn)
    巨厚堅(jiān)硬巖漿巖不同配比的模型試驗(yàn)研究
    日日摸夜夜添夜夜爱| 色网站视频免费| 97超视频在线观看视频| 久久精品国产亚洲av涩爱| 日韩av在线大香蕉| 国模一区二区三区四区视频| 99久国产av精品国产电影| 久久精品久久久久久久性| 如何舔出高潮| 老师上课跳d突然被开到最大视频| 亚洲四区av| 精品欧美国产一区二区三| 国产一区二区亚洲精品在线观看| 老司机影院成人| 亚洲美女视频黄频| 国内少妇人妻偷人精品xxx网站| 永久网站在线| 中文字幕av成人在线电影| 午夜日本视频在线| 亚洲av国产av综合av卡| 亚洲欧美一区二区三区黑人 | 丰满少妇做爰视频| 国产片特级美女逼逼视频| 最近中文字幕高清免费大全6| 国产中年淑女户外野战色| 大又大粗又爽又黄少妇毛片口| 成人亚洲精品一区在线观看 | 国产伦理片在线播放av一区| 91av网一区二区| 嫩草影院精品99| 久99久视频精品免费| 成人美女网站在线观看视频| 大话2 男鬼变身卡| 国产一区二区亚洲精品在线观看| 久久久久性生活片| 日韩,欧美,国产一区二区三区| 人人妻人人澡欧美一区二区| 国产亚洲午夜精品一区二区久久 | 久久久a久久爽久久v久久| 国产白丝娇喘喷水9色精品| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 少妇熟女欧美另类| 久久久久久久久久成人| 免费高清在线观看视频在线观看| 乱人视频在线观看| 亚洲av电影不卡..在线观看| 老司机影院毛片| 久久国产乱子免费精品| 亚洲av免费在线观看| 久久久久久久亚洲中文字幕| 欧美成人一区二区免费高清观看| 欧美zozozo另类| 18禁裸乳无遮挡免费网站照片| 亚洲va在线va天堂va国产| 国产精品久久久久久精品电影小说 | 国产麻豆成人av免费视频| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 高清视频免费观看一区二区 | 欧美 日韩 精品 国产| 日韩国内少妇激情av| 亚洲熟女精品中文字幕| 91在线精品国自产拍蜜月| 青春草国产在线视频| 日韩成人伦理影院| 国产精品国产三级专区第一集| 久久久久久久午夜电影| 色视频www国产| 日日摸夜夜添夜夜添av毛片| 黄片无遮挡物在线观看| 国产精品日韩av在线免费观看| 搡女人真爽免费视频火全软件| 亚洲精品一区蜜桃| 极品教师在线视频| 亚洲av在线观看美女高潮| 国产一区有黄有色的免费视频 | 你懂的网址亚洲精品在线观看| av.在线天堂| 国产极品天堂在线| 蜜臀久久99精品久久宅男| 亚洲国产精品专区欧美| 嫩草影院精品99| 毛片女人毛片| 欧美成人精品欧美一级黄| 成人美女网站在线观看视频| 日产精品乱码卡一卡2卡三| 观看美女的网站| 晚上一个人看的免费电影| 亚洲欧美日韩东京热| eeuss影院久久| 久久韩国三级中文字幕| 久久精品国产亚洲av天美| 久久久久久久久久人人人人人人| 国产男人的电影天堂91| 国产乱来视频区| 十八禁网站网址无遮挡 | 天堂网av新在线| 欧美精品一区二区大全| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 好男人视频免费观看在线| 国产综合懂色| 神马国产精品三级电影在线观看| 国产精品女同一区二区软件| 亚洲国产精品国产精品| 日韩欧美 国产精品| 欧美另类一区| 欧美极品一区二区三区四区| 寂寞人妻少妇视频99o| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产| 日韩成人伦理影院| 99热网站在线观看| 国内精品宾馆在线| 国产伦理片在线播放av一区| 美女国产视频在线观看| 中文乱码字字幕精品一区二区三区 | 免费av不卡在线播放| 99久久精品热视频| 国内精品宾馆在线| 特级一级黄色大片| 黑人高潮一二区| 亚洲国产精品成人久久小说| 国产成人午夜福利电影在线观看| 久久精品夜夜夜夜夜久久蜜豆| 性色avwww在线观看| 成人综合一区亚洲| av天堂中文字幕网| 亚洲av日韩在线播放| 狂野欧美白嫩少妇大欣赏| 在线免费十八禁| videossex国产| 男人爽女人下面视频在线观看| a级毛色黄片| videos熟女内射| 国产午夜精品论理片| 身体一侧抽搐| 久久久久久久久久黄片| 少妇猛男粗大的猛烈进出视频 | 成年人午夜在线观看视频 | 午夜爱爱视频在线播放| 亚洲国产成人一精品久久久| 国产在线一区二区三区精| 国产伦在线观看视频一区| 日韩,欧美,国产一区二区三区| 日本黄大片高清| 欧美精品一区二区大全| 黄片无遮挡物在线观看| 午夜福利高清视频| 搡女人真爽免费视频火全软件| 搡老乐熟女国产| 亚洲欧美一区二区三区国产| 最近2019中文字幕mv第一页| 亚洲图色成人| 观看免费一级毛片| 国产成人午夜福利电影在线观看| 夜夜看夜夜爽夜夜摸| 国产精品无大码| 美女黄网站色视频| 国产亚洲av嫩草精品影院| 色尼玛亚洲综合影院| 日韩成人伦理影院| 寂寞人妻少妇视频99o| 亚洲av福利一区| 久久精品综合一区二区三区| 免费看美女性在线毛片视频| 18禁在线无遮挡免费观看视频| 国产黄片美女视频| 黄色日韩在线| 亚洲成人av在线免费| av女优亚洲男人天堂| 久久精品夜色国产| 久久久久久久大尺度免费视频| 精品亚洲乱码少妇综合久久| 亚洲性久久影院| 国产av在哪里看| 色综合站精品国产| 亚洲成人久久爱视频| 亚洲三级黄色毛片| 精品少妇黑人巨大在线播放| 亚洲欧美成人精品一区二区| 亚洲经典国产精华液单| 97人妻精品一区二区三区麻豆| 国产亚洲最大av| 亚洲欧美中文字幕日韩二区| 成年女人在线观看亚洲视频 | 一级毛片黄色毛片免费观看视频| or卡值多少钱| 亚洲在线观看片| 国产精品福利在线免费观看| 国产淫片久久久久久久久| 国产精品99久久久久久久久| 男女边吃奶边做爰视频| 精品久久久久久久久久久久久| 永久免费av网站大全| 亚洲精品久久午夜乱码| 秋霞伦理黄片| 亚洲av男天堂| 久久久久性生活片| 三级国产精品欧美在线观看| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 成人国产麻豆网| 国产淫片久久久久久久久| 欧美+日韩+精品| 国产 亚洲一区二区三区 | 亚洲欧美清纯卡通| 99久久九九国产精品国产免费| 2018国产大陆天天弄谢| 蜜桃久久精品国产亚洲av| 在线观看av片永久免费下载| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 国内揄拍国产精品人妻在线| 简卡轻食公司| 欧美日韩一区二区视频在线观看视频在线 | 一个人看视频在线观看www免费| 日韩不卡一区二区三区视频在线| 成人性生交大片免费视频hd| 久久久久久久久久久免费av| 一级二级三级毛片免费看| av黄色大香蕉| 91av网一区二区| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久| 中国国产av一级| 老女人水多毛片| 欧美日韩在线观看h| 日本一二三区视频观看| 欧美最新免费一区二区三区| 日本av手机在线免费观看| 联通29元200g的流量卡| 亚洲国产精品专区欧美| 亚洲精品国产av蜜桃| 22中文网久久字幕| 久久6这里有精品| 秋霞伦理黄片| 国产精品一区二区三区四区久久| 99热这里只有精品一区| 美女大奶头视频| 成人性生交大片免费视频hd| 成年女人看的毛片在线观看| 欧美xxxx黑人xx丫x性爽| 久久久久免费精品人妻一区二区| 麻豆国产97在线/欧美| 直男gayav资源| 亚洲乱码一区二区免费版| 在线 av 中文字幕| 色网站视频免费| 观看美女的网站| 一级毛片aaaaaa免费看小| 菩萨蛮人人尽说江南好唐韦庄| 51国产日韩欧美| 久久久久久久久久人人人人人人| 国产av国产精品国产| 午夜免费观看性视频| 久久这里只有精品中国| 青春草国产在线视频| 精品一区二区三区人妻视频| 国产免费视频播放在线视频 | 女人十人毛片免费观看3o分钟| 精品久久久噜噜| 国产精品av视频在线免费观看| 日韩 亚洲 欧美在线| 三级男女做爰猛烈吃奶摸视频| 欧美性感艳星| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| 在线观看人妻少妇| 亚洲av男天堂| 九九爱精品视频在线观看| 亚洲乱码一区二区免费版| 五月天丁香电影| 国产高清不卡午夜福利| 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 久久久久久久午夜电影| av专区在线播放| 美女黄网站色视频| 亚洲天堂国产精品一区在线| 国产不卡一卡二| 少妇熟女欧美另类| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡免费网站照片| 国产成人freesex在线| 丰满乱子伦码专区| 丝袜喷水一区| 亚洲av男天堂| 狠狠精品人妻久久久久久综合| 神马国产精品三级电影在线观看| 日韩 亚洲 欧美在线| 国产精品一区二区三区四区免费观看| 亚洲国产av新网站| 国产综合精华液| 国产永久视频网站| 国产精品久久久久久精品电影| 一级毛片我不卡| 大又大粗又爽又黄少妇毛片口| 日韩av在线免费看完整版不卡| 视频中文字幕在线观看| 免费黄频网站在线观看国产| 国产爱豆传媒在线观看| 久久99热这里只频精品6学生| 内地一区二区视频在线| 欧美潮喷喷水| 日韩一区二区视频免费看| 国产不卡一卡二| 少妇熟女欧美另类| 精品国产一区二区三区久久久樱花 | 只有这里有精品99| 综合色丁香网| 亚洲天堂国产精品一区在线| 国产永久视频网站| 国产黄色小视频在线观看| 国产综合懂色| 亚洲精品日韩在线中文字幕| 丝袜美腿在线中文| 啦啦啦韩国在线观看视频| 麻豆成人av视频| 亚洲欧美成人精品一区二区| 成人毛片60女人毛片免费| 777米奇影视久久| 国产亚洲精品久久久com| 中文字幕人妻熟人妻熟丝袜美| 亚洲最大成人中文| 亚洲精品乱码久久久v下载方式| 伊人久久国产一区二区| 成年版毛片免费区| 国产一区二区三区av在线| 国产午夜福利久久久久久| 精品人妻偷拍中文字幕| 国产成年人精品一区二区| 男女视频在线观看网站免费| 久久这里有精品视频免费| 一区二区三区高清视频在线| 有码 亚洲区| 99热这里只有是精品在线观看| 国产白丝娇喘喷水9色精品| 最近视频中文字幕2019在线8| 麻豆精品久久久久久蜜桃| 国产黄片美女视频| 99九九线精品视频在线观看视频| 极品少妇高潮喷水抽搐| 免费高清在线观看视频在线观看| 免费大片18禁| 色视频www国产| 日韩在线高清观看一区二区三区| av播播在线观看一区| 国产成人aa在线观看| 国产精品一区二区三区四区免费观看| 日韩中字成人| 天天躁日日操中文字幕| 午夜视频国产福利| 久久久久久伊人网av| 久热久热在线精品观看| 国产午夜福利久久久久久| 一边亲一边摸免费视频| 中文字幕制服av| 国产爱豆传媒在线观看| 卡戴珊不雅视频在线播放| 亚洲精华国产精华液的使用体验| 国产一区二区在线观看日韩| 午夜激情福利司机影院| 永久网站在线| videossex国产| 国产成人精品一,二区| 亚洲精品视频女| 久久午夜福利片| 国产精品人妻久久久久久| 国产午夜精品久久久久久一区二区三区| 在线观看免费高清a一片| 中文字幕av在线有码专区| 亚洲国产av新网站| 午夜激情福利司机影院| 中文乱码字字幕精品一区二区三区 | 亚洲欧美一区二区三区黑人 | 国产真实伦视频高清在线观看| 一级毛片我不卡| 亚洲无线观看免费| 我的女老师完整版在线观看| 日韩一区二区三区影片| 人体艺术视频欧美日本| 国产综合精华液| 大又大粗又爽又黄少妇毛片口| 少妇被粗大猛烈的视频| 欧美xxxx性猛交bbbb| 在线a可以看的网站| 99九九线精品视频在线观看视频| 丝袜喷水一区| 亚洲精品成人久久久久久| 在线 av 中文字幕| 久久久久久久久中文| 99久久精品一区二区三区| 国产成人91sexporn| 免费看日本二区| 在线观看av片永久免费下载| 亚洲婷婷狠狠爱综合网| 亚洲不卡免费看| 久久久亚洲精品成人影院| 欧美成人一区二区免费高清观看| 国产色爽女视频免费观看| 国产一区二区三区av在线| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花 | 久久久亚洲精品成人影院| 大片免费播放器 马上看| 高清视频免费观看一区二区 | 乱码一卡2卡4卡精品| 亚洲乱码一区二区免费版| 嫩草影院精品99| 嫩草影院精品99| 欧美zozozo另类| 在线 av 中文字幕| 欧美人与善性xxx| 亚洲国产精品专区欧美| 久久久久九九精品影院| 免费观看精品视频网站| 亚洲国产av新网站| 国产一级毛片在线| 日韩av不卡免费在线播放| 一本久久精品| 国产成人午夜福利电影在线观看| 日韩不卡一区二区三区视频在线| 少妇人妻精品综合一区二区| 男插女下体视频免费在线播放| 国产精品熟女久久久久浪| 搞女人的毛片| 日韩av免费高清视频| 亚洲久久久久久中文字幕| 精品一区二区三区人妻视频| 国产精品日韩av在线免费观看| 精品人妻视频免费看| av卡一久久| 国产成人一区二区在线| xxx大片免费视频| 91精品一卡2卡3卡4卡| 免费少妇av软件| xxx大片免费视频| 色尼玛亚洲综合影院| 在线观看美女被高潮喷水网站| 最近最新中文字幕大全电影3| 国产一区二区三区av在线| 人妻少妇偷人精品九色| 久热久热在线精品观看| 日本wwww免费看| 日韩欧美精品v在线| 最近手机中文字幕大全| 少妇熟女aⅴ在线视频| 免费看美女性在线毛片视频| 亚洲精华国产精华液的使用体验| 国产亚洲91精品色在线| 国产精品一二三区在线看| 身体一侧抽搐| 久久精品久久精品一区二区三区| 国产色婷婷99| 在线免费观看的www视频| 直男gayav资源| 又大又黄又爽视频免费| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久久电影| 日日摸夜夜添夜夜爱| 免费无遮挡裸体视频| 久久97久久精品| 熟妇人妻久久中文字幕3abv| 免费大片18禁| 91精品一卡2卡3卡4卡| 国产精品女同一区二区软件| av在线亚洲专区| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区| 18禁在线播放成人免费| 午夜视频国产福利| 欧美另类一区| 成人综合一区亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久久久久精品电影小说 | 亚洲图色成人| 欧美3d第一页| 亚洲自拍偷在线| 免费看av在线观看网站| 国产亚洲5aaaaa淫片| 韩国av在线不卡| 亚洲欧美日韩无卡精品| 国产单亲对白刺激| 哪个播放器可以免费观看大片| 又爽又黄无遮挡网站| 神马国产精品三级电影在线观看| 久99久视频精品免费| 亚洲av日韩在线播放| 日韩成人av中文字幕在线观看| 两个人视频免费观看高清| 免费看不卡的av| 欧美精品国产亚洲| 男女那种视频在线观看| 黄片wwwwww| 中文字幕制服av| 国产黄色免费在线视频| 春色校园在线视频观看| 亚洲成人av在线免费| 肉色欧美久久久久久久蜜桃 | 日韩强制内射视频| 看黄色毛片网站| 中国国产av一级| 不卡视频在线观看欧美| 国产精品爽爽va在线观看网站| 日韩一区二区视频免费看| 免费大片黄手机在线观看| 亚洲国产欧美在线一区| 亚洲国产精品国产精品| 国产不卡一卡二| 欧美丝袜亚洲另类| 亚洲国产高清在线一区二区三| 欧美日韩视频高清一区二区三区二| 亚洲精品一区蜜桃| 日韩欧美一区视频在线观看 | 亚洲精品aⅴ在线观看| 毛片女人毛片| 国产精品一区二区三区四区免费观看| 亚州av有码| 国产久久久一区二区三区| 亚洲乱码一区二区免费版| 日韩 亚洲 欧美在线| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品中文字幕在线视频 | 久久久久久久久久久丰满| 国产精品无大码| 午夜激情福利司机影院| 自拍偷自拍亚洲精品老妇| 国产黄色视频一区二区在线观看| 国产高清不卡午夜福利| 欧美激情在线99| 久久久久久久久久成人| 成人特级av手机在线观看| 成人综合一区亚洲| 日韩大片免费观看网站| 亚洲av电影不卡..在线观看| 亚洲乱码一区二区免费版| 三级毛片av免费| 寂寞人妻少妇视频99o| 一级毛片我不卡| 人人妻人人澡人人爽人人夜夜 | 在现免费观看毛片| 九九在线视频观看精品| 大片免费播放器 马上看| 国内精品一区二区在线观看| 亚洲欧美日韩卡通动漫| 国产精品.久久久| 少妇猛男粗大的猛烈进出视频 | 成人综合一区亚洲| 亚洲综合色惰| 精品99又大又爽又粗少妇毛片| 久久99蜜桃精品久久| 国产精品一二三区在线看| 免费高清在线观看视频在线观看| 精品人妻熟女av久视频| 寂寞人妻少妇视频99o| 精品久久久精品久久久| 久久久久久久久久人人人人人人| 一区二区三区四区激情视频| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 久久这里有精品视频免费| xxx大片免费视频| 伊人久久国产一区二区| 中文精品一卡2卡3卡4更新| 亚洲久久久久久中文字幕| 日日撸夜夜添| 亚洲国产精品国产精品| 国产精品人妻久久久影院| 免费少妇av软件| 噜噜噜噜噜久久久久久91| 一个人看视频在线观看www免费| 听说在线观看完整版免费高清| 亚洲av电影不卡..在线观看| 精品久久久久久电影网| 久久久久久久亚洲中文字幕| 一级毛片电影观看| 人妻制服诱惑在线中文字幕| 18禁在线无遮挡免费观看视频| 精品熟女少妇av免费看| 亚洲最大成人手机在线| 两个人的视频大全免费| 久久人人爽人人片av| 免费观看a级毛片全部| 真实男女啪啪啪动态图| 亚州av有码| 国产亚洲精品av在线| 亚洲国产精品成人综合色| 免费观看av网站的网址| 国产中年淑女户外野战色| 久久精品国产自在天天线| 成人美女网站在线观看视频| 激情 狠狠 欧美| h日本视频在线播放| 久久久久九九精品影院| 亚洲精品视频女| 免费黄网站久久成人精品| 国产av不卡久久| 99re6热这里在线精品视频| 美女内射精品一级片tv| 国内精品美女久久久久久| 水蜜桃什么品种好| 亚洲自拍偷在线| 久热久热在线精品观看| 亚洲欧洲国产日韩| 黄色欧美视频在线观看| 午夜亚洲福利在线播放| 成人亚洲欧美一区二区av| 三级毛片av免费| 久久久久精品久久久久真实原创| av在线老鸭窝|