• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    考慮剪切變形和彎剪相互作用的帶翼緣剪力墻數(shù)值模型

    2021-03-11 10:16張品樂(lè)何堯瓊張淦劉俊雄張智吉
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:剪力墻

    張品樂(lè) 何堯瓊 張淦 劉俊雄 張智吉

    摘 要:提出了一種基于柔度法的考慮剪切變形和彎剪耦合效應(yīng)的有限元模型,通過(guò)T形和L形剪力墻試件擬靜力試驗(yàn)驗(yàn)證了模型的正確性。結(jié)果表明,所有試件的破壞形態(tài)為無(wú)翼緣腹板端部混凝土壓碎、縱筋壓曲的彎曲破壞;增強(qiáng)無(wú)翼緣腹板端部約束和邊緣構(gòu)件約束,可以防止其發(fā)生受壓過(guò)早破壞;腹板和翼緣相交處未觀察到明顯的混凝土剝落現(xiàn)象,腹板和翼緣相交處的約束邊緣構(gòu)件抗震設(shè)計(jì)可以適當(dāng)放寬;隨著剪跨比的減小,試件延性明顯降低;當(dāng)翼緣處于受拉時(shí),試件表現(xiàn)出較高的強(qiáng)度、剛度和較低的延性?;谀P蛯?duì)鋼筋混凝土帶翼緣剪力墻的擬靜力試驗(yàn)進(jìn)行了非線性數(shù)值模擬分析,分析結(jié)果與試驗(yàn)結(jié)果吻合較好,表明模型能較好地模擬鋼筋混凝土帶翼緣剪力墻的非線性性能。

    關(guān)鍵詞:剪力墻;擬靜力試驗(yàn);纖維模型;剪切變形;彎剪相互作用

    1 Introduction

    Reinforced concrete walls are effective in resisting lateral loads placed on high-rise buildings [1]. They provide enough strength and deformation capacity to meet the demands of strong earthquake ground motions [2-4] A great deal of research has been performed to investigate the seismic behavior of RC walls [5-8]. Previous tests have been conducted on either rectangular shear walls or flanged shear walls with ordinary strength reinforcement. However, this paper focuses on the experimental study of the seismic behavior of flange RC shear walls with high strength stirrups. Six flanged RC shear wall specimens with high strength stirrups were tested to failure under cyclic loading. The effects of the axial load ratio, aspect ratio, and confinement on the failure mode, ductility capacity, hysteretic behavior, and energy dissipating capacity were investigated.

    Simulation of the nonlinear response of RC shear walls requires the use of a reliable computational model. Two-dimensional continuum plane stress or shell elements are usually used for this purpose, but such elements are computationally expensive. Previous studies have shown that beam-column elements can be used to simulate the nonlinear behavior of RC shear walls[9-10] In regards to this, much research has emerged in recent decades in the field of stiffness-based fiber beam-column elements[11-12]. So far, most stiffness-based element models become less accurate in highly nonlinear situations, since the displacement field is approximated through the assignment of the displacement interpolation function. In most cases, cubic Hermitian polynomials are used for the displacement interpolation functions. Simple numerical examples presented indicate that the conventional displacement formulation is unable to establish solutions associated with softening behavior, when used at the section or member level. This problem can be solved with the use of more elements per member; however, this leads to much less efficiency. Most efforts in the nonlinear analysis of RC structures have demonstrated that flexibility-based element methods offer greater accuracy and computational efficiency[13], since the element formulations satisfy the equilibrium of the bending moment, the axial force and the shear force along the element[14-15].

    2) The shear stiffness of the fiber is r3Ge, when the tensile strain of the fiber reaches the cracking strain of the concrete. The shear stiffness is r4Ge, when the tensile strain of the fiber reaches the yield strain of the reinforcement. The shear stiffness is r5Ge, when the tensile strain of the fiber reaches or exceeds the ultimate tensile strain of the reinforcement.

    The shear stiffness of the fiber between the two states can be obtained by interpolation. According to the latest research, r1=0.5, r2=0.02, r3=0.5, r4=0.15 and r5=0.02[19].

    4 Experiment details

    4.1 Specimen design and loading program

    In order to verify the fiber element model of flanged RC shear walls proposed in this study, six RC flanged shear wall specimens, named L500, L650, L800, T500, T650 and T800 respectively, were tested under cyclic loading. The vertical height of the walls was 1 400 mm, and their cross-section thickness was 100 mm. The design strength grade of the concrete was C40 (nominal cubic compressive strength fcu,k=40 MPa). The test average cubic compressive strength fcu of the concrete measured on cubes of 150 mm size was 47.2 MPa. The mechanical properties of the reinforcement are shown in Table 1. Specimen details and properties are summarized in Table 2, where the steel ratio ρs of the longitudinal reinforcement is defined as the ratio of the cross sectional area of the longitudinal reinforcement to the total wall cross sectional area, and the volumetric steel ratio ρv of the boundary element at the non-flange end is defined as the ratio of the volume of the stirrups to that of the wall (Chinese GB 50010-2010 code)[20]. Dimensions and reinforcement details of the specimens are shown in Fig.5.

    The axial load was first applied to the center of the shear wall by the vertical jack, and kept constant during the test. Fig.6 shows the test setup including loading devices. The scheme of the loading program is shown in Fig.7. The loading history was started by applying two identical displacement cycles with increments of ±2 mm up to 10 mm, followed by increments of ±5 mm up to failure. Each test continued until the specimens dropped to 85% of the peak lateral load.

    4.2 Damage development and failure mode

    In this experiment, all specimens exhibited a flexural model characterized by the crushing of the concrete and the buckling of the reinforcement at the free web boundary, as shown in Fig.8. During the test, exural cracks were first observed at the

    bottom of the web when the specimens were loaded to approximately half the peak lateral load. Shear cracks began to form at a drift level of 0.4%. As the loading displacement increased to a drift level of 1.3%, vertical splitting of the free web was quite extensive, and severe crushing and spalling of the concrete cover were observed. As the loading displacement increased to a drift level of 3.0%, major crushing of the concrete occurred, and the outermost longitudinal reinforcing bars started to buckle. The lateral force dropped to 85% of the peak lateral load. The failure mechanism suggested that closely spaced stirrups and longer confined

    boundary elements should be used in the free web end, preventing premature failure under compression. No obvious concrete spalling was observed at the web-flange junction, suggesting that the seismic design of the boundary element at the web-flange junction should be relaxed.

    4.3 Loading capacity and ductility

    The loading capacity and displacement ductility of the shear wall specimens are shown in Table 3. As shown, the specimens exhibited bigger loading capacity but lower ductility capacity when the flange was in tension. With the decrease of the shear span ratio, the displacement ductility decreased. The smaller the shear span ratio, the closer the stirrups and the longer the confined boundary elements should be used in the free web end to achieve the goal of the displacement ductility coefficient of 3.0. For example, specimens T800, L800. The ductility in the negative position of T800, L800 were, 2.2, 1.9, respectively, meaning that the volumetric steel ratio of the boundary element (0.60%) was not enough for specimens T800 and L800 with the aspect ratio of 1.75. The use of high strength stirrups could restrain the compressed concrete and postpone the buckling of the longitudinal rebars in the free web boundary, preventing premature failure when the web was compressed. The ultimate drift ratio of all specimens greatly exceeded the allowable inter-story drift ratio value (1/120) of the RC shear wall according to the design provisions of the Chinese GB 50011-2010 code[21].

    4.4 Strain analysis

    Fig.9 shows the arrangements of the strain gauges of the reinforcement of the shear wall specimens. Fig.10 and Fig.11 show the strain evolution process of the longitudinal reinforcements and the stirrups of the shear wall specimens, respectively. As we can see from Fig.10, the strain distribution of the longitudinal reinforcement at the peak point remained approximately linear, so the plane cross-section assumption can be used for the design of the flanged RC shear wall. The compression strains of the longitudinal reinforcement at the intersection of the web and flange were extremely small, compared with the tensile strains at the free web boundary, indicating that it is not necessary to add special confinement reinforcement to the web-flange intersection. As shown in Fig.11, the stirrups that yielded were mainly concentrated in the middle and lower parts of the web, meaning that the shear damage was mainly concentrated in the middle and lower parts of the web. All of the high-strength stirrups at the free web boundary yielded, showing that the use of high strength stirrups at the free web boundary could confine the transverse deformation of the specimens, thus preventing premature failure when the web was compressed.

    4.5 Hysteretic behavior

    As shown in Fig.12, the hysteresis loops of specimens in the positive direction exhibited a much wider and thicker shape, showing that higher energy dissipation capacity could be achieved compared with in the negative direction. A pinching effect could be found from the hysteresis loops of specimens in the negative direction for the effect of shear deformation. The hysteresis curves of specimens with a cross-section height-to-width ratio of 6.5 were very plump, and their energy dissipation was very good. The bearing capacity of the T-shaped specimens was greater than that of the L-shaped specimens, because the effective flange width of the T-shaped specimens was bigger than that of L-shaped specimens. Considering the uncertainty of the seismic direction, the seismic performance of the L-shaped shear wall should be far inferior to that of the T-shaped shear wall.

    5 Model validation

    Shear wall sections are composed of three parts: Cover concrete, core concrete and rebar. Discretization of section fiber is shown in Fig.13. Section discretization schemes are shown in Table 4. Using a finite analysis program based on the flexibility-based element model that considers shear deformation and coupled flexural-shear effects this paper proposed, numerical analysis of shear wall specimens was carried out to obtain the force-displacement envelopes.

    Satisfactory agreement between the analytical results and the experimental results can be seen in Fig.14. It should be noted that in calculating the ultimate load, the proposed method is approximately 95% of the test results, because the boundary condition on the top of the specimens is fully free in the simulative analysis, but in the test, the vertical jack exerts friction on the top of the specimens. Furthermore, as seen in Fig.14, the section discretization of various numbers of fibers has little effect on the computational efficiency, since the element formulations strictly enforce force equilibrium.

    6 Conclusions

    In this paper,a new flexibility-based nonlinear finite element model which considers shear deformation and coupled flexural-shear effects is proposed, and cyclic loading tests of T-shaped and L-shaped shear wall specimens are carried out to verify the proposed model. The following conclusions can be drawn:

    1) All shear wall specimens exhibited a flexural failure model characterized by the crushing of concrete and the buckling of steel at the free web boundary.

    2) The use of high strength stirrups could effectively restrain the compressed concrete and postpone the buckling of the longitudinal rebars in the free web boundary, preventing premature failure when the web was compressed. The ultimate drift ratio of all specimens greatly exceeded the allowable inter-story drift ratio value (1/120) of RC shear walls according to the design provisions of the Chinese GB 50011-2010 code.

    3) No obvious concrete spalling was observed at the web-flange junction, and the compression strains of the longitudinal reinforcement at the intersection of the web and flange were extremely small, compared with the tensile strains at the free web boundary, indicating that it is not necessary to add special confinement reinforcement to the web-flange intersection.

    4) The specimens exhibited higher strength and stiffness but lower ductility capacity when the flange was in tension. The displacement ductility decreased when the shear span ratio decreased. The volumetric steel ratio of the boundary element (0.60%) was not enough for specimens with an aspect ratio under 2.0 to achieve the goal of the displacement ductility coefficient of 3.0.

    5) The strain distribution of the longitudinal reinforcement at the peak point remained approximately linear, so the plane cross-section assumption can be used for the design of flanged RC shear walls.

    6) A new flexibility-based fiber element model that considered shear deformation and coupled flexural-shear effects was proposed for simulating the nonlinear response of special shaped shear walls, dominated by flexural failure with a small slenderness ratio. There was a good agreement between analytical and experimental results, demonstrating that the model offers excellent accuracy and requires few elements per member, offering a more efficient alternative to the traditional flexibility-based fiber element model in the nonlinear analysis of special-shaped RC shear walls.

    Acknowledgements

    The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No: 51568028).

    References:

    [1] WANG B, SHI Q X, CAI W Z. Seismic behavior of flanged reinforced concrete shear walls under cyclic loading [J].ACI Structural Journal, 2018, 115(5): 1231-1242.

    [2] JI X D, LIU D, QIAN J R. Improved design of special boundary elements for T-shaped reinforced concrete walls [J]. Earthquake Engineering and Engineering Vibration, 2017, 16(1): 83-95.

    [3] MA J X, LI B. Seismic behavior of L-shaped RC squat walls under various lateral loading directions [J]. Journal of Earthquake Engineering, 2019, 23(3): 422-443.

    [4] ZHANG X M, QIN Y, CHEN Z H, et al. Experimental behavior of innovative T-shaped composite shear walls under in-plane cyclic loading [J]. Journal of Constructional Steel Research, 2016, 120: 143-159.

    [5] DING R, TAO M X, NIE X, et al. Analytical model for seismic simulation of reinforced concrete coupled shear walls [J]. Engineering Structures, 2018, 168: 819-837.

    [6] REZAPOUR M, GHASSEMIEH M. Macroscopic modelling of coupled concrete shear wall [J]. Engineering Structures, 2018, 169: 37-54.

    [7] WU Y T, LAN T Q, XIAO Y, et al. Macro-modeling of reinforced concrete structural walls: state-of-the-art [J]. Journal of Earthquake Engineering, 2017, 21(4): 652-678.

    [8] LU X L, YANG J H. Seismic behavior of T-shaped steel reinforced concrete shear walls in tall buildings under cyclic loading [J]. The Structural Design of Tall and Special Buildings, 2015, 24(2)141-157.

    [9] MAZARS J, KOTRONIS P, DAVENNE L. A new modelling strategy for the behaviour of shear walls under dynamic loading [J]. Earthquake Engineering & Structural Dynamics, 2002, 31(4): 937-954.

    [10] BOLANDER J Jr, WIGHT J K. Finite element modeling of shear-wall-dominant buildings [J]. Journal of Structural Engineering, 1991, 117(6): 1719-1739.

    [11] KIM J, LEE S. The behavior of reinforced concrete columns subjected to axial force and biaxial bending [J]. Engineering Structures, 2000, 22(11): 1518-1528.

    [12] HAJJAR J F, SCHILLER P H, MOLODAN A. A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip [J]. Engineering Structures, 1998, 20(8): 663-676.

    [13] ZERIS C A, MAHIN S A. Behavior of reinforced concrete structures subjected to biaxial excitation [J]. Journal of Structural Engineering, 1991, 117(9): 2657-2673.

    [14] KILDASHTI K, MIRGHADERI R. Assessment of seismic behaviour of SMRFs with RBS connections by means of mixed-based state-space approach [J]. The Structural Design of Tall and Special Buildings, 2009, 18(5)485-505.

    [15] MERGOS P, BEYER K. Modelling shear-flexure interaction in equivalent frame models of slender reinforced concrete walls [J]. The Structural Design of Tall and Special Buildings, 2014, 23(15)1171-1189.

    [16] HOEHLER M S, STANTON J F. Simple phenomenological model for reinforcing steel under arbitrary load [J]. Journal of Structural Engineering, 2006, 132(7): 1061-1069.

    [17] HOSHIKUMA J, KAWASHIMA K, NAGAYA K, et al. Stress-strain model for confined reinforced concrete in bridge piers [J]. Journal of Structural Engineering, 1997, 123(5): 624-633.

    [18] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.

    [19] LI H N, LI B. Experimental study on seismic restoring performance of reinforced concrete shear walls [J]. Journal of Build Structures, 2004, 25(5): 35-42.

    [20] Code for Design of Concrete Structures: GB 50010-2010 [S]. Beijing: China Architecture & Building Press, 2010.

    [21] Code for Seismic Design of Buildings: GB 50011-2010 [S]. Beijing: China Architecture & Building Press, 2010.

    (編輯 章潤(rùn)紅)

    猜你喜歡
    剪力墻
    剪力墻結(jié)構(gòu)設(shè)計(jì)應(yīng)用于建筑結(jié)構(gòu)設(shè)計(jì)的影響分析
    建筑工程結(jié)構(gòu)設(shè)計(jì)中的剪力墻設(shè)計(jì)分析
    分析建筑結(jié)構(gòu)設(shè)計(jì)中剪力墻結(jié)構(gòu)的設(shè)計(jì)要點(diǎn)
    剪力墻結(jié)構(gòu)在高層建筑結(jié)構(gòu)設(shè)計(jì)中的布置原則
    短肢剪力墻結(jié)構(gòu)設(shè)計(jì)中若干問(wèn)題的探討
    淺談剪力墻結(jié)構(gòu)設(shè)計(jì)在建筑中的應(yīng)用
    結(jié)構(gòu)設(shè)計(jì)中剪力墻結(jié)構(gòu)的設(shè)計(jì)研究
    框架—剪力墻結(jié)構(gòu)和剪力墻結(jié)構(gòu)在結(jié)構(gòu)設(shè)計(jì)上的區(qū)別
    淺談剪力墻結(jié)構(gòu)設(shè)計(jì)
    淺析剪力墻結(jié)構(gòu)中端柱的設(shè)計(jì)計(jì)算
    内地一区二区视频在线| 三级国产精品欧美在线观看| 99精国产麻豆久久婷婷| 国产精品一区二区在线观看99| 99国产精品免费福利视频| 日本wwww免费看| 亚洲欧美一区二区三区黑人 | 99久久精品国产国产毛片| 国产探花极品一区二区| 日本欧美视频一区| 欧美日韩亚洲高清精品| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| av在线老鸭窝| 一级黄片播放器| 在现免费观看毛片| 婷婷色麻豆天堂久久| 国产伦精品一区二区三区四那| 国产精品不卡视频一区二区| 午夜福利,免费看| 成人亚洲精品一区在线观看| 午夜福利网站1000一区二区三区| 一区二区三区精品91| 亚洲av成人精品一二三区| 国产亚洲91精品色在线| 国产综合精华液| 久久韩国三级中文字幕| 男人爽女人下面视频在线观看| 在线观看www视频免费| 黑人巨大精品欧美一区二区蜜桃 | 精品国产一区二区久久| 国产黄片美女视频| 久久久欧美国产精品| av有码第一页| 国产伦精品一区二区三区四那| 成年人午夜在线观看视频| 18禁在线播放成人免费| av福利片在线观看| 晚上一个人看的免费电影| 国产成人精品久久久久久| av天堂久久9| 日本-黄色视频高清免费观看| a级片在线免费高清观看视频| 香蕉精品网在线| 欧美精品高潮呻吟av久久| 欧美高清成人免费视频www| 女性生殖器流出的白浆| 中文天堂在线官网| 最黄视频免费看| 国产国拍精品亚洲av在线观看| 人人妻人人添人人爽欧美一区卜| 99久久综合免费| 51国产日韩欧美| 超碰97精品在线观看| 国产色爽女视频免费观看| 久久久欧美国产精品| 国产av精品麻豆| 蜜臀久久99精品久久宅男| 色婷婷av一区二区三区视频| 黑人猛操日本美女一级片| 国产高清有码在线观看视频| 草草在线视频免费看| av.在线天堂| 寂寞人妻少妇视频99o| 成年美女黄网站色视频大全免费 | 色5月婷婷丁香| 日韩,欧美,国产一区二区三区| 夜夜爽夜夜爽视频| 欧美变态另类bdsm刘玥| 内地一区二区视频在线| 久久久欧美国产精品| 久久精品熟女亚洲av麻豆精品| 丝袜在线中文字幕| 国产亚洲5aaaaa淫片| 高清黄色对白视频在线免费看 | 久久久久久人妻| 国产精品久久久久久av不卡| 欧美 亚洲 国产 日韩一| 国产精品一区二区在线不卡| 色视频www国产| 国内揄拍国产精品人妻在线| 少妇 在线观看| 噜噜噜噜噜久久久久久91| 日韩中文字幕视频在线看片| 黑人高潮一二区| 少妇人妻久久综合中文| 久久人人爽人人爽人人片va| 欧美精品国产亚洲| 国产国拍精品亚洲av在线观看| 中国三级夫妇交换| 亚洲伊人久久精品综合| 国产视频首页在线观看| 日日爽夜夜爽网站| 国模一区二区三区四区视频| 下体分泌物呈黄色| 特大巨黑吊av在线直播| av在线老鸭窝| 综合色丁香网| 亚洲欧美精品自产自拍| 国产一区二区三区av在线| 亚洲综合精品二区| 只有这里有精品99| 自拍偷自拍亚洲精品老妇| 日韩伦理黄色片| 桃花免费在线播放| 视频中文字幕在线观看| 一本一本综合久久| 亚洲人成网站在线播| 久久婷婷青草| 欧美日韩综合久久久久久| 国产黄频视频在线观看| 18禁裸乳无遮挡动漫免费视频| 久久久久久久精品精品| 在现免费观看毛片| 亚洲不卡免费看| 人人妻人人爽人人添夜夜欢视频 | 国产欧美日韩一区二区三区在线 | 国产午夜精品一二区理论片| 看十八女毛片水多多多| 日产精品乱码卡一卡2卡三| 黑人高潮一二区| 在线观看美女被高潮喷水网站| 麻豆成人午夜福利视频| 51国产日韩欧美| 亚洲精品乱码久久久v下载方式| 99久久精品一区二区三区| 国产欧美亚洲国产| 亚洲精品亚洲一区二区| av.在线天堂| 91午夜精品亚洲一区二区三区| 国产极品天堂在线| 欧美成人午夜免费资源| 我要看黄色一级片免费的| 国产精品国产三级专区第一集| 亚洲怡红院男人天堂| 丰满乱子伦码专区| av国产精品久久久久影院| 中文字幕av电影在线播放| 美女xxoo啪啪120秒动态图| 国产成人精品久久久久久| 成年人免费黄色播放视频 | 另类精品久久| 一级爰片在线观看| 亚洲久久久国产精品| 午夜福利在线观看免费完整高清在| 一区二区三区精品91| 欧美精品国产亚洲| 亚洲婷婷狠狠爱综合网| 人妻系列 视频| 丝袜喷水一区| 亚洲精华国产精华液的使用体验| .国产精品久久| 免费人妻精品一区二区三区视频| 极品人妻少妇av视频| 国产综合精华液| 亚洲精品成人av观看孕妇| 精品人妻一区二区三区麻豆| 亚洲精华国产精华液的使用体验| 全区人妻精品视频| 一区在线观看完整版| 男女国产视频网站| 国产老妇伦熟女老妇高清| 免费黄网站久久成人精品| 赤兔流量卡办理| kizo精华| 最近中文字幕2019免费版| 久久久午夜欧美精品| 最近最新中文字幕免费大全7| 国产高清有码在线观看视频| 下体分泌物呈黄色| 丝袜喷水一区| 99视频精品全部免费 在线| 婷婷色综合大香蕉| 一级片'在线观看视频| 日本爱情动作片www.在线观看| av不卡在线播放| 黑人巨大精品欧美一区二区蜜桃 | 一区二区三区四区激情视频| 一本一本综合久久| 18禁动态无遮挡网站| 国产日韩欧美亚洲二区| 伊人久久精品亚洲午夜| 边亲边吃奶的免费视频| 亚洲综合色惰| 亚洲色图综合在线观看| 日韩大片免费观看网站| 免费大片18禁| av女优亚洲男人天堂| 三上悠亚av全集在线观看 | 最近最新中文字幕免费大全7| 免费观看性生交大片5| 国产精品一二三区在线看| 免费看av在线观看网站| √禁漫天堂资源中文www| 久久久久视频综合| 亚洲电影在线观看av| 亚洲精品久久久久久婷婷小说| 五月玫瑰六月丁香| 啦啦啦中文免费视频观看日本| 国产 精品1| 免费少妇av软件| 亚洲经典国产精华液单| freevideosex欧美| av又黄又爽大尺度在线免费看| 一二三四中文在线观看免费高清| 国产乱来视频区| 亚洲丝袜综合中文字幕| 久久久久久久久久人人人人人人| 国产真实伦视频高清在线观看| 成人18禁高潮啪啪吃奶动态图 | 免费人妻精品一区二区三区视频| 亚洲国产欧美在线一区| 国模一区二区三区四区视频| 纯流量卡能插随身wifi吗| 久久毛片免费看一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲av男天堂| 日日爽夜夜爽网站| 国产69精品久久久久777片| 国产高清三级在线| 国产高清不卡午夜福利| 少妇被粗大猛烈的视频| 精品少妇久久久久久888优播| 丰满饥渴人妻一区二区三| 成人午夜精彩视频在线观看| 高清黄色对白视频在线免费看 | 国产乱人偷精品视频| 国产毛片在线视频| 男女边摸边吃奶| 免费av中文字幕在线| 最近的中文字幕免费完整| 中文字幕久久专区| 国产成人精品久久久久久| av又黄又爽大尺度在线免费看| 亚洲va在线va天堂va国产| 高清毛片免费看| 欧美人与善性xxx| 最新中文字幕久久久久| 能在线免费看毛片的网站| 男人添女人高潮全过程视频| 亚洲精品视频女| 国产综合精华液| 久久久久久久国产电影| 亚洲经典国产精华液单| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩熟女老妇一区二区性免费视频| 如日韩欧美国产精品一区二区三区 | 啦啦啦视频在线资源免费观看| 2021少妇久久久久久久久久久| 女性被躁到高潮视频| 秋霞伦理黄片| 人妻一区二区av| 亚洲熟女精品中文字幕| 亚洲av成人精品一二三区| 国产精品一区二区性色av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av国产av综合av卡| 欧美精品人与动牲交sv欧美| 777米奇影视久久| 大香蕉97超碰在线| 精品久久久噜噜| 欧美三级亚洲精品| 亚洲av福利一区| 2021少妇久久久久久久久久久| 极品少妇高潮喷水抽搐| 国产精品久久久久久久电影| 国产精品人妻久久久影院| 老司机影院成人| 久久国产精品男人的天堂亚洲 | 成人漫画全彩无遮挡| 精品少妇内射三级| 国产精品伦人一区二区| 久久久国产欧美日韩av| 亚洲精品aⅴ在线观看| 七月丁香在线播放| 少妇裸体淫交视频免费看高清| 欧美3d第一页| 人妻制服诱惑在线中文字幕| 日韩中字成人| 亚洲色图综合在线观看| 内地一区二区视频在线| 人人妻人人澡人人爽人人夜夜| 少妇人妻久久综合中文| 日韩亚洲欧美综合| av在线app专区| 超碰97精品在线观看| 亚洲国产日韩一区二区| 国产真实伦视频高清在线观看| 国产精品无大码| 如日韩欧美国产精品一区二区三区 | 亚洲国产色片| 一级毛片aaaaaa免费看小| 亚洲精品aⅴ在线观看| 亚洲精品国产色婷婷电影| 嘟嘟电影网在线观看| 国产精品不卡视频一区二区| 黑丝袜美女国产一区| 日韩制服骚丝袜av| 99久国产av精品国产电影| 亚洲人成网站在线观看播放| av福利片在线| 午夜福利影视在线免费观看| 纯流量卡能插随身wifi吗| 欧美日韩av久久| 亚洲,欧美,日韩| 搡女人真爽免费视频火全软件| 国产精品熟女久久久久浪| 亚洲精品一二三| 久久久久精品久久久久真实原创| 国模一区二区三区四区视频| 春色校园在线视频观看| 男人爽女人下面视频在线观看| 国产成人午夜福利电影在线观看| 亚洲天堂av无毛| 丰满少妇做爰视频| 国产伦精品一区二区三区四那| 亚洲国产精品一区二区三区在线| 国国产精品蜜臀av免费| 免费看av在线观看网站| 久久久久久久久久久免费av| 久久久久精品久久久久真实原创| 一级毛片我不卡| 在线观看免费视频网站a站| 欧美亚洲 丝袜 人妻 在线| 好男人视频免费观看在线| 日韩精品免费视频一区二区三区 | 欧美高清成人免费视频www| 国产黄片美女视频| 一个人看视频在线观看www免费| 最黄视频免费看| 91精品伊人久久大香线蕉| 又黄又爽又刺激的免费视频.| 国产免费福利视频在线观看| 91久久精品国产一区二区三区| 午夜精品国产一区二区电影| 久久久久久久久久久免费av| 97超视频在线观看视频| 一级黄片播放器| www.av在线官网国产| 我的女老师完整版在线观看| 狂野欧美激情性bbbbbb| 人妻制服诱惑在线中文字幕| 国产精品秋霞免费鲁丝片| 在线 av 中文字幕| 亚洲欧美成人精品一区二区| 99久久精品热视频| 亚洲欧美一区二区三区国产| 九草在线视频观看| 又粗又硬又长又爽又黄的视频| 麻豆精品久久久久久蜜桃| 日韩,欧美,国产一区二区三区| 免费少妇av软件| 久久免费观看电影| 日本av手机在线免费观看| 国产精品国产三级国产专区5o| 久久人人爽人人片av| 亚洲中文av在线| 成人国产av品久久久| 香蕉精品网在线| 天堂中文最新版在线下载| 狂野欧美激情性xxxx在线观看| 中文在线观看免费www的网站| 亚洲精品久久久久久婷婷小说| 91精品国产国语对白视频| 久久久国产欧美日韩av| 只有这里有精品99| 王馨瑶露胸无遮挡在线观看| 国产在线男女| 亚洲伊人久久精品综合| 少妇 在线观看| 三级经典国产精品| 国产精品免费大片| 又爽又黄a免费视频| 在线观看免费日韩欧美大片 | 日本av手机在线免费观看| 免费少妇av软件| 亚洲熟女精品中文字幕| 美女内射精品一级片tv| 大又大粗又爽又黄少妇毛片口| 最新中文字幕久久久久| 最近的中文字幕免费完整| 最近中文字幕2019免费版| 青春草亚洲视频在线观看| 欧美 日韩 精品 国产| 国产永久视频网站| 嫩草影院新地址| 午夜影院在线不卡| 哪个播放器可以免费观看大片| 啦啦啦视频在线资源免费观看| 国产高清三级在线| 日本与韩国留学比较| 亚洲精品国产av成人精品| 亚洲精华国产精华液的使用体验| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 日本黄色日本黄色录像| 午夜激情久久久久久久| 亚洲精品国产av蜜桃| 久久免费观看电影| 美女福利国产在线| 99久久精品一区二区三区| 国产一区二区在线观看av| 一级黄片播放器| 久久精品国产亚洲av涩爱| 精品国产一区二区久久| 狂野欧美白嫩少妇大欣赏| 成人亚洲欧美一区二区av| 人人澡人人妻人| 欧美精品高潮呻吟av久久| 久久久久精品久久久久真实原创| 下体分泌物呈黄色| 国产av码专区亚洲av| 亚洲av电影在线观看一区二区三区| 国产成人精品一,二区| av免费观看日本| 男人和女人高潮做爰伦理| 成年人免费黄色播放视频 | 王馨瑶露胸无遮挡在线观看| 国产精品不卡视频一区二区| 日日撸夜夜添| 亚洲精品中文字幕在线视频 | 在线观看三级黄色| 99热这里只有精品一区| 国产黄色免费在线视频| 大香蕉97超碰在线| 久久久久久久久久久免费av| 国产精品女同一区二区软件| 久久婷婷青草| 精品久久久久久电影网| 热re99久久精品国产66热6| 三级国产精品欧美在线观看| 国产精品一区二区在线观看99| 丰满人妻一区二区三区视频av| 嘟嘟电影网在线观看| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久v下载方式| 亚洲一区二区三区欧美精品| 亚洲国产最新在线播放| 国产精品不卡视频一区二区| 黑人高潮一二区| 亚洲精品乱码久久久v下载方式| 街头女战士在线观看网站| 国产精品嫩草影院av在线观看| av福利片在线观看| 黄色怎么调成土黄色| av专区在线播放| 美女国产视频在线观看| 欧美丝袜亚洲另类| 22中文网久久字幕| 最近手机中文字幕大全| 成年人免费黄色播放视频 | 国产视频内射| 日本-黄色视频高清免费观看| 国产精品久久久久久av不卡| 欧美+日韩+精品| 免费av中文字幕在线| 亚洲国产毛片av蜜桃av| 搡女人真爽免费视频火全软件| 久久99热6这里只有精品| 在线看a的网站| 亚洲欧美清纯卡通| 国产在线免费精品| 亚洲av电影在线观看一区二区三区| 精品视频人人做人人爽| 亚洲国产精品专区欧美| 亚洲精品中文字幕在线视频 | 久久综合国产亚洲精品| 18+在线观看网站| 桃花免费在线播放| 成年av动漫网址| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 天天操日日干夜夜撸| av不卡在线播放| 中文字幕人妻丝袜制服| 少妇猛男粗大的猛烈进出视频| 免费看不卡的av| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| www.色视频.com| 中文字幕亚洲精品专区| 深夜a级毛片| 亚洲精品成人av观看孕妇| 欧美精品人与动牲交sv欧美| 老司机亚洲免费影院| 久久人妻熟女aⅴ| 日韩欧美精品免费久久| 精品人妻熟女毛片av久久网站| 99九九线精品视频在线观看视频| 国产淫语在线视频| 亚洲精品乱久久久久久| 精品人妻一区二区三区麻豆| 国内揄拍国产精品人妻在线| 国产精品蜜桃在线观看| 欧美日韩在线观看h| 麻豆乱淫一区二区| 国产极品天堂在线| 久久久久国产精品人妻一区二区| 伊人亚洲综合成人网| 国产精品熟女久久久久浪| 天堂中文最新版在线下载| 亚洲综合精品二区| 中文字幕人妻丝袜制服| 日韩免费高清中文字幕av| 99精国产麻豆久久婷婷| 成人无遮挡网站| 三级经典国产精品| 黄色毛片三级朝国网站 | 中国国产av一级| 亚洲精华国产精华液的使用体验| 男女国产视频网站| 国产欧美日韩精品一区二区| 中文精品一卡2卡3卡4更新| 成人美女网站在线观看视频| 亚洲自偷自拍三级| videos熟女内射| 最近最新中文字幕免费大全7| 高清在线视频一区二区三区| 日韩中字成人| 午夜精品国产一区二区电影| av福利片在线| 国产91av在线免费观看| 26uuu在线亚洲综合色| 精品99又大又爽又粗少妇毛片| 观看av在线不卡| 特大巨黑吊av在线直播| 少妇人妻 视频| 黑人巨大精品欧美一区二区蜜桃 | 在线观看免费视频网站a站| 一级a做视频免费观看| 两个人免费观看高清视频 | 久久久欧美国产精品| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区三区久久久樱花| 嫩草影院新地址| 黄色一级大片看看| 国产成人a∨麻豆精品| 色网站视频免费| 中文字幕精品免费在线观看视频 | 欧美丝袜亚洲另类| 观看av在线不卡| 嘟嘟电影网在线观看| 国产黄频视频在线观看| 国产精品伦人一区二区| 日本午夜av视频| 女的被弄到高潮叫床怎么办| 日韩不卡一区二区三区视频在线| 99热这里只有精品一区| www.色视频.com| 国产精品麻豆人妻色哟哟久久| 777米奇影视久久| 久热这里只有精品99| 男女国产视频网站| 尾随美女入室| 久久精品久久精品一区二区三区| 女性生殖器流出的白浆| 亚洲婷婷狠狠爱综合网| 全区人妻精品视频| 中文乱码字字幕精品一区二区三区| 欧美精品人与动牲交sv欧美| 一级黄片播放器| 亚洲精品日韩av片在线观看| 99热这里只有精品一区| 七月丁香在线播放| 欧美97在线视频| 男女国产视频网站| 精品少妇黑人巨大在线播放| 亚洲欧美日韩卡通动漫| 色94色欧美一区二区| 亚洲综合精品二区| 国产成人精品无人区| 水蜜桃什么品种好| 国产极品天堂在线| 亚洲成人一二三区av| 精品久久久久久久久亚洲| 熟妇人妻不卡中文字幕| 亚洲综合色惰| 男人添女人高潮全过程视频| a级毛片免费高清观看在线播放| 麻豆成人av视频| av在线播放精品| 少妇高潮的动态图| 亚洲va在线va天堂va国产| 日韩欧美 国产精品| 日本黄色片子视频| 精品国产一区二区久久| 国产一区有黄有色的免费视频| 欧美少妇被猛烈插入视频| 欧美激情国产日韩精品一区| 亚洲成人手机| 永久免费av网站大全| 99热6这里只有精品| 国产熟女午夜一区二区三区 | 国产高清三级在线| 国国产精品蜜臀av免费| 色5月婷婷丁香| 午夜福利视频精品| 精品国产一区二区三区久久久樱花| 夜夜骑夜夜射夜夜干| 天天躁夜夜躁狠狠久久av| 青春草国产在线视频| 最新中文字幕久久久久| 亚洲国产毛片av蜜桃av| 国产视频首页在线观看| 日韩,欧美,国产一区二区三区| 能在线免费看毛片的网站| 欧美精品人与动牲交sv欧美| 免费看av在线观看网站| 精品久久久久久电影网| 亚洲丝袜综合中文字幕| 偷拍熟女少妇极品色| 国产精品一区二区在线观看99| 久久久久网色| 日本av免费视频播放| 日日啪夜夜爽|