• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于遺傳模擬退火算法的滑坡位移預(yù)測(cè)方法

    2021-03-11 08:49喬世范王超
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:支持向量機(jī)滑坡神經(jīng)網(wǎng)絡(luò)

    喬世范 王超

    摘 要:滑坡是一種常見的地質(zhì)災(zāi)害,通常在復(fù)雜的地質(zhì)條件下演化和發(fā)生,給社會(huì)和人類的生命財(cái)產(chǎn)安全造成了極大的危害。了解滑坡的發(fā)展規(guī)律,對(duì)災(zāi)害防治具有重要意義。在現(xiàn)有滑坡累積位移時(shí)間序列的基礎(chǔ)上,提出了一種基于遺傳模擬退火算法的滑坡位移預(yù)測(cè)方法。采用遺傳模擬退火算法BP神經(jīng)網(wǎng)絡(luò)對(duì)白水河滑坡預(yù)警區(qū)Z118觀測(cè)點(diǎn)進(jìn)行分析,利用前3個(gè)月的累積位移來預(yù)測(cè)第4個(gè)月的累積位移。分別與BP神經(jīng)網(wǎng)絡(luò)模型和Elman神經(jīng)網(wǎng)絡(luò)模型進(jìn)行比較,并將遺傳模擬退火算法的預(yù)測(cè)結(jié)果與支持向量機(jī)的預(yù)測(cè)結(jié)果進(jìn)行比較。研究結(jié)果表明,建立的滑坡位移預(yù)測(cè)模型能有效地提高預(yù)測(cè)精度。

    關(guān)鍵詞:滑坡;位移預(yù)測(cè);遺傳模擬退火算法;神經(jīng)網(wǎng)絡(luò);支持向量機(jī)

    1 Introduction

    The landslide is a natural phenomenon in which the rock or soil in the slope slides or collapses as a whole due to the influence of factors such as gravity, groundwater, rainfall, earthquake, human activities and others. The occurrence of a landslide is always accompanied by a shear failure surface. Landslide analysis studies the evolution, the probability of occurrence and the mechanism of the landslide on the basis of fully understanding the geological body. There are both qualitative and quantitative methods of landslide analysis. Quantitative analysis methods are further divided into deterministic analysis and uncertainty analysis.

    The constitutive model is based on the viscoelastic assumption of the sliding body and the sliding surface[1]. The concept of viscous force is introduced into the dynamic equation of landslide displacement. Under the assumption of the infinite slope, the solution of the dynamic equation and the practical significance of the solution are discussed. On this basis, the landslide displacement prediction equation is established with the time and the tangential stress ratio as variables[2]. In 2004, Ferlisi[3] considered the influence of the change in the groundwater level on the landslide, and established a mechanical model of landslide displacement to predict the time a landslide would occur based on the viscoplasticity of the sliding surface. In 2005, based on the study of Angeli and Casparto, Spanish scholars Corominas et al.[4] further analyzed the characteristics of the Vallcebre landslide by the step system, and pointed out the importance of viscous force in the process of landslide sliding. The method and conclusion of calculating the viscous force with different ideas were introduced into landslide prediction, and the deformation velocity of the landslide was successfully predicted. In 2006, Maugeri[5] proposed coupling elasticity and plasticity. A mathematical model of the viscous constitutive relationship could be used to predict the viscous deformation of the landslide and the slope of various slip modes.

    Due to the complex and unpredictable evolution characteristics of the landslide system, it is difficult to accurately predict the displacement of the large complex landslide using traditional methods of analysis. In order to solve this problem, scholars have done much research. Zhang et al[6] carried out laboratory tests and field macro deformation analysis, and divided the evolution of the landslide into three stages: initial creep, constant creep and accelerated creep. The creep rate and sliding time of the landslide were analyzed, based on this, and the empirical formula for predicting landslide displacement was established[6-8]. Fukuzono[9] and Voight[10] introduced a method to predict the time of a volcanic eruption into the study of landslide prediction, and established an empirical formula for calculating the velocity and acceleration of the landslide displacement. They concluded that the two variables had an exponential relationship based on previous studies, Federico et al.[11] proposed a general expression of the creep model considering displacement, velocity and acceleration. Inspired by the growth model of organisms, Verhulst, a German biologist, proposed a landslide prediction model based on creep theory, named the Verhulst model[12]. On the basis of Verhulst's research[12], Shu and Xiao[13] improved the Verhulst model by combining the geological characteristics of landslide evolution with the quadratic regression fitting method and grey theory to characterize the deformation of the landslide. Smith et al.[14] proposed a mathematical model for landslide prediction based on catastrophe theory to predict the time slope instability would occur. A series of nonlinear prediction models such as the fractal prediction model[15], the loading and unloading response ratio prediction model[16] and the slope instability prediction model based on creep theory[17-20] were also proposed. Although these nonlinear models achieved good results in predicting the time a landslide would occur, they are still in the development stage. It is necessary to further analyze the nonlinear characteristics of the landslide. Therefore, according to the actual situation of the landslide, the nonlinear theory is introduced for modeling and analysis. Based on this, the Support Vector Machine method is applied in this article to establish the landslide stability evaluation model, which avoids the limitations of traditional methods and improves the accuracy of the evaluation. At the same time, the neural network is applied to the landslide displacement prediction. Based on the time series of the cumulative displacement of the landslide, the Genetic Simulated Annealing (GSA) algorithm is applied to the modelling and analysis of the landslide displacement. Considering the influence of rainfall on landslide displacement, the dynamic neural network (Elman network) is used, and the Genetic Algorithm is used to optimize the initial weight of the network to predict the cumulative displacement of the landslide under rainfall conditions. The simulation results show that the method can improve the accuracy of the prediction and provide a new idea for the design and construction of geotechnical engineering.

    2 Landslide displacement prediction model based on the neural network optimized by the GSA algorithm

    The artificial neural network (ANN) has developed rapidly in recent years. As a general nonlinear approximator, it has been widely used in pattern recognition, classification and identification of nonlinear systems. Compared with other statistical methods, the artificial neural network has many advantages and is an effective method of predicting complex nonlinear dynamic systems. It is also suitable for landslide prediction. At present, the BP neural network, which can reveal the nonlinear relationship in data samples, is the most widely used artificial neural network. A large number of processing units constitute a nonlinear adaptive dynamic system, which has good adaptability, self-organization and strong learning, association, fault tolerance and anti-interference ability. The BP neural network model was proposed by Rumelhart in 1986[21]. Because of its simple structure, adjustable parameters, many training algorithms and good operability, it is widely welcomed by scholars. However, the BP neural network model has some shortcomings. For example, if the convergence speed is too slow in the late stage of learning, it easily falls into local minima, which makes it hard to determine the network structure. In addition, the initial weights cannot accurately get the initial weights of the network. In view of these characteristics, this article combines the Genetic Algorithm (GA) and Simulated Annealing (SA) to optimize the weights of the neural network. A landslide displacement prediction model based on the GSA algorithm optimized BP neural network is proposed and applied to the displacement prediction of the Baishui River landslide. The weights of the BP neural network before and after optimization are compared, and the prediction effect before and after optimization is compared using the Support Vector Machine method. It is verified that the landslide displacement prediction model optimized by the BP neural network based on the GSA algorithm has high prediction accuracy for the time series of cumulative landslide displacement, which can meet the needs of engineering construction.

    2.1 BP neural network

    The BP neural network is essentially a feed-forward neural network. Its main features are forward signal transmission and reverse error transmission. If the output layer does not receive the expected result, the signal will be sent back and the calculation will restart by adjusting the weight and threshold of the network according to the error. The above algorithm allows the continuous update of the BP neural network so that the output results gradually approach the expected results. The topological structure of the single hidden layer BP neural network is shown in Fig. 1.

    Assume that the BP neural network in Fig. 1 has n neurons in the input layer, p neurons in the hidden layer and m neurons in the output layer, which are defined as follows. The meanings of parameters are listed in Table 1.

    According to references[22-24], the basic steps of the BP neural network model are as follows.

    1)Initialize the network. Assign a random number in the interval (-1, 1) to each connection weight, set the error function e, and determine the calculation accuracy and the maximum number of learning M.

    2)Select the input sample k randomly x(k)=(x1(k),x2(k),…,xn(k))′, and the corresponding expected output d(k)=(d1(k),d2(k),…,dm(k))′.

    3)Calculate the input and output results of each neuron in the hidden layer and the output layer.

    4)Calculate the partial derivative δo(k) of the error function to each neuron in the output layer by using the expected output and actual output of the network.

    5)Calculate the partial derivative δh(k) of the error function of each neuron in the hidden layer based on the connection weight from the hidden layer to the output layer, the partial derivative δo(k) of each neuron in the output layer and the output results of the hidden layer is

    6)Use the δo(k) of each neuron of the output layer and the output results of each neuron of the hidden layer to correct the connection weight who.

    7)Use the δh(k) of each neuron of the hidden layer and the output of each neuron of the input layer to correct the connection weight wih.

    8)Calculate the total error

    9)Determine whether the network error meets the requirements. When the error reaches the preset accuracy or the number of learning times is greater than the set maximum number of times, the algorithm stops running. Otherwise, select the next learning sample and the corresponding expected output, return to step (3), and enter the next round of learning.

    2.2 GA-Elman neural network model

    The GA-Elman neural network model is used to predict the time series of the landslide. The network is composed of the correlation layer, input layer, hidden layer and output layer. There is a corresponding relationship between the neurons in the correlation layer and the neurons in the hidden layer, and the output value of the hidden layer is delayed and fed back to the correlation layer. In general, the two layers of the Elman can reflect the state of the network. The GA-Elman network contains a correlation layer. The hidden layer of the GA-Elman network is connected with the full feedback of the correlation layer. It can describe any n-order system which has been proved theoretically. In order to improve the dynamic performance of the GA-Elman neural network, a self-feedback connection is introduced into the correlation layer of the GA-Elman neural network. The structure of the improved GA-Elman neural network is shown in Fig.2. In the graph, the number of neurons in the correlation layer is equal to the number of neurons in the hidden layer. The number of external input neurons is the number of features. The hidden layer nodes are fully connected to the input layer and the output layer.

    The Levenberg-Marquarelt (LM) algorithm, which has a fast convergence speed, is a common algorithm in neural network training. In the case of high accuracy requirements, the advantages of the algorithm are particularly prominent. In most cases, the LM algorithm can obtain smaller mean square error than any other algorithm. Like the Newton algorithm, this algorithm can avoid computing the Hessian matrix when it is corrected at the second-order training rate.

    2.3 Establishment of the GA-Elman neural network model

    In this study, a neural network model (p, h, 1) is established. Since only the landslide displacement is predicted, the output unit of the GA-Elman neural network has just one neuron. The model is established as follows.

    1) Initialize the weight of the Elman network as a random number between intervals [0, 1], which is encoded by the GA.

    2) Generate an initial population with a population size of N.

    3) Decode every population in the group which represents an Elman network structure. The N sets of weights obtained by this decoding correspond to N networks of the same structure.

    4) For each network, the network structure is adjusted as follows.

    a. Identify training samples and test samples for the network.

    b. Calculate the network output corresponding to the input sample set based on the Levenberg-Marquarelt (LM) algorithm.

    c. Determine the fitness function as the reciprocal of the network's error performance function. Calculate the fitness of each chromosome, the larger the error value, the smaller the corresponding fitness.

    d. Select individuals with high fitness as new parents and eliminate individuals with small fitness.

    e. Cross and mutate the new parent.

    f. Repeat steps c~e to perform a new iteration of the new population until the training target meets the requirement and a set of optimization weights is obtained.

    5) Assign the optimized weight to the Elman network for modeling and prediction.

    The error evolution curve of the Genetic Algorithm is shown in Fig. 4.

    3 Case analysis of the landslide under the rainfall condition

    Landslide displacement is usually affected by many factors, such as geotechnical mechanical properties, geological profile, hydrological conditions and so on. However, due to the limitation of manpower and material resources, it is impossible to conduct a comprehensive study of the influence of the above factors. Since rainfall plays an important role in the generation of landslides, this article mainly studies the influence of rainfall on landslide displacement. In order to ensure that the research results are not affected by other factors, before the case analysis, the other factors remain unchanged. Based on these requirements, the neural network prediction model was established. Since the engineering geology of the Baishui River landslide satisfies the conditions for verifying the relationship between landslide displacement and rainfall, the Baishui River landslide was selected as the study object.

    The displacement observation data of the Baishui River landslide are shown in Fig.7. Since May 1, 2015, the data was recorded every other month. As of June 1, 2017, 47 sets of data were recorded. Each time step in Fig. 7 represents a month. In this case, the GA-Elman neural network model was used. Since the occurrence of a landslide is a long-term cumulative process, the displacement of a landslide will affect the evolution of the next landslide. Based on this, the rainfall and the accumulated displacement in each period are used as the input value, and the output result is set as the predicted value of the cumulative displacement at the next time. The results show that, in most cases, the influence of rainfall on the landslide has a certain lag. Therefore, in order to predict the cumulative displacement of the landslide in Δt period and ensure the accuracy of the prediction results by considering the influence of the actual rainfall, the Δt period is divided into t1-t2 period, t2-t3 period, t3-t4 period and t4-t5 period, and the rainfall of time t1, time t2, time t3, time t4 and time t5 are used as input values. The first 37 groups of data are used for the training network, and the last 10 groups of data are used for the prediction. The corresponding coefficients are set in the model, and the number of neurons in the hidden layer is determined by experience and experiment. After many experiments, it can be determined that when the number of neurons in the hidden layer is 15, the mean square error and the fault-tolerant function of the network achieve the best effect.

    In order to prove the superiority of this method, the initial weights and thresholds of the Elman network are optimized by the Genetic Algorithm, and compared with the results of the non-optimized Elman network. The error performance curve of the Elman network with random initial weights is shown in Fig.8. In addition, the Elman network and the BP network are compared. The error performance curve of the BP network optimized by the Genetic Algorithm is shown in Fig.9. Through comparison, it can be seen that the Elman network has better performance than the BP network, and the prediction effect of the optimized Elman network is better than that of the non-optimized Elman network.

    In Fig.2, x represents the independent variable, y represents the learning rate, and z represents the algorithm performance. In order to get better prediction results, first, the collected data are logarithmically processed, and then normalized. The prediction results using the optimized Elman network model are shown in Table 2 and Fig.10.

    It can be seen from Table 2 that the predicted value of the cumulative landslide displacement is very close to the measured value, and the relative error is less than 4%. In the actual training process, 73% of the data passed the training. In the case with the same parameters and where the mean square error of the performance index meets the requirements, the convergence process of the Elman neural network optimized by the Genetic Algorithm is smoother and faster than the original algorithm, and the accuracy of the prediction is enough to meet the needs of the medium and short-term prediction of the landslide displacement. The results of numerical simulation analysis show that the shorter the prediction time, the greater the prediction accuracy. Therefore, the same samples are used to train the GA-BP neural network to verify the superiority of the Genetic Simulated Annealing algorithm. The prediction results are shown in Fig.11. It can be seen from Fig.12 that the prediction accuracy of the GA-BP neural network is significantly lower than that of the GA-Elman neural network. Therefore, the GA-Elman neural network is better than the GA-BP neural network in the prediction of landslide displacement under the rainfall condition, so the GA-Elman neural network should be used first.

    4 Conclusions

    Based on the existing time series of the accumulated displacement of the landslide, a BP neural network prediction model based on the Genetic Simulated Annealing algorithm was proposed. The weight of the network was optimized using the Genetic Simulated Annealing algorithm to overcome shortcomings of the BP neural network, such as slow convergence speed and easy to fall into the local minimum point. The GSA-BP neural network was used to analyze the observation point Z118 in the Baishui River landslide warning area, and the landslide displacement in the 4th month was predicted using the cumulative landslide displacement of the first 3 months. The prediction results were compared with those of the BP neural network and the Elman neural network, respectively. At the same time, the prediction results of the Genetic Simulated Annealing algorithm and the Support Vector Machine model were compared and analyzed. The results showed that the prediction effect of the GSA-BP neural network was very good. In addition, the prediction model established in this article performed well in the average relative error and the mean square error of the prediction results, proving the rationality of the model. The GA-Elman neural network was used to analyze the landslide, and the generalized predictive control fast algorithm was used to realize the control of the landslide prediction. From the point of view of dynamics, taking the landslide thrust as the control variable, the simulation test proves that the method can well control the prediction accuracy of landslide displacement, ensuring the accuracy of the landslide displacement prediction, which can provide reliable data support for landslide prediction, and ensure the development and completion of landslide prevention and control.

    Acknowledgements

    The authors would like to acknowledge the financial support from Key Projects Supported by China Railway Corporation (No. 2017G007-D, 2017G008-J). References:

    [1] DAI M, TANG D B, GIRET A, et al. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm [J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(5): 418-429.

    [2] BI R N, EHRET D, XIANG W, et al. Landslide reliability analysis based on transfer coefficient method: a case study from Three Gorges Reservoir [J]. Journal of Earth Science, 2012, 23(2): 187-198.

    [3] FERLISI S. A simple mechanical model for the interpretation of translational active landslides involving detrital covers [M]// Landslides: Evaluation and Stabilization/Glissement de Terrain: Evaluation et Stabilisation, Set of 2 Volumes. CRC Press, 2004: 1227-1232.

    [4] COROMINAS J, MOYA J, LEDESMA A, et al. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain) [J]. Landslides, 2005, 2(2): 83-96.

    [5] MAUGERI M, MOTTA E, RACITI E. Mathematical modelling of the landslide occurred at Gagliano Castelferrato (Italy) [J]. Natural Hazards and Earth System Sciences, 2006, 6(1): 133-143.

    [6] ZHANG Q C, SUN Q S. Damage detection of self-anchored suspension bridge based on neural network model and genetic-simulated annealing algorithm [J]. Advanced Materials Research, 2011, 243-249: 1963-1967.

    [7] ZHENG X J. Optimal dispatching methods for unit commitment based on hybrid genetic-simulated annealing algorithm [J]. Applied Mechanics and Materials, 2013, 462/463: 1076-1080.

    [8] YI P Y, WANG K, REN J, et al. Research on anti-analysis of the landslide′s strength parameter through transferring coefficient method [J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(4): 23-26, 32. (in Chinese)

    [9] FUKUZONO T. A new method for predicting the failure time of a slope [C] // Proceedings of the 4th International Conference and Field Workshop on Landslides. Tokyo: Tokyo University Press, 1985: 145-150.

    [10] VOIGHT B. A method for prediction of volcanic eruptions [J]. Nature, 1988, 332(6160): 125-130.

    [11] FEDERICO A, POPESCU M, FIDELIBUS C, et al. On the prediction of the time of occurrence of a slope failure: a review [M]// Landslides: Evaluation and Stabilization/Glissement de Terrain: Evaluation et Stabilisation, Set of 2 Volumes. CRC Press, 2004: 979-983.

    [12] HE X H, WANG S J, XIAO R H, et al. Improvement of Verhulst forecast model of landslide and its application [J]. Rock and Soil Mechanics, 2013, 34(Sup1): 355-364.(in Chinese)

    [13] SHU Q, XIAO X P. Combination forecasting model using grey verhulst models coupling to regression analysis [C]//Proceedings of the 2016 International Conference on Applied Mathematics, Simulation and Modelling. May 28-29, 2016.

    [14] SMITH C E, ARNETT D K, TSAI M Y, et al. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study [J]. Atherosclerosis, 2009, 206(2): 500-504.

    [15] SWANEY R E, GROSSMANN I E. An index for operational flexibility in chemical process design. Part I: Formulation and theory [J]. AIChE Journal, 1985, 31(4): 621-630.

    [16] NIMKUNTOD P, TONGDEE P. Plasma low-density lipoprotein cholesterol/high-density lipoprotein cholesterol concentration ratio and early marker of carotid artery atherosclerosis [J]. Journal of the Medical Association of Thailand, 2015, 98(Sup 4): S58-S63.

    [17] ZHANG Q, GROSSMANN I E, SUNDARAMOORTHY A, et al. Data-driven construction of Convex Region Surrogate models [J]. Optimization and Engineering, 2016, 17(2): 289-332.

    [18] HAMDIA K M, LAHMER T, NGUYEN-THOI T, et al. Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS [J]. Computational Materials Science, 2015, 102: 304-313.

    [19] BADAWY M F, MSEKH M A, HAMDIA K M, et al. Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites [J]. Probabilistic Engineering Mechanics, 2017, 50: 64-75.

    [20] KHALIQ A Q M, BIALA T A, ALZAHRANI S S, et al. Linearly implicit predictor-corrector methods for space-fractional reaction-diffusion equations with non-smooth initial data [J]. Computers & Mathematics with Applications, 2018, 75(8): 2629-2657.

    [21] BASHEER I A, HAJMEER M. Artificial neural networks: fundamentals, computing, design, and application [J]. Journal of Microbiological Methods, 2000, 43(1): 3-31.

    [22] MARTIN T H, HOWARD B D, MARK B. Neural network design [M]. Machinery Industry Press, 2002.

    [23] SIMON H. Principle of neural network [M]. Machinery Industry Press, 2004.

    [24] ZHU K, WANG Z L. Proficient in MATLAB neural network [M]. Electronic Industry Press, 2010.

    [25] LI D Y. Prediction study of landslides with step-like deformation in the Three Gorges Reservior [D]. Wuhan: China University of Geosciences, 2010.

    [26] DU J, YIN K L, LACASSE S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China [J]. Landslides, 2013, 10(2): 203-218.

    [27] HUANG F, YIN K, HE T, et al. Influencing factor analysis and displacement prediction in reservoir landslides-a case study of Three Gorges Reservoir (China) [J]. Tehnicki Vjesnik - Technical Gazette, 2016, 23(2): 617-626.

    [28] GUO Z Z, YIN K L, HUANG F M, et al. Landslide displacement prediction based on surface monitoring data and nonlinear time series combination model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Sup1): 3392-3399.(in Chinese)

    (編輯 章潤(rùn)紅)

    猜你喜歡
    支持向量機(jī)滑坡神經(jīng)網(wǎng)絡(luò)
    基于人工智能LSTM循環(huán)神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)成績(jī)預(yù)測(cè)
    某停車場(chǎng)滑坡分析及治理措施
    基于圖像處理與卷積神經(jīng)網(wǎng)絡(luò)的零件識(shí)別
    基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)的電網(wǎng)穩(wěn)定性預(yù)測(cè)
    夏季大山里的隱形殺手——滑坡
    三次樣條和二次刪除相輔助的WASD神經(jīng)網(wǎng)絡(luò)與日本人口預(yù)測(cè)
    動(dòng)態(tài)場(chǎng)景中的視覺目標(biāo)識(shí)別方法分析
    論提高裝備故障預(yù)測(cè)準(zhǔn)確度的方法途徑
    基于熵技術(shù)的公共事業(yè)費(fèi)最優(yōu)組合預(yù)測(cè)
    基于支持向量機(jī)的金融數(shù)據(jù)分析研究
    久久亚洲精品不卡| 日本成人三级电影网站| 国产 一区 欧美 日韩| 高清在线国产一区| 精品午夜福利视频在线观看一区| 精品午夜福利视频在线观看一区| 欧美3d第一页| 中文字幕精品亚洲无线码一区| 别揉我奶头~嗯~啊~动态视频| 青草久久国产| 十八禁人妻一区二区| 日韩av在线大香蕉| www.www免费av| 色精品久久人妻99蜜桃| 狠狠狠狠99中文字幕| 69人妻影院| 69av精品久久久久久| 久久久久久久午夜电影| 久久久久久久久久黄片| 免费av毛片视频| 一级a爱片免费观看的视频| 国内少妇人妻偷人精品xxx网站| 日本黄色视频三级网站网址| 女同久久另类99精品国产91| 激情在线观看视频在线高清| 757午夜福利合集在线观看| 日韩欧美在线乱码| 亚洲av中文字字幕乱码综合| 国产伦精品一区二区三区四那| 亚洲av中文字字幕乱码综合| 窝窝影院91人妻| 亚洲在线自拍视频| 最近最新中文字幕大全电影3| 尤物成人国产欧美一区二区三区| 中文在线观看免费www的网站| 久久国产精品人妻蜜桃| 免费观看精品视频网站| 国产精品久久久久久久电影| 网址你懂的国产日韩在线| 三级男女做爰猛烈吃奶摸视频| 国产午夜福利久久久久久| 亚洲人成网站在线播放欧美日韩| 熟女电影av网| 熟女电影av网| 我的老师免费观看完整版| 国产高清视频在线播放一区| 亚洲 欧美 日韩 在线 免费| 精品国产亚洲在线| 国产午夜福利久久久久久| ponron亚洲| 成人国产一区最新在线观看| 日韩欧美国产一区二区入口| 日本免费一区二区三区高清不卡| 久久精品人妻少妇| 亚洲美女黄片视频| 午夜影院日韩av| 丁香欧美五月| 五月伊人婷婷丁香| 亚洲国产精品999在线| 午夜福利18| 男人舔女人下体高潮全视频| 草草在线视频免费看| 他把我摸到了高潮在线观看| 一进一出好大好爽视频| 日韩中字成人| 在线十欧美十亚洲十日本专区| 五月伊人婷婷丁香| 欧美性感艳星| 精品人妻1区二区| 成熟少妇高潮喷水视频| 日本黄色片子视频| 女人被狂操c到高潮| 国产v大片淫在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲天堂国产精品一区在线| 脱女人内裤的视频| 91在线观看av| 国产乱人伦免费视频| 午夜两性在线视频| 91久久精品电影网| av中文乱码字幕在线| 色噜噜av男人的天堂激情| 天堂动漫精品| 18禁在线播放成人免费| 乱人视频在线观看| 久久久久久久精品吃奶| 十八禁人妻一区二区| 免费在线观看成人毛片| 精品日产1卡2卡| 日本一本二区三区精品| 91在线观看av| 波野结衣二区三区在线| 999久久久精品免费观看国产| 欧美+亚洲+日韩+国产| 97人妻精品一区二区三区麻豆| 久久精品夜夜夜夜夜久久蜜豆| 国产高清激情床上av| 变态另类丝袜制服| 欧美精品国产亚洲| 一进一出好大好爽视频| 国产欧美日韩精品亚洲av| 亚洲性夜色夜夜综合| 中亚洲国语对白在线视频| 精品一区二区三区视频在线| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久久久久久| 怎么达到女性高潮| 成人精品一区二区免费| 伊人久久精品亚洲午夜| 国产亚洲精品久久久久久毛片| 精品国产亚洲在线| 99国产极品粉嫩在线观看| 久久这里只有精品中国| www.999成人在线观看| 久久久精品欧美日韩精品| 高清毛片免费观看视频网站| 别揉我奶头~嗯~啊~动态视频| 亚洲一区高清亚洲精品| 国产综合懂色| 亚洲国产日韩欧美精品在线观看| 网址你懂的国产日韩在线| 精品一区二区三区人妻视频| 国产午夜精品久久久久久一区二区三区 | 高清日韩中文字幕在线| 变态另类丝袜制服| 亚洲七黄色美女视频| 国产淫片久久久久久久久 | 成人精品一区二区免费| 亚洲色图av天堂| 亚洲av二区三区四区| 亚洲美女黄片视频| 97超视频在线观看视频| 制服丝袜大香蕉在线| 毛片女人毛片| 99久久精品国产亚洲精品| 亚洲av成人av| 露出奶头的视频| 午夜福利在线观看吧| 午夜激情福利司机影院| 黄色丝袜av网址大全| netflix在线观看网站| 亚洲专区国产一区二区| 亚洲成人久久性| 五月伊人婷婷丁香| 88av欧美| 亚洲七黄色美女视频| 国产精品嫩草影院av在线观看 | 欧美激情在线99| 国产麻豆成人av免费视频| 特大巨黑吊av在线直播| 国产激情偷乱视频一区二区| 国产精品1区2区在线观看.| av天堂在线播放| 99热只有精品国产| 国内毛片毛片毛片毛片毛片| 麻豆成人午夜福利视频| 老司机午夜福利在线观看视频| 免费在线观看日本一区| 欧美精品啪啪一区二区三区| 一进一出抽搐gif免费好疼| 日本 av在线| 欧美性猛交黑人性爽| 天天躁日日操中文字幕| x7x7x7水蜜桃| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本成人三级电影网站| 12—13女人毛片做爰片一| 久久精品国产自在天天线| 亚洲内射少妇av| 成人午夜高清在线视频| 99热6这里只有精品| 久久国产精品人妻蜜桃| 国产午夜精品论理片| 日韩欧美 国产精品| 国产伦精品一区二区三区视频9| 黄色视频,在线免费观看| 亚洲最大成人手机在线| 欧美中文日本在线观看视频| 99热精品在线国产| 成年版毛片免费区| av天堂在线播放| 欧美黑人欧美精品刺激| 性色av乱码一区二区三区2| 日韩亚洲欧美综合| 99热这里只有精品一区| 午夜日韩欧美国产| 全区人妻精品视频| 日韩中字成人| 18禁在线播放成人免费| 18禁黄网站禁片午夜丰满| 日韩大尺度精品在线看网址| 亚洲av二区三区四区| 国产男靠女视频免费网站| 一进一出好大好爽视频| 日韩欧美免费精品| 亚洲最大成人手机在线| 欧美国产日韩亚洲一区| 国产精品亚洲美女久久久| 欧美日韩综合久久久久久 | 麻豆成人av在线观看| 亚洲欧美日韩无卡精品| 九九热线精品视视频播放| 亚洲七黄色美女视频| 一级黄片播放器| 欧美潮喷喷水| 日本黄色视频三级网站网址| 无遮挡黄片免费观看| АⅤ资源中文在线天堂| 中亚洲国语对白在线视频| 久久久国产成人精品二区| 国产精品野战在线观看| 精品国产亚洲在线| 国产精品,欧美在线| 亚洲av第一区精品v没综合| 国产日本99.免费观看| 免费人成在线观看视频色| 亚洲电影在线观看av| 少妇丰满av| 搡老妇女老女人老熟妇| 国产视频内射| 日韩大尺度精品在线看网址| 999久久久精品免费观看国产| 午夜a级毛片| 日日干狠狠操夜夜爽| 99久久精品国产亚洲精品| 亚洲在线观看片| 亚洲成人免费电影在线观看| 他把我摸到了高潮在线观看| 欧美zozozo另类| av女优亚洲男人天堂| 真实男女啪啪啪动态图| 在线a可以看的网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲狠狠婷婷综合久久图片| 成人av在线播放网站| 国产精品一区二区免费欧美| 国产老妇女一区| 搡女人真爽免费视频火全软件 | 观看免费一级毛片| 国产精品亚洲一级av第二区| 男人舔女人下体高潮全视频| 制服丝袜大香蕉在线| 久久久国产成人精品二区| 韩国av一区二区三区四区| 日本与韩国留学比较| 淫秽高清视频在线观看| 欧美xxxx性猛交bbbb| 亚洲在线观看片| 1000部很黄的大片| 国产欧美日韩精品亚洲av| 波野结衣二区三区在线| 色噜噜av男人的天堂激情| 欧美zozozo另类| 亚洲成a人片在线一区二区| 啦啦啦韩国在线观看视频| 成人毛片a级毛片在线播放| 高清日韩中文字幕在线| 69av精品久久久久久| 亚洲久久久久久中文字幕| .国产精品久久| 久久这里只有精品中国| 最后的刺客免费高清国语| 亚洲天堂国产精品一区在线| 国产亚洲精品久久久久久毛片| 香蕉av资源在线| 青草久久国产| 日韩大尺度精品在线看网址| 12—13女人毛片做爰片一| 国产一区二区在线av高清观看| 国产精品嫩草影院av在线观看 | 中文字幕精品亚洲无线码一区| 午夜视频国产福利| 此物有八面人人有两片| 色综合站精品国产| 可以在线观看的亚洲视频| 麻豆一二三区av精品| 午夜福利在线在线| 国产精品自产拍在线观看55亚洲| 国产人妻一区二区三区在| 99热这里只有是精品50| 欧美日韩黄片免| 十八禁网站免费在线| 日韩亚洲欧美综合| 久久久久久久亚洲中文字幕 | 久久6这里有精品| 老司机福利观看| 免费无遮挡裸体视频| 亚洲美女黄片视频| 午夜亚洲福利在线播放| 久久草成人影院| 日韩精品中文字幕看吧| 午夜a级毛片| 性插视频无遮挡在线免费观看| 成熟少妇高潮喷水视频| 国产毛片a区久久久久| 亚洲美女视频黄频| 欧美成人a在线观看| 日韩欧美国产在线观看| 熟女电影av网| 国产成年人精品一区二区| 能在线免费观看的黄片| 亚洲一区二区三区不卡视频| 日韩成人在线观看一区二区三区| 我要搜黄色片| 又爽又黄无遮挡网站| 黄色一级大片看看| 久久精品久久久久久噜噜老黄 | 国产精品综合久久久久久久免费| 男女床上黄色一级片免费看| 精品熟女少妇八av免费久了| 亚洲中文日韩欧美视频| 国产精品影院久久| 日本免费a在线| 色综合欧美亚洲国产小说| 人妻制服诱惑在线中文字幕| 精品久久久久久久久亚洲 | 女人十人毛片免费观看3o分钟| 亚洲久久久久久中文字幕| 精品福利观看| 免费电影在线观看免费观看| 一本一本综合久久| 赤兔流量卡办理| 人人妻,人人澡人人爽秒播| 18禁在线播放成人免费| 欧美另类亚洲清纯唯美| 黄色日韩在线| 亚洲精品成人久久久久久| 日韩高清综合在线| 国产探花在线观看一区二区| 欧美又色又爽又黄视频| 深爱激情五月婷婷| 国产中年淑女户外野战色| 亚洲一区二区三区不卡视频| 婷婷色综合大香蕉| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 1000部很黄的大片| 偷拍熟女少妇极品色| 99热这里只有精品一区| 亚洲专区国产一区二区| 久久久久久久久久黄片| 国产成人aa在线观看| 国产精品不卡视频一区二区 | 99热6这里只有精品| 欧美+日韩+精品| 欧美在线黄色| 午夜免费激情av| 亚洲av中文字字幕乱码综合| 色在线成人网| 久久亚洲真实| 久久人妻av系列| 久久欧美精品欧美久久欧美| 色播亚洲综合网| 亚洲欧美日韩高清在线视频| 国内少妇人妻偷人精品xxx网站| 久久久精品欧美日韩精品| 精品日产1卡2卡| 999久久久精品免费观看国产| 一个人免费在线观看的高清视频| 国产精品久久久久久久久免 | 久久精品国产清高在天天线| 国产美女午夜福利| 国产在线男女| 99久久精品热视频| 精品欧美国产一区二区三| 可以在线观看毛片的网站| 亚洲成人中文字幕在线播放| 成年人黄色毛片网站| 国产午夜精品论理片| 国产精品免费一区二区三区在线| 成人性生交大片免费视频hd| 搞女人的毛片| 国产黄a三级三级三级人| 一级av片app| 全区人妻精品视频| 乱人视频在线观看| 亚洲天堂国产精品一区在线| 日本黄大片高清| 综合色av麻豆| 亚洲男人的天堂狠狠| 国产高潮美女av| 日韩av在线大香蕉| 日本精品一区二区三区蜜桃| 一边摸一边抽搐一进一小说| 99久久精品一区二区三区| 国产一区二区在线观看日韩| 国产精华一区二区三区| 国产熟女xx| 国产私拍福利视频在线观看| 老司机午夜十八禁免费视频| 久久国产精品影院| 亚洲av电影在线进入| 直男gayav资源| 国产av在哪里看| 国产精华一区二区三区| 欧美激情国产日韩精品一区| 久久精品国产清高在天天线| 免费在线观看成人毛片| 成人高潮视频无遮挡免费网站| 天堂动漫精品| 如何舔出高潮| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av| 国产精品电影一区二区三区| 91av网一区二区| 别揉我奶头~嗯~啊~动态视频| 黄色一级大片看看| 久久精品综合一区二区三区| 亚洲不卡免费看| 亚洲乱码一区二区免费版| 久久天躁狠狠躁夜夜2o2o| 天堂av国产一区二区熟女人妻| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲精品久久久com| 国产伦在线观看视频一区| 美女黄网站色视频| 蜜桃亚洲精品一区二区三区| 国产一区二区三区视频了| 国产伦人伦偷精品视频| 国内精品久久久久精免费| 一区福利在线观看| 免费在线观看亚洲国产| 亚洲 欧美 日韩 在线 免费| 国内毛片毛片毛片毛片毛片| 午夜久久久久精精品| 搡老岳熟女国产| 久久久久九九精品影院| 欧美激情国产日韩精品一区| 亚洲18禁久久av| 欧美极品一区二区三区四区| 91久久精品电影网| 老鸭窝网址在线观看| 亚洲午夜理论影院| 色吧在线观看| 欧美极品一区二区三区四区| av天堂在线播放| 午夜精品在线福利| 网址你懂的国产日韩在线| av在线天堂中文字幕| 亚洲欧美日韩高清在线视频| 国产伦精品一区二区三区视频9| 欧美色欧美亚洲另类二区| 欧美日韩综合久久久久久 | 亚洲 欧美 日韩 在线 免费| 一个人免费在线观看电影| 欧美最黄视频在线播放免费| 久久精品国产自在天天线| 非洲黑人性xxxx精品又粗又长| 国产一级毛片七仙女欲春2| a在线观看视频网站| 精品福利观看| 天美传媒精品一区二区| 好看av亚洲va欧美ⅴa在| 淫秽高清视频在线观看| 精品久久久久久久人妻蜜臀av| 少妇的逼好多水| 日本一本二区三区精品| 午夜a级毛片| 老司机午夜十八禁免费视频| 欧美三级亚洲精品| 欧美zozozo另类| 国产精品不卡视频一区二区 | 一本精品99久久精品77| 精品人妻视频免费看| 亚洲成人久久爱视频| 99在线视频只有这里精品首页| 两人在一起打扑克的视频| 日本黄大片高清| 欧美成人a在线观看| 亚洲欧美日韩东京热| av在线天堂中文字幕| 中文字幕高清在线视频| 色吧在线观看| 日本三级黄在线观看| 国产69精品久久久久777片| 一进一出好大好爽视频| 亚洲欧美激情综合另类| 亚洲精品在线美女| 欧美成人a在线观看| 少妇熟女aⅴ在线视频| 午夜福利免费观看在线| 国产又黄又爽又无遮挡在线| 午夜a级毛片| 如何舔出高潮| 成人三级黄色视频| 国产69精品久久久久777片| 好男人电影高清在线观看| 午夜精品在线福利| av天堂中文字幕网| 两个人视频免费观看高清| 国产精品亚洲美女久久久| 午夜福利免费观看在线| 美女被艹到高潮喷水动态| www.999成人在线观看| 国产大屁股一区二区在线视频| 中文字幕人成人乱码亚洲影| 18禁黄网站禁片午夜丰满| 无遮挡黄片免费观看| 久久久成人免费电影| 老司机福利观看| 少妇人妻一区二区三区视频| 久久99热6这里只有精品| 又粗又爽又猛毛片免费看| 一级作爱视频免费观看| 免费av不卡在线播放| 舔av片在线| 真人做人爱边吃奶动态| 亚洲精品粉嫩美女一区| 国产成人a区在线观看| 日韩欧美一区二区三区在线观看| 欧美另类亚洲清纯唯美| www日本黄色视频网| 女人被狂操c到高潮| 少妇人妻一区二区三区视频| 亚洲,欧美精品.| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久,| 首页视频小说图片口味搜索| 成人国产一区最新在线观看| 久久午夜亚洲精品久久| 又紧又爽又黄一区二区| 中亚洲国语对白在线视频| 婷婷亚洲欧美| 国产高清有码在线观看视频| 日韩国内少妇激情av| 超碰av人人做人人爽久久| 国产伦在线观看视频一区| 乱人视频在线观看| 中文字幕av在线有码专区| 国产精品日韩av在线免费观看| 成人欧美大片| 久久人人爽人人爽人人片va | 欧美激情国产日韩精品一区| 国产精品精品国产色婷婷| 欧美日韩国产亚洲二区| 欧美性猛交黑人性爽| a级一级毛片免费在线观看| 在线免费观看的www视频| 国产aⅴ精品一区二区三区波| 日韩人妻高清精品专区| 狠狠狠狠99中文字幕| 在线十欧美十亚洲十日本专区| 久久精品综合一区二区三区| 99热这里只有精品一区| 五月伊人婷婷丁香| 精品午夜福利视频在线观看一区| 91av网一区二区| 欧美成人免费av一区二区三区| avwww免费| 99久久成人亚洲精品观看| 精品一区二区免费观看| 高清在线国产一区| 丰满人妻一区二区三区视频av| 99热这里只有是精品50| 欧美精品国产亚洲| 脱女人内裤的视频| 国产一区二区在线av高清观看| 国产色婷婷99| 99在线人妻在线中文字幕| 国产探花在线观看一区二区| 亚洲熟妇中文字幕五十中出| 国产色爽女视频免费观看| 欧美精品国产亚洲| 日日摸夜夜添夜夜添小说| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品综合一区在线观看| 18禁在线播放成人免费| 国产熟女xx| 天美传媒精品一区二区| 黄色一级大片看看| 久久午夜福利片| 国产精品亚洲一级av第二区| 午夜福利视频1000在线观看| 每晚都被弄得嗷嗷叫到高潮| 给我免费播放毛片高清在线观看| 三级国产精品欧美在线观看| 别揉我奶头~嗯~啊~动态视频| 97碰自拍视频| 很黄的视频免费| 美女大奶头视频| 亚洲avbb在线观看| 91麻豆精品激情在线观看国产| 国产在线精品亚洲第一网站| 亚洲内射少妇av| netflix在线观看网站| 一个人免费在线观看电影| 国产精品1区2区在线观看.| 男插女下体视频免费在线播放| 欧美日韩黄片免| 国产精品美女特级片免费视频播放器| 男人舔奶头视频| 两人在一起打扑克的视频| 3wmmmm亚洲av在线观看| 日韩欧美在线二视频| 亚洲18禁久久av| 人人妻人人看人人澡| 嫩草影院新地址| 波野结衣二区三区在线| 午夜老司机福利剧场| 日韩欧美 国产精品| 国产亚洲欧美98| 婷婷六月久久综合丁香| 老女人水多毛片| 女生性感内裤真人,穿戴方法视频| 欧美高清成人免费视频www| 一个人免费在线观看电影| h日本视频在线播放| 国产精华一区二区三区| 波多野结衣高清无吗| 麻豆av噜噜一区二区三区| 国产高清激情床上av| 国产高清三级在线| 国产亚洲欧美在线一区二区| 欧美日韩国产亚洲二区| 久久久久久久精品吃奶|