• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    S690Q高強(qiáng)鋼對(duì)接節(jié)點(diǎn)的焊后性能

    2021-03-11 08:49:38周誠(chéng)彬陳成趙明善李子敬馮達(dá)清
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:微觀結(jié)構(gòu)硬度

    周誠(chéng)彬 陳成 趙明善 李子敬 馮達(dá)清

    摘 要:通過試驗(yàn)研究了S690Q高強(qiáng)鋼對(duì)接節(jié)點(diǎn)的焊后性能。利用手工電弧焊焊接了3個(gè)厚度為8 mm的S690Q高強(qiáng)鋼對(duì)接節(jié)點(diǎn),焊接過程中對(duì)3個(gè)節(jié)點(diǎn)分別采用不同的焊接熱量。在微觀層面上,用微觀結(jié)構(gòu)測(cè)試和微觀硬度測(cè)試研究焊接對(duì)于節(jié)點(diǎn)的影響;在宏觀層面上,通過拉伸試驗(yàn)研究焊接對(duì)于節(jié)點(diǎn)力學(xué)性能的影響。微觀結(jié)構(gòu)測(cè)試結(jié)果表明,S690Q高強(qiáng)鋼的主要微觀結(jié)構(gòu)是回火馬氏體。焊接后,在粗晶熱影響區(qū)會(huì)轉(zhuǎn)化為粒狀貝氏體,在細(xì)晶熱影響區(qū)會(huì)轉(zhuǎn)化為鐵素體和滲碳體,在回火區(qū)部分回火馬氏體會(huì)分解成鐵素體?;谟捕葴y(cè)試結(jié)果,可以在熱影響區(qū)內(nèi)發(fā)現(xiàn)軟化層的存在,軟化層與母材相比具有較低的硬度。此外,熱影響區(qū)的寬度也隨著焊接熱量的升高而增大。拉伸試驗(yàn)表明,焊接對(duì)于S690Q高強(qiáng)鋼節(jié)點(diǎn)的強(qiáng)度具有劣化作用,這主要是由焊接過程中形成的軟化層造成的。所有測(cè)試節(jié)點(diǎn)的失效位置均位于熱影響區(qū),而且隨著焊接熱量的升高,強(qiáng)度的劣化現(xiàn)象也變得越來越嚴(yán)重。

    關(guān)鍵詞:高強(qiáng)鋼;對(duì)接節(jié)點(diǎn);微觀結(jié)構(gòu);硬度;拉伸性能

    1 Introduction

    High strength to weight ratio in steel structures is an important advantage since it can result in better architectural expression and economic benefits such as less labor and transportation costs[1]. With the development of metallurgical technology, the strength to weight ratio of steel is further improved by using high strength steel with yield strength higher than 460 MPa. Among different high strength steel available in the market, reheated, quenched and tempered high strength steel is preferred since it has prominent weldability due to similar chemical composition with normal steel. Generally, reheated, quenched and tempered high strength steel is available in the form of plate since it is more conducive to achieving uniform material properties under the quenching and tempering process. That means welding, which is usually accompanied by dramatic temperature change around the joint, is inevitable for the built-up reheated, quenched and tempered high strength steel structural member. According to related investigations, reheated, quenched and tempered high strength steel is quite susceptible to high temperatures[2-3], and its strength could be significantly reduced after cooling[4-5]. Previous study also revealed that welded high strength steel butt joints lost 3% to 8% tensile strength in the condition of the area with reduced strength (soft layer) ranging from 0.33 to 0.6 times of specimen thickness[6].

    The formation of a soft layer in welded high strength steel butt joints is mainly caused by microstructure transformation in the heat-affected zone. The heat-affected zone of the welded butt joints can be roughly divided into three sub-heat-affected zones, including the coarse-grained heat-affected zone, the fine-grained heat-affected zone and the tempering zone[7]. In the coarse-grained heat-affected zone, the bainitic microstructure and martensite-austenite (M-A) constituents constitute the main microstructure after welding[8]. These microstructures have slightly lower hardness compared with the base material (tempered martensite) but are sensitive to cleavage cracking, especially when some austenite is retained after the bainite transformation. The main microstructures of the fine-grained heat-affected zone are generally composed of ferrite, pearlite or cementite[9]. In the tempering zone, parts of the tempered martensite decompose to ferrite after the welding process. Since ferrite, pearlite or cementite commonly have lower hardness compared with tempered martensite or bainite, the fine-grained heat-affected zone and the tempering zone are usually regarded as soft layer[10]. Overall, the microstructure transformation caused by welding leads to not only the reduction of tensile strength but also significant nonhomogeneity of the material within the heat-affected zone[11].

    In this study,the post-welding behaviour of S690Q high strength steel butt joints was investigated experimentally. Three butt joints were welded with 8 mm thickness reheated, quenched and tempered S690Q high strength steel plate by shield metal arc welding with different welding heat inputs. The microstructure transformation and hardness distribution in the heat-affected zones of the joints were revealed by light optical microscopy and micro-hardness tests, respectively. After this, tensile tests were conducted to find out the welding influence on the strength of the S690Q high strength steel butt joints.

    2 Material property and joint fabrication

    The high strength steel used in the tests was grade S690Q with nominal yield strength 690 MPa and tensile strength between 790 MPa and 930 MPa. The plate is delivered by the reheated, quenched and tempered procedure, and its chemical composition is similar to that of mild steel. Therefore, it has favorable weldability[12-13]. The weld material LB-80L was used as filler metal, satisfying the specification of AWS A5.5 E11018-G[14]. The mechanical property and chemical composition (together with the carbon equivalent CE) of S690Q high strength steel and LB-80L are listed in Table 1 and 2, respectively. It can be seen from Table 1 that the mechanical property of the filler metal is quite similar to that of the S690Q high strength steel used.

    Three S690Q high strength steel butt joints with 8 mm thickness were welded by shield metal arc welding. Different diameter electrodes, such as 3.2 mm, 4.0 mm and 5.0 mm, were used to gain different welding heat inputs. Four type-K thermocouples with 1 000 ℃ measuring limitation were employed to monitor the temperature history of the butt joints during welding, named thermocouple- 1, 2, 3 and 4, respectively. The arrangement of the thermocouples is presented in Fig.1(a), and the corresponding positions are described in Fig.3(a). The temperature measurement device is TDS-530 datalogger, as shown in Fig.1(b). The joints were all welded with four passes marked by 1, 2, 3 and 4 in Fig 2.

    The welding parameters of each welding pass for the three joints are listed in Table 3. It should be noted that the root pass for all the joints in this study was completed using a 3.2 mm electrode with voltage 30 V and current 73 A. In fact, the average welding heat input of BJ8-5.0 was lower than BJ8-4.0. That is because the deposition rate of the 5 mm diameter electrode was too high for BJ8-5.0 to control the welding quality if using the same welding speed for BJ8-4.0. Therefore, the welding speed of BJ8-5.0 was increased, and its average welding heat input was reduced. The temperature history curves of the butt joint are described in Fig.4.

    After the welding process was completed, an 8 mm×12 mm×40 mm block and two coupons were machined out. The position of the block and coupons in the butt joint is presented in Fig.3(a). The block was further cut into two halves from the center line of the weld. One was used for microstructure observation, and the other was used for the micro-hardness test. The microstructure and micro-hardness tests were employed to reveal the welding influence on the joint at the micro level. The coupons were used in the tensile test to find out the welding impact on the strength of the S690Q high strength steel butt joints at the macro level. The corresponding dimension is illustrated in Fig.3(b).

    3 Test results

    3.1 Microstructure test

    One half of the block was cast with epoxy, polished, etched with 2% nital solution and then observed under a light optical microscope to study the detailed microstructure transformation in heat-affected zone. In the welding process, the peak temperature of the coarse-grained heat-affected zone is almost up to the melting point (higher than Ac3), and the cooling rate of the coarse-grained heat-affected zone in the following cooling stage is quite fast. This welding thermal cycle directly results in the coarsening of the grain size[15]. From the perspective of microstructure, with the temperature of the coarse-grained heat-affected zone above Ac3,

    the growth of austenite grains is improved due to extended time at high temperature. The consecutive fast cooling leads to the generation of a coarse martensitic microstructure from the austenite[16]. The coarse-grained heat-affected zone of the high strength steel joint is generally accompanied by several detrimental characteristics (large prior austenite grain size, upper bainite, martensite-austenite (M-A) constituents, and microalloy precipitates) which may lead to lowest toughness in the heat-affected zone. Among the mentioned microstructural features, the M-A constituent (crack susceptibility) plays an important role in leading to the decrease of joint toughness[17]. The peak temperature of the fine-grained heat-affected zone also exceeds Ac3, resulting in a fully austenitized local microstructure. Nevertheless, the time above Ac3 in the fine-grained heat-affected zone is short and limits the grain growth. The microstructures mainly consist of ferrite and a little pearlite with grain size 1-3 mm. Compared with martensite in the coarse grain heat-affected zone, the ferrite and pearlite in the fine-grained heat-affected zone have lower hardness, and therefore have a softening effect on the mechanical performance of high strength steel welded joints[18].

    Fig.5 shows the microstructure of the base material, the coarse-grainedheat-affected zone, the fine-grained heat-affected zone and the tempering zone. As show in Fig.5(a), the main microstructure of the S690Q high strength steel used in the tests was tempered martensite. After welding, the tempered martensite of the base material was transformed to granular bainite in the coarse-grained heat-affected zone (Fig.5(b)). The granular bainite was composed of a bainitic ferrite matrix and the martensite-austenite (M-A) phase as the second phase. In the fine-grained heat-affected zone, the microstructure was transformed to ferrite and cementite (Fig.5(c)). Compared with ferrite and cementite, granular bainite is generally harder, but is lower in toughness. In the tempering zone of the heat-affected zone, some of the tempered martensite decomposed to ferrite, as shown in Fig.5(d).

    3.2 Micro-hardness test

    Vickers hardness measurement was carried out on a micro-hardness tester according to ISO 6507-1[19] using 500 g force. Four lines of indentations were made at different thickness position of the butt joints, and the indentations were located through weld, coarse-grained heat-affected zone, fine-grained heat-affected zone, tempering zone and base material sequentially for each line, as presented in Fig.6. The obtained micro-hardness values of the butt joints are shown in Fig.7. The black line shows the physical boundary of the weld bevel which could be confidently taken as the boundary between the weld materials and the heat-affected zone.

    As a result of the severe temperature changes in the heat-affected zone during the welding process, the microstructures with lower hardness formed in the fine-grained heat-affected zone and the tempering zone lead to the formation of a soft layer. In Fig.7, the soft layer is defined as the area between the two red dash lines, having relatively lower hardness values compared with the base material (S690Q high strength steel) with the hardness ranging from 270 Hv0.5 to 280 Hv0.5. The width of the soft layer was 6 mm, 8.875 mm, and 7.125 mm for BJ8-3.2, BJ8-4.0 and BJ8-5.0, respectively, which means the relative thickness of the soft layer (the ratio of the width of the soft layer over the plate thickness) was 0.75, 1.11, and 0.89, respectively. Considering the average welding heat input for BJ8-3.2, BJ8-4.0 and BJ8-5.0 was 1.25 kJ/mm, 1.58 kJ/mm and 1.49 kJ/mm (listed in Table 3), respectively, it can be concluded that the soft layer becomes wider for the welded S690Q high strength steel butt joints with the same thickness when higher welding heat input is adopted. The same conclusion is also suggested by Hochhauser and Rauch[6].

    3.3 Tensile test

    Tensile tests of the S690Q high strength steel butt joints were conducted on the 5900 series universal testing instruments according to EN 10002-1[20]. An extensometer with 50 mm gauge length was used to capture the deformation of the coupon. The loading rate was set as 0.5 mm/min until the joint fractured. From Fig.8, it can be seen that the tested butt joints all fractured within the heat-affected zone. The corresponding stress-strain curves are presented in Fig.9.

    Both the strength and the ductility of the S690Q high strength steel butt joint deteriorated after welding, and the deterioration of mechanical performance became more serious with the increase of welding heat input. The characteristic strength of the three joints are listed in Table 4, as well as the fracture elongation. The reduction of yield strength ranged from 19% to 27% and the deterioration of ultimate tensile strength changed from 13% to 18%, when the welding heat input was increased from 1.25 kJ/mm to 1.58 kJ/mm, leading to relative thickness of the soft layer raised from 0.75 to 1.11. Compared with the conclusion obtained by Hochhauser and Rauch[6], the variation tendency of tensile strength with different relative thicknesses of soft layer was the same, although the strength deterioration was more serious due to the wider soft layer based on the results in this study.

    The mechanical behaviour deterioration of the S690 high strength steel butt joints tested after welding was mainly caused by the soft layer, which was generated during welding, due to microstructure transformation. Additionally, the residual stress caused by the welding process led to the stiffness reduction of the S690Q high strength steel butt joint, which explains why the deterioration of yield strength was more serious compared with the ultimate tensile strength. The decreased elongation can be explained by two reasons. The first is the high concentration of plastic strain caused by the welding process, and the second is that the deformation of S690Q high strength steel butt joints mainly occurs within the heat-affected zone due to the existence of the soft layer instead of uniform deformation in the whole gauge length.

    4 Conclusion

    This study reveals the post-welding behaviour of S690Q high strength steel butt joints, taking the welding heat input as the principle factor. By microstructure observation, the microstructure transformation was confirmed in the heat-affected zone during the welding process, such as the granular bainite formed in the coarse-grained heat-affected zone, the ferrite and cementite generated in the fine-grained heat-affected zone, and the ferrite occurring in the tempering zone. The micro-hardness test revealed that a “soft layer” was generated in the heat-affected zone and the relative thickness of the soft layer was increased from 0.75 to 1.11 with the welding heat input raised from 1.25 kJ/mm to 1.58 kJ/mm for the 8 mm thickness joints. In the followed tensile tests, the softening effect of the welding process on S690Q high strength steel butt joints was indicated in view of the fact that the reduction of yield strength ranged from 19% to 27% and the deterioration of ultimate tensile strength changed from 13% to 18%, when the welding heat input was increased from 1.25 kJ/mm to 1.58 kJ/mm for the fabrication of butt joints with 8 mm thickness with the relative thickness of the soft layer ranging from 0.75 to 1.11. The reason why the deterioration of the yield strength is more serious compared with the ultimate tensile strength is that the the residual stress caused by the welding process leads to reduction in the stiffness of the S690Q high strength steel butt joint.

    Acknowledgements

    The financial support from the Regency Steel Asia Endowment Fund at Nanyang Technological University to the authors is gratefully acknowledged.

    References:

    [1] MIKI C, HOMMA K, TOMINAGA T. High strength and high performance steels and their use in bridge structures [J]. Journal of Constructional Steel Research, 2002, 58(1): 3-20.

    [2] CHEN J, YOUNG B, UY B. Behavior of high strength structural steel at elevated temperatures [J]. Journal of Structural Engineering, 2006, 132(12): 1948-1954.

    [3] QIANG X H, BIJLAARD F S K, KOLSTEIN H. Dependence of mechanical properties of high strength steel S690 on elevated temperatures [J]. Construction and Building Materials, 2012, 30: 73-79.

    [4] CHIEW S P, ZHAO M S, LEE C K. Mechanical properties of heat-treated high strength steel under fire/post-fire conditions [J]. Journal of Constructional Steel Research, 2014, 98: 12-19.

    [5] QIANG X H, BIJLAARD F S K, KOLSTEIN H. Post-fire mechanical properties of high strength structural steels S460 and S690 [J]. Engineering Structures, 2012, 35: 1-10.

    [6] HOCHHAUSER F, ERNST W, RAUCH R, et al. Influence of the soft zone on the strength of welded modern HSLA steels [J]. Welding in the World, 2012, 56(5/6): 77-85.

    [7] BOUMERZOUG Z, DERFOUF C, BAUDIN T. Effect of welding on microstructure and mechanical properties of an industrial low carbon steel [J]. Engineering, 2010, 2(7): 502-506.

    [8] LAMBERT-PERLADE A, GOURGUES A F, PINEAU A. Austenite tobainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Materialia, 2004, 52(8): 2337-2348.

    [9] WOJNOWSKI D, OH Y K, INDACOCHEA J E. Metallurgical assessment of the softened HAZ region during multipass welding [J]. Journal of Manufacturing Science and Engineering, 2000, 122(2): 310-315.

    [10] MAURER W, ERNST W, RAUCH R, et al. Evaluation of the factors influencing the strength of HSLA steel weld joint with softened HAZ [J]. Welding in the World, 2015, 59(6): 809-822.

    [11] CHEN C, CHIEW S P, ZHAO M S, et al. Welding effect on tensile strength of grade S690Q steel butt joint [J]. Journal of Constructional Steel Research, 2019, 153: 153-168.

    [12] KLEIN M, SPINDLER H, LUGER A, et al.Thermomechanically hot rolled high and ultra high strength steel grades-processing, properties and application [J]. Materials Science Forum, 2005, 500/501: 543-550.

    [13] DE MEESTER B. The weldability of modern structural TMCP steels [J]. ISIJ International, 1997, 37(6): 537-551.

    [14] Structural Welding Code-Steel: AWS D1.1 [S]. American National Standards Institute, Miami, 2008.

    [15] LI Y, CROWTHER D N, GREEN M J W, et al. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels [J]. ISIJ International, 2001, 41(1): 46-55.

    [16] KHAN M I, KUNTZ M L, BIRO E, et al. Microstructure and mechanical properties of resistance spot welded advanced high strength steels [J]. Materials Transactions, 2008, 49(7): 1629-1637.

    [17] PENG K, YANG C L, FAN C L, et al. Thermal processes, microstructure, and mechanical properties near weld toe in double-sided double gas tungsten arc backing welding joint of 10CrNi3MoV steel [J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 677-684.

    [18] RAN M M, SUN F F, LI G Q, et al. Experimental study on the behavior of mismatched butt welded joints of high strength steel [J]. Journal of Constructional Steel Research, 2019, 153: 196-208.

    [19] Metallic Materials-Vickers Hardness Test: BSI 6507-1 [S]. British Standards Institution, London, 2005.

    [20] Tensile Testing of Metallic Materials: Part1 Method of Test at Ambient Temperature: BSI, EN 10002-1 [S]. British Standards Institution, London, 2001.

    (編輯 胡英奎)

    猜你喜歡
    微觀結(jié)構(gòu)硬度
    終軋溫度對(duì)F460海工鋼組織及硬度影響
    山東冶金(2022年1期)2022-04-19 13:40:34
    65Mn表面電噴鍍Ni-Co-P/BN復(fù)合鍍層的硬度分析
    (TiB2+Al3Ti)/ZL102復(fù)合材料的硬度測(cè)試與增強(qiáng)機(jī)理分析
    冷卻速率對(duì)聚合物熔紡纖維結(jié)構(gòu)及性能的影響
    不同氧化預(yù)處理對(duì)疏浚底泥干燥特性的影響
    淺析燃料芯塊微觀結(jié)構(gòu)對(duì)芯塊制造質(zhì)量的影響
    科技視界(2016年21期)2016-10-17 16:48:41
    非晶合金的微觀結(jié)構(gòu)研究
    英漢雙語詞典收錄文化的方式
    煤渣陶瓷的微觀結(jié)構(gòu)分析
    科技視界(2015年27期)2015-10-08 14:48:05
    淺析12Cr5Mo管道焊縫的硬度值控制
    久久久久国产网址| 国产熟女欧美一区二区| 亚洲成人av在线免费| 大陆偷拍与自拍| 日韩中字成人| 国产精品秋霞免费鲁丝片| 综合色丁香网| 欧美激情在线99| 一级a做视频免费观看| 婷婷色综合www| 99久久人妻综合| 黄色配什么色好看| 亚洲国产av新网站| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av中文av极速乱| 亚洲国产日韩一区二区| 白带黄色成豆腐渣| 全区人妻精品视频| 亚洲色图av天堂| 国产探花极品一区二区| 一个人看的www免费观看视频| 男女那种视频在线观看| 99热这里只有是精品50| 日韩在线高清观看一区二区三区| 蜜臀久久99精品久久宅男| 97在线视频观看| 在现免费观看毛片| av专区在线播放| 交换朋友夫妻互换小说| 亚洲精品国产成人久久av| 下体分泌物呈黄色| 国产欧美日韩精品一区二区| 亚洲av中文av极速乱| a级毛片免费高清观看在线播放| 一区二区三区四区激情视频| av黄色大香蕉| 两个人的视频大全免费| 日韩精品有码人妻一区| 一级毛片我不卡| av线在线观看网站| 精品熟女少妇av免费看| 国产精品三级大全| 在线免费观看不下载黄p国产| 亚洲丝袜综合中文字幕| 欧美精品一区二区大全| 搡老乐熟女国产| 久久久久性生活片| 人人妻人人看人人澡| 日韩av不卡免费在线播放| 色哟哟·www| 国产在线一区二区三区精| 国产欧美日韩一区二区三区在线 | 各种免费的搞黄视频| 插阴视频在线观看视频| 老师上课跳d突然被开到最大视频| 久久久久久久久久人人人人人人| 日日撸夜夜添| av女优亚洲男人天堂| 国产成人a区在线观看| 精品熟女少妇av免费看| 男女国产视频网站| 国产美女午夜福利| 国产探花极品一区二区| 我的女老师完整版在线观看| 精品久久久精品久久久| 成人一区二区视频在线观看| 街头女战士在线观看网站| 国产精品女同一区二区软件| 亚洲人成网站在线播| 人妻制服诱惑在线中文字幕| 99久久中文字幕三级久久日本| 一区二区三区乱码不卡18| av黄色大香蕉| 22中文网久久字幕| 69人妻影院| 成人亚洲精品av一区二区| 久久久久国产网址| 久久久久久久久大av| 欧美日韩国产mv在线观看视频 | 欧美日韩一区二区视频在线观看视频在线 | 国产成人福利小说| 免费看av在线观看网站| av福利片在线观看| 九色成人免费人妻av| 国产成人aa在线观看| 人人妻人人看人人澡| 免费看a级黄色片| 在线观看美女被高潮喷水网站| 超碰97精品在线观看| 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| 丰满少妇做爰视频| 久热这里只有精品99| 亚洲精品亚洲一区二区| 日日摸夜夜添夜夜爱| 九九爱精品视频在线观看| 亚洲av二区三区四区| 国产精品一及| 欧美xxxx性猛交bbbb| 亚洲欧美成人精品一区二区| 国产精品秋霞免费鲁丝片| 国语对白做爰xxxⅹ性视频网站| 日本一本二区三区精品| 日日啪夜夜撸| 18禁在线无遮挡免费观看视频| 国产大屁股一区二区在线视频| av.在线天堂| 国产成人精品婷婷| 欧美丝袜亚洲另类| 女人久久www免费人成看片| 国产精品av视频在线免费观看| 欧美成人一区二区免费高清观看| 国产伦精品一区二区三区四那| freevideosex欧美| 欧美一区二区亚洲| 成年av动漫网址| 亚洲成人av在线免费| 在线观看三级黄色| 色视频www国产| 欧美激情久久久久久爽电影| 国产男人的电影天堂91| 色视频www国产| 伦理电影大哥的女人| 国产精品久久久久久精品电影| 禁无遮挡网站| 亚洲国产精品999| 日本午夜av视频| 嫩草影院入口| 可以在线观看毛片的网站| 免费高清在线观看视频在线观看| 亚洲精品影视一区二区三区av| 男女那种视频在线观看| 国产在视频线精品| 欧美一级a爱片免费观看看| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 国产精品蜜桃在线观看| 寂寞人妻少妇视频99o| 男女国产视频网站| av在线app专区| 纵有疾风起免费观看全集完整版| 免费观看性生交大片5| av线在线观看网站| 日日啪夜夜撸| 亚洲综合精品二区| 欧美人与善性xxx| 一区二区av电影网| 国产精品99久久99久久久不卡 | 国内精品宾馆在线| 搞女人的毛片| 高清av免费在线| 欧美3d第一页| 欧美xxⅹ黑人| 综合色av麻豆| 涩涩av久久男人的天堂| 国产黄频视频在线观看| 国产免费一区二区三区四区乱码| 欧美日本视频| 97超视频在线观看视频| 亚洲成人一二三区av| 欧美最新免费一区二区三区| 亚洲精品国产成人久久av| 女的被弄到高潮叫床怎么办| 亚洲精品aⅴ在线观看| 国产精品女同一区二区软件| 一级爰片在线观看| 精品久久久久久久久亚洲| 最近手机中文字幕大全| 亚洲在久久综合| 日韩大片免费观看网站| 久久精品夜色国产| 99视频精品全部免费 在线| 麻豆国产97在线/欧美| 超碰97精品在线观看| 99精国产麻豆久久婷婷| 深爱激情五月婷婷| 国产成人精品一,二区| 2022亚洲国产成人精品| 国产在视频线精品| 久久久久国产网址| 一边亲一边摸免费视频| 久久人人爽人人爽人人片va| 欧美精品一区二区大全| 国产精品爽爽va在线观看网站| 大香蕉97超碰在线| 尾随美女入室| xxx大片免费视频| 热re99久久精品国产66热6| 国产男女超爽视频在线观看| 超碰av人人做人人爽久久| av黄色大香蕉| 亚洲精品日韩av片在线观看| 国产美女午夜福利| 日本免费在线观看一区| av国产精品久久久久影院| 国产成人a区在线观看| 久久99蜜桃精品久久| 性色avwww在线观看| 免费av观看视频| 国内揄拍国产精品人妻在线| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| 综合色丁香网| 久久精品熟女亚洲av麻豆精品| 日韩中字成人| a级毛色黄片| 九九在线视频观看精品| 久久99热这里只频精品6学生| 老女人水多毛片| 国产精品国产三级专区第一集| 欧美成人一区二区免费高清观看| 欧美激情国产日韩精品一区| 欧美国产精品一级二级三级 | 亚洲四区av| 在线精品无人区一区二区三 | 国产精品一区www在线观看| 欧美激情久久久久久爽电影| 日本猛色少妇xxxxx猛交久久| 中文字幕亚洲精品专区| 日产精品乱码卡一卡2卡三| 国模一区二区三区四区视频| 日韩在线高清观看一区二区三区| 一级毛片 在线播放| 女人被狂操c到高潮| 免费观看在线日韩| 大片免费播放器 马上看| 小蜜桃在线观看免费完整版高清| 18禁裸乳无遮挡动漫免费视频 | 亚州av有码| 男人狂女人下面高潮的视频| 纵有疾风起免费观看全集完整版| 精品久久久精品久久久| 国产精品.久久久| 亚洲最大成人av| 乱码一卡2卡4卡精品| 国产精品成人在线| 乱系列少妇在线播放| 少妇高潮的动态图| 少妇裸体淫交视频免费看高清| 国产高清三级在线| 亚洲国产精品专区欧美| 欧美日韩亚洲高清精品| 91午夜精品亚洲一区二区三区| 丰满少妇做爰视频| 三级经典国产精品| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 久久久久久国产a免费观看| 别揉我奶头 嗯啊视频| av在线观看视频网站免费| 久久国内精品自在自线图片| 国产黄片美女视频| 亚洲精品久久午夜乱码| 日韩在线高清观看一区二区三区| 国产一区二区亚洲精品在线观看| 黄色欧美视频在线观看| 国产精品国产三级国产av玫瑰| 特大巨黑吊av在线直播| 亚洲一区二区三区欧美精品 | 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站 | 一区二区三区精品91| 久久久久九九精品影院| 亚洲av二区三区四区| 青青草视频在线视频观看| 国产探花在线观看一区二区| 国产一区亚洲一区在线观看| av在线app专区| 亚洲精品成人久久久久久| 欧美xxxx性猛交bbbb| 亚洲国产高清在线一区二区三| 国精品久久久久久国模美| 午夜免费男女啪啪视频观看| 国产亚洲午夜精品一区二区久久 | 久久ye,这里只有精品| 男女那种视频在线观看| 最近最新中文字幕免费大全7| 国产精品伦人一区二区| 天堂俺去俺来也www色官网| av天堂中文字幕网| av卡一久久| 色5月婷婷丁香| 大片电影免费在线观看免费| 国产成人a区在线观看| 搡女人真爽免费视频火全软件| 国产亚洲一区二区精品| 亚洲真实伦在线观看| 亚洲精品日本国产第一区| av福利片在线观看| 色播亚洲综合网| 欧美老熟妇乱子伦牲交| 久久久精品欧美日韩精品| 男人添女人高潮全过程视频| 欧美精品国产亚洲| 欧美97在线视频| 亚洲av成人精品一二三区| 亚洲成人一二三区av| 国产黄色免费在线视频| 一级黄片播放器| 永久免费av网站大全| 精品久久久精品久久久| 99视频精品全部免费 在线| 丝袜美腿在线中文| 女人久久www免费人成看片| 综合色丁香网| 久久精品国产亚洲av涩爱| 国产精品三级大全| 精品久久久久久久人妻蜜臀av| 黑人高潮一二区| av线在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 国产v大片淫在线免费观看| av在线观看视频网站免费| 狂野欧美白嫩少妇大欣赏| 我的老师免费观看完整版| 国语对白做爰xxxⅹ性视频网站| 看十八女毛片水多多多| 少妇猛男粗大的猛烈进出视频 | 久久久久九九精品影院| 日本免费在线观看一区| 2021少妇久久久久久久久久久| 国产精品一区二区在线观看99| 亚洲aⅴ乱码一区二区在线播放| 99re6热这里在线精品视频| 国产精品爽爽va在线观看网站| 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 另类亚洲欧美激情| 欧美国产精品一级二级三级 | 观看免费一级毛片| 亚洲精品色激情综合| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧洲国产日韩| 99久久人妻综合| 视频区图区小说| 香蕉精品网在线| 亚洲欧美日韩无卡精品| 免费看av在线观看网站| 日本午夜av视频| 国产精品av视频在线免费观看| 黑人高潮一二区| 亚洲国产精品国产精品| 精品一区二区免费观看| 极品少妇高潮喷水抽搐| 一级毛片 在线播放| 尤物成人国产欧美一区二区三区| 高清日韩中文字幕在线| 国产日韩欧美在线精品| 中文精品一卡2卡3卡4更新| 亚洲av成人精品一区久久| 亚洲精品乱久久久久久| 国产成人a区在线观看| 亚洲av免费在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲伊人久久精品综合| 久久久a久久爽久久v久久| 亚洲综合色惰| 国产一区有黄有色的免费视频| 国产成人91sexporn| 国产在线一区二区三区精| 亚洲美女视频黄频| 国产在线一区二区三区精| 草草在线视频免费看| 亚洲久久久久久中文字幕| 26uuu在线亚洲综合色| 91精品国产九色| 亚洲天堂av无毛| 晚上一个人看的免费电影| 亚洲精品日韩av片在线观看| 亚洲久久久久久中文字幕| 日韩精品有码人妻一区| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| av专区在线播放| 丰满乱子伦码专区| 人人妻人人爽人人添夜夜欢视频 | 午夜福利网站1000一区二区三区| 国产精品99久久99久久久不卡 | 伊人久久国产一区二区| 亚洲av免费在线观看| 精品久久久噜噜| 自拍欧美九色日韩亚洲蝌蚪91 | 男女那种视频在线观看| 亚洲内射少妇av| 国产欧美日韩精品一区二区| 中国国产av一级| 亚洲性久久影院| 天美传媒精品一区二区| 一个人看的www免费观看视频| 欧美成人一区二区免费高清观看| 欧美xxⅹ黑人| 久久久久国产精品人妻一区二区| 亚洲精品,欧美精品| 欧美3d第一页| 草草在线视频免费看| videos熟女内射| 国产成年人精品一区二区| 欧美一级a爱片免费观看看| 日韩av免费高清视频| 免费人成在线观看视频色| 欧美另类一区| 亚洲性久久影院| 亚洲色图综合在线观看| 大陆偷拍与自拍| 2021少妇久久久久久久久久久| 1000部很黄的大片| 国产精品国产三级国产专区5o| 亚洲欧美日韩无卡精品| av线在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久亚洲中文字幕| 麻豆国产97在线/欧美| 18+在线观看网站| 视频中文字幕在线观看| 看十八女毛片水多多多| 2021少妇久久久久久久久久久| 国产高潮美女av| 国产中年淑女户外野战色| 黄片无遮挡物在线观看| 久久精品国产亚洲av天美| 免费av毛片视频| 国产一区有黄有色的免费视频| 2018国产大陆天天弄谢| 18+在线观看网站| 黄色怎么调成土黄色| 五月开心婷婷网| 欧美日韩国产mv在线观看视频 | 有码 亚洲区| 熟女av电影| 久久97久久精品| 在线a可以看的网站| 国产精品熟女久久久久浪| 国内少妇人妻偷人精品xxx网站| 午夜激情福利司机影院| eeuss影院久久| 极品少妇高潮喷水抽搐| 国产精品三级大全| 亚洲在久久综合| 亚洲高清免费不卡视频| 国产免费一级a男人的天堂| 在线免费观看不下载黄p国产| 深夜a级毛片| 99久久人妻综合| 国产男人的电影天堂91| 亚洲国产精品999| 亚洲国产精品成人综合色| 亚洲成人av在线免费| 精品一区二区三区视频在线| 日产精品乱码卡一卡2卡三| 欧美成人精品欧美一级黄| 亚洲综合色惰| 久久久精品免费免费高清| 少妇裸体淫交视频免费看高清| 成人亚洲精品一区在线观看 | 婷婷色av中文字幕| 国产成人免费观看mmmm| 热re99久久精品国产66热6| 欧美日韩精品成人综合77777| 极品少妇高潮喷水抽搐| 欧美另类一区| 99久久九九国产精品国产免费| 亚洲综合精品二区| 婷婷色麻豆天堂久久| 一个人观看的视频www高清免费观看| 久热这里只有精品99| 欧美另类一区| 国产成人精品福利久久| 日韩亚洲欧美综合| 婷婷色麻豆天堂久久| 欧美极品一区二区三区四区| 一本色道久久久久久精品综合| 成人午夜精彩视频在线观看| 最近中文字幕高清免费大全6| 欧美最新免费一区二区三区| 水蜜桃什么品种好| 精品国产乱码久久久久久小说| 国产日韩欧美亚洲二区| 夫妻午夜视频| 少妇高潮的动态图| 男人爽女人下面视频在线观看| 只有这里有精品99| 高清在线视频一区二区三区| 丰满乱子伦码专区| 成人免费观看视频高清| 丝袜脚勾引网站| 国产午夜精品久久久久久一区二区三区| 亚洲人成网站在线播| 大码成人一级视频| 国产毛片在线视频| 国语对白做爰xxxⅹ性视频网站| 久久精品人妻少妇| 久久久久久久国产电影| 九色成人免费人妻av| 十八禁网站网址无遮挡 | 亚洲色图综合在线观看| 制服丝袜香蕉在线| 亚洲精品456在线播放app| 成人国产av品久久久| 天美传媒精品一区二区| 亚洲电影在线观看av| 久久久久网色| av国产免费在线观看| 亚洲人成网站高清观看| 欧美一区二区亚洲| 亚洲国产高清在线一区二区三| 人妻系列 视频| 久久99热这里只有精品18| 国产欧美日韩精品一区二区| 国产免费视频播放在线视频| 男的添女的下面高潮视频| 18禁动态无遮挡网站| 亚洲精品色激情综合| 麻豆成人av视频| 一级毛片我不卡| 免费高清在线观看视频在线观看| 新久久久久国产一级毛片| 亚洲精品国产成人久久av| 亚洲av二区三区四区| 国产美女午夜福利| 国产伦精品一区二区三区视频9| 99久久精品一区二区三区| 丝袜美腿在线中文| 久久久久久九九精品二区国产| 中文字幕亚洲精品专区| 日本猛色少妇xxxxx猛交久久| 欧美激情久久久久久爽电影| 亚洲欧美中文字幕日韩二区| 欧美日韩精品成人综合77777| 狠狠精品人妻久久久久久综合| 少妇丰满av| 又黄又爽又刺激的免费视频.| 舔av片在线| 久久精品国产亚洲av涩爱| 一二三四中文在线观看免费高清| 国产老妇女一区| 久久精品国产亚洲网站| 日韩大片免费观看网站| 一级毛片aaaaaa免费看小| 有码 亚洲区| 熟女av电影| 丰满人妻一区二区三区视频av| 少妇丰满av| 乱码一卡2卡4卡精品| 亚州av有码| 成人一区二区视频在线观看| 一边亲一边摸免费视频| 日韩成人伦理影院| 亚洲欧美日韩卡通动漫| .国产精品久久| 97热精品久久久久久| 免费av不卡在线播放| 日本一二三区视频观看| 国产精品一区二区性色av| 熟女人妻精品中文字幕| 国产亚洲5aaaaa淫片| 国产亚洲一区二区精品| 久久国产乱子免费精品| 伊人久久国产一区二区| 国产成人精品婷婷| 午夜视频国产福利| 欧美性猛交╳xxx乱大交人| 伊人久久精品亚洲午夜| 性插视频无遮挡在线免费观看| 最近中文字幕2019免费版| 国产精品熟女久久久久浪| 亚洲精品亚洲一区二区| 免费看av在线观看网站| 草草在线视频免费看| 国产高清三级在线| 国国产精品蜜臀av免费| 成人高潮视频无遮挡免费网站| 国产成人免费无遮挡视频| 黄色一级大片看看| 色播亚洲综合网| 99视频精品全部免费 在线| 国产精品熟女久久久久浪| 久久久久久九九精品二区国产| a级毛色黄片| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 国产精品三级大全| 国产成人一区二区在线| 男男h啪啪无遮挡| 国产成人精品久久久久久| 99热6这里只有精品| 3wmmmm亚洲av在线观看| 乱码一卡2卡4卡精品| 国产一区二区亚洲精品在线观看| 亚洲,欧美,日韩| 美女内射精品一级片tv| 国产成人精品久久久久久| 免费在线观看成人毛片| 欧美bdsm另类| 老师上课跳d突然被开到最大视频| 国产男女内射视频| 99re6热这里在线精品视频| 亚洲国产精品成人综合色| 91久久精品电影网| av在线app专区| 69人妻影院| 亚洲精品视频女| tube8黄色片| 久久韩国三级中文字幕| 日本与韩国留学比较| 亚洲丝袜综合中文字幕| 精品久久久精品久久久| 婷婷色综合大香蕉| 国产又色又爽无遮挡免| 色婷婷久久久亚洲欧美| 精品久久久久久电影网| 99re6热这里在线精品视频| 国产美女午夜福利| 18禁裸乳无遮挡动漫免费视频 | 国产黄片视频在线免费观看| 22中文网久久字幕|