• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    考慮空間變異性的基坑降水支護(hù)開挖引起地面沉降的可靠度評估

    2021-03-11 08:49章潤紅GOHAnthony周廷強(qiáng)仉文崗
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:擋墻變異性方差

    章潤紅 GOH Anthony 周廷強(qiáng) 仉文崗

    摘 要:對于軟黏土或殘積土中的深基坑支護(hù)開挖,開挖后的地面沉降與基底隆起和擋墻變形密切相關(guān),且受墻后地下水變化的影響顯著。提出一種基于最新開發(fā)的簡化對數(shù)回歸模型的可靠性分析方法預(yù)測地面最大沉降,采用考慮土體空間變異性的方差縮減技術(shù)實(shí)現(xiàn)一階可靠性方法(FORM),探討了地面沉降超過既定閾值的概率,驗(yàn)證了方差縮減技術(shù)的高效性。通過分析關(guān)于空間平均及關(guān)鍵設(shè)計(jì)參數(shù)的影響發(fā)現(xiàn),土體空間變異性會導(dǎo)致較高的破壞概率,擋墻的系統(tǒng)剛度、地面沉降閾值的大小、土體特性的變化系數(shù)以及地下水下降深度也對可靠性指標(biāo)有不同程度的影響,忽略其影響會導(dǎo)致不可靠的設(shè)計(jì),較大的特征長度會導(dǎo)致較低的破壞概率和較高的?,同時考慮的空間變異性會比單獨(dú)考慮其中一項(xiàng)對影響更大。

    關(guān)鍵詞:地面沉降;基坑支護(hù)開挖;降水;空間變異性;方差縮減

    1 Introduction

    Rapid urbanization and continuous development of infrastructure construction have led to an increased demand for deep braced excavations in urban built environments. One major concern with the construction of deep excavation support systems is the potential damage to nearby buildings and tunnels caused by excavation-induced ground movement. The ground movement behind the excavation is correlated with the extent of basal heaves and the magnitude of the wall deflections. Ground settlement is an important hydro-geological factor influencing the groundwater drawdown behind the excavation, due to possible leakage through the wall, flow along the wall interface, or poor connections between wall panels as a result of poor quality control. Therefore, assessing the distribution and magnitude of the ground surface settlement adjacent to a braced excavation is the most important consideration in the design phase. Numerical modeling is widely used, but it's time-consuming and requires considerable computational effort, especially three-dimensional computation. The use of empirical/semi-empirical methods to predict excavation-induced ground movement is more convenient [1-10].

    Reliability-based analysis via the first-order reliability method (FORM) is increasingly employed in various geotechnical applications [11-13] to calculate the reliability index as well as the probability of failure. This method adopts the mean average and the standard deviation or the equivalent value to present uncertain parameters. The safety factor or safety margin is determined by measuring the shortest distance from the safety average to the directional standard deviation of the most likely failure combination of parameters on the limit state surface. However, natural soil properties vary spatially due to the complicated geological, environmental, and physical-chemical processes to which the soil has been subjected during its formation[14-15]. Several researchers have highlighted the effects of the spatial variation of soil properties on various geotechnical problems[16-21]. Reliability analysis considering spatial variability has been carried out by many researchers. Luo et al.[22] presented a simplified approach for the reliability analysis of basal heave in a braced excavation considering the spatial variability of the soil parameters using the first-order reliability method (FORM). Wang et al.[23] modeled the inherent spatial variability of the soil properties of drilled shafts by developing a reliability-based design (RBD) approach that integrated a Monte Carlo simulation (MCS)-based RBD with the random field theory. Cheon et al.[24] described the spatial variability of geotechnical properties for foundation design in deep water in the Gulf of Mexico, via a random field model that depicted spatial variations in the design of undrained shear strength. Li et al.[25] investigated the reliability of strip footing in the presence of spatially variable undrained shear strength with a non-stationary random field. Gong et al.[26] proposed a new framework considering the spatial variability of soil properties to analyze the probabilistic ability of a braced excavation in clay, which was modeled with the random field theory. Liu et al.[27] analyzed the reliability of slopes considering the spatial variability of the soil using a simplified framework that applied a strategy of variance reduction to enable more than one shear strength value to be considered in slope reliability problems based on Monte Carlo simulation and the multiple response surface method (MRSM). However, studies on the probabilistic assessment of ground surface settlement induced by the braced excavation that consider the uncertainties arising from the soil stiffness and strength parameters are limited. In addition, the influence of the spatial variability of soil properties, as well as the influence of groundwater drawdown, are scarcely investigated.

    A simple logarithm regression (LR) model based on the numerical results from 746 hypothetical cases[28], was developed to predict the maximum ground settlement δvm. It is validated by a total of 19 well-documented actual case histories from various sites. The equation for δvm (mm) with the coefficient of determination R2=0.924 5 takes the following form:

    The index for the drawdown in the LR analysis was only 0.101 3, which is relatively small compared to the excavation depth, the relative shear strength ratio, and the system stiffness value. Based on Eq. (2), when other parameters are kept constant, an increase of dw from 0.3 m to 6.0 m will almost double the maximum ground surface settlement, which is consistent with the findings by Wen et al.[35].

    3 Reliability analysis considering spatial variability

    Since the FE analysis and the proposed LR estimation model are unable to take into account the inherent spatial variability of soil properties, this section introduces a reliability-based method to estimate the braced excavation induced ground surface settlement considering groundwater drawdown by adopting the FORM spreadsheet method and implementing the spatial factors.

    3.1 Brief introduction to spatial variability

    Spatial variability refers to the nonuniform distribution of basic soil properties such as permeability or the deformation modulus. The change in the spatial average of soil properties in a certain area is smaller than at a certain point, to some extent, and as the size of the area increases, the change in the soil properties decreases. A dimensionless variance reduction function Γ2 calculated by the scale of fluctuation θ and the characteristic length L, as proposed by Vanmarcke[36], was used to quantify the reduction in the point variance under local averaging. It is subsequently adopted by Vanmarcke to reveal spatial averaging for reliability analysis[37], by means of which the soil parameter variances can be reduced by multiplying a factor less than the unity, i.e. the variance reduction factor. This variance reduction technique has been successfully applied using different constant, triangular, and exponential models[37-38], among which the latter is more commonly assumed for geotechnical random field modeling, expressed as:

    The reduced variance σ2Γ can be obtained through:

    in which σ is the standard deviation of cu/σ′v or E50/cu. In this study, Γ is the standard deviation reduction factor.

    For reliability analysis using the variance reduction technique, the characteristic length is of most importance. Schweiger et al.[39] found that for the analysis of supported excavations, the characteristic length is correlated to the length of the sliding surface. Luo et al.[22] investigated the value of L that should be used and examined the influence of different L on the probability of excavation-induced basal-heave failure. For simplicity, the commonly adopted scale of fluctuation values θ of 2, 5, 20, 50, 100 m[40-41], and the characteristic lengths L=19, 26, 72 m are considered, which are closely associated with the excavation depth, the diaphragm wall depth, and the final strut depth.

    As shown in Fig. 1, the 1st L=19 m is the length of od (the distance of the final strut to the bottom of the diaphragm wall), the 2nd L=26 m equals the length of the arc cd, and the 3rd L=72 m is the length of the sliding surface (arc abcde). This method has been similarly adopted by Wu et al.[16]and Luo et al.[22].

    3.2 Developed Excel spreadsheet

    Fig.2 plots the FORM EXCEL Spreadsheet setup that implements the spatial variability for the calculation of the reliability index??and the probability of failure Pf based on the proposed estimation model of ground surface settlement. The spatial factors are inserted via Cells R3∶S5. The two variables of cuv′ and E50/cu are assumed to be normally distributed. Other parameters including B, T, He, ln S, and dw are assumed to be deterministic. In the example shown in Fig. 2, B=30 m, T=30 m, and He=20 m are adopted in the spatial variability analysis for the detailed use of the developed spreadsheet[13]. The reliability index?is calculated in Cell O4, numerically expressed as Eq. (5)

    where x is the vector of random variables; m is the vector of mean values; σ is the vector of standard deviation; R is the correlation matrix; and F is the failure region. Cell g(x) contains the expression of δvm-δvm_cr, which indicates that if the induced maximum ground surface settlement is greater than the threshold value δvm_cr, it would be regarded as a failure or unsatisfactory performance. The column labeled xi contains the design point. For spatial variance, SD=Mean×COV, in which SD is the standard deviation, Mean is the mean value, COV is the coefficient of variation,?is the standard deviation reduction factor. For random variables, the off-diagonal terms are zero. For Gaussian-distributed random variables, a direct relationship exists between??and ?in which Φ is the cumulative normal density function.

    5 Summary and conclusions

    A reliability-based framework that considers the spatial averaging effect of soil properties is proposed to assess the probability that threshold maximum ground surface settlement is exceeded by combining the FORM spreadsheet and the LR model proposed previously by Zhang et al.[28]. It is concluded that soil spatial variability results in a higher probability of failure (i.e., a lower reliability index).

    The parametric analysis shows that the spatial variability of soil, the threshold ground settlement, the stiffness of the system, the level of groundwater drawdown, as well as the COV of cu/sv′ and E50/cu have a significant influence on the reliability index. When the spatial variability of both cu/σ′v and E50/cu are considered, the influence on? is more significant. A larger characteristic length results in a lower probability of failure and a higher reliability index. The proposed approach requires much less computational effort in dealing with the spatial variability of soil properties. It is expected that these conclusions will provide useful references and insights for the design of future excavation projects involving spatial variability.

    For further study, a detailed characterization of geotechnical model uncertainties, especially from the perspective of the spatial variability of in situ soil properties, is indispensable. The authors are working on this by collecting borehole and bore log information regarding field instrumentation and tests.

    Acknowledgements

    The authors would like to acknowledge the financial support from National Natural Science Foundation of China (Grant No. 52078086), Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0632), Chongqing Engineering Research Center of Disaster Prevention & Control for Banks and Structures in Three Gorges Reservoir Area (No. SXAPGC18YB01).References:

    [1] PECK R B. Deep excavation and tunneling in soft ground [C]//7th International Conference on Soil Mechanics and Foundation Engineering, Sociedad Mexicana deMecanica, Mexico City, 1969: 225-290.

    [2] HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation [J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.

    [3] KUNG G T C, HSIAO E C L, JUANG C H. Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements [J]. Canadian Geotechnical Journal, 2007, 44(6): 726-736.

    [17] FAN H J, LIANG R. Reliability-based design of laterally loaded piles considering soil spatial variability [C]//Geo-Congress 2013. March 3-7, 2013, San Diego, California, USA. Reston, VA, USA: American Society of Civil Engineers, 2013: 475-486.

    [18] XIAO T, LI D Q, CAO Z J, et al. CPT-based probabilistic characterization of three-dimensional spatial variability using MLE [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(5): 04018023.

    [19] CHING J, HU Y G, PHOON K K. Effective Young's modulus of a spatially variable soil mass under a footing [J]. Structural Safety, 2018, 73: 99-113.

    [20] GOH A T C, ZHANG W G, WONG K S. Deterministic and reliability analysis of basal heave stability for excavation in spatial variable soils [J]. Computers and Geotechnics, 2019, 108: 152-160.

    [21] CHEN F Y, WANG L, ZHANG W G. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties [J]. Tunnelling and Underground Space Technology, 2019, 88: 276-289.

    [22] LUO Z, ATAMTURKTUR S, CAI Y Q, et al. Simplified approach for reliability-based design against basal-heave failure in braced excavations considering spatial effect [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(4): 441-450.

    [23] WANG Y, CAO Z J. Expanded reliability-based design of piles in spatially variable soil using efficient Monte Carlo simulations [J]. Soils and Foundations, 2013, 53(6): 820-834.

    [24] CHEON J Y, GILBERT R B. Modeling spatial variability in offshore geotechnical properties for reliability-based foundation design [J]. Structural Safety, 2014, 49: 18-26.

    [25] LI D Q, QI X H, CAO Z J, et al. Reliability analysis of strip footing considering spatially variable undrained shear strength that linearly increases with depth [J]. Soils and Foundations, 2015, 55(4): 866-880.

    [26] GONG W, JUANG C H, MARTIN J R. A new framework for probabilistic analysis of the performance of a supported excavation in clay considering spatial variability [J]. Géotechnique, 2017, 67(6): 546-552.

    [27] LIU L L, DENG Z P, ZHANG S H, et al. Simplified framework for system reliability analysis of slopes in spatially variable soils [J]. Engineering Geology, 2018, 239: 330-343.

    [28] ZHANG R H, ZHANG W G, GOH A T C, et al. A simple model for ground surface settlement induced by braced excavation subjected to a significant groundwater drawdown [J]. Geomechanics and Engineering, 2018, 16(6): 635-642.

    [29] BRINKGREVE L B J, KUMARSWAMY S, SWOLFS W M. Plaxis 2D user manual [M]. PLAXIS bv, Netherlands, 2016.

    [30] HASHASH Y M A, WHITTLE A J. Ground movement prediction for deep excavations in soft clay [J]. Journal of Geotechnical Engineering, 1996, 122(6): 474-486.

    [31] LAM S Y. Ground movements due to excavation in clay: physical and analytical models [D]. University of Cambridge, UK, 2010.

    [32] ZHANG W G, GOH A T C, XUAN F. A simple prediction model for wall deflection caused by braced excavation in clays [J]. Computers and Geotechnics, 2015, 63: 67-72.

    [33] WROTH C P, HOULSBY G T. Soil mechanics-property characterization and analysis procedures [C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundations Engineering, San Francisco, California, U.S.A., 1985.

    [34] XUAN F. Behavior of diaphragm walls in clays and reliablity analysis[D]. Nanyang Technological University, 2009.

    [35] WEN D Z, LIN K Q. The effect of deep excavation on pore water pressure changes in the Old Alluvium and under-drainage of marine clay in Singapore [M]//Geotechnical Aspects of Underground Construction in Soft Ground. Specifique, Lyon, 2002.

    [36] VANMARCKE E H. Probabilistic modeling of soil profiles [J] Journal of the Geotechnical Engineering Division, 1977, 103(11), 1227-1246.

    [37] VANMARCKE E H. Random Fields: Analysis and synthesis [M]. 2nd ed. Hoboken, NJ: John Wiley & Sons, 2010.

    [38] RACKWITZ R. Reviewing probabilistic soils modelling [J]. Computers and Geotechnics, 2000, 26(3/4): 199-223.

    [39] SCHWEIGER H F, PESCHL G M. Reliability analysis in geotechnics with the random set finite element method [J]. Computers and Geotechnics, 2005, 32(6): 422-435.

    [40] JIANG S H, LI D Q, CAO Z J, et al. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014096.

    [41] LI X Y, ZHANG L M, GAO L, et al. Simplified slope reliability analysis considering spatial soil variability [J]. Engineering Geology, 2017, 216: 90-97.

    (編輯 胡英奎)

    猜你喜歡
    擋墻變異性方差
    孟魯司特鈉治療小兒咳嗽變異性哮喘的療效觀察
    氨氯地平、纈沙坦聯(lián)用對老年高血壓患者療效及血壓變異性的影響
    淺析下穿通道擋墻模板設(shè)計(jì)與施工技術(shù)
    預(yù)應(yīng)力鋼筋混凝土板加固高速病害擋墻的應(yīng)用研究
    丙酸氟替卡松、孟魯司特、地氯雷他定治療咳嗽變異性哮喘的臨床研究
    既有鐵路線漿砌石擋墻加固施工技術(shù)應(yīng)用
    擋土墻組合結(jié)構(gòu)型式選用的探討
    方差生活秀
    揭秘平均數(shù)和方差的變化規(guī)律
    方差越小越好?
    肉色欧美久久久久久久蜜桃| 男女免费视频国产| 国产亚洲av片在线观看秒播厂| 欧美精品国产亚洲| 激情 狠狠 欧美| 又粗又硬又长又爽又黄的视频| 大片电影免费在线观看免费| 美女福利国产在线 | 国产精品熟女久久久久浪| 日韩免费高清中文字幕av| 综合色丁香网| 欧美国产精品一级二级三级 | 有码 亚洲区| 日韩精品有码人妻一区| 看非洲黑人一级黄片| 亚洲精品视频女| 国产永久视频网站| 成人免费观看视频高清| 少妇高潮的动态图| 精品人妻熟女av久视频| 嫩草影院入口| 一级爰片在线观看| 日韩中文字幕视频在线看片 | 国产亚洲5aaaaa淫片| 在线精品无人区一区二区三 | 国产伦在线观看视频一区| 少妇熟女欧美另类| 成人影院久久| 成人黄色视频免费在线看| 色综合色国产| 欧美高清性xxxxhd video| 毛片一级片免费看久久久久| 99热国产这里只有精品6| 九草在线视频观看| 97在线人人人人妻| 美女cb高潮喷水在线观看| 午夜激情久久久久久久| 久久久久久九九精品二区国产| 国产日韩欧美在线精品| 亚洲精品第二区| 亚洲av男天堂| 亚洲成色77777| 男人狂女人下面高潮的视频| 欧美日韩视频高清一区二区三区二| 日韩av在线免费看完整版不卡| 国产成人a区在线观看| 国产老妇伦熟女老妇高清| 日本av手机在线免费观看| 亚洲国产欧美人成| 99视频精品全部免费 在线| 亚洲美女搞黄在线观看| 菩萨蛮人人尽说江南好唐韦庄| 一个人看的www免费观看视频| 亚洲av成人精品一区久久| 免费观看的影片在线观看| 男女国产视频网站| 日韩一本色道免费dvd| 王馨瑶露胸无遮挡在线观看| 少妇人妻一区二区三区视频| 久久久久国产网址| 尤物成人国产欧美一区二区三区| 男男h啪啪无遮挡| 久久久久久伊人网av| 成人毛片60女人毛片免费| 成人午夜精彩视频在线观看| 久久99热6这里只有精品| 老司机影院成人| 在线观看美女被高潮喷水网站| 日韩三级伦理在线观看| 自拍偷自拍亚洲精品老妇| 永久网站在线| 岛国毛片在线播放| av视频免费观看在线观看| 在线观看人妻少妇| 欧美日韩亚洲高清精品| 亚洲人与动物交配视频| 插阴视频在线观看视频| 欧美一区二区亚洲| 一边亲一边摸免费视频| 精品国产三级普通话版| av播播在线观看一区| 两个人的视频大全免费| h日本视频在线播放| 高清视频免费观看一区二区| 男女无遮挡免费网站观看| 国产久久久一区二区三区| 青春草国产在线视频| 在线免费十八禁| 亚洲va在线va天堂va国产| 欧美一区二区亚洲| 夫妻午夜视频| xxx大片免费视频| 亚洲欧洲国产日韩| 2022亚洲国产成人精品| 欧美xxⅹ黑人| av福利片在线观看| 久久精品国产亚洲av涩爱| 赤兔流量卡办理| 在线观看人妻少妇| 欧美成人午夜免费资源| 久久99热6这里只有精品| 国产淫片久久久久久久久| av国产久精品久网站免费入址| 亚洲色图综合在线观看| 国产亚洲午夜精品一区二区久久| 日韩av在线免费看完整版不卡| 中文在线观看免费www的网站| 久久久久国产精品人妻一区二区| 亚洲精品日本国产第一区| 丝袜脚勾引网站| 精品人妻熟女av久视频| 亚洲国产色片| 18禁裸乳无遮挡免费网站照片| 国模一区二区三区四区视频| 国产av国产精品国产| 午夜免费鲁丝| 国产亚洲最大av| 亚洲自偷自拍三级| 99热网站在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产一区二区三区av在线| 亚洲一区二区三区欧美精品| 午夜日本视频在线| 精品人妻偷拍中文字幕| 肉色欧美久久久久久久蜜桃| 看十八女毛片水多多多| 人人妻人人爽人人添夜夜欢视频 | 七月丁香在线播放| 插逼视频在线观看| av福利片在线观看| 人体艺术视频欧美日本| 亚洲成人av在线免费| 精品国产露脸久久av麻豆| 国产男女超爽视频在线观看| av天堂中文字幕网| 精品国产一区二区三区久久久樱花 | 99热这里只有是精品在线观看| 午夜激情福利司机影院| 麻豆精品久久久久久蜜桃| 日韩一区二区三区影片| 三级国产精品片| 国产一级毛片在线| 国产精品蜜桃在线观看| 久热久热在线精品观看| 国产无遮挡羞羞视频在线观看| 一级黄片播放器| 免费黄色在线免费观看| 黄色视频在线播放观看不卡| 99久久综合免费| 亚洲av电影在线观看一区二区三区| 激情 狠狠 欧美| 国产高清有码在线观看视频| 日韩强制内射视频| 国产精品爽爽va在线观看网站| 欧美另类一区| 精品一区在线观看国产| 青青草视频在线视频观看| 天美传媒精品一区二区| 国产黄片视频在线免费观看| 久久97久久精品| av卡一久久| 99久国产av精品国产电影| 日本欧美国产在线视频| 最近的中文字幕免费完整| 麻豆精品久久久久久蜜桃| 性色av一级| 欧美成人午夜免费资源| av在线老鸭窝| 亚洲av中文字字幕乱码综合| 夜夜爽夜夜爽视频| 精品亚洲成a人片在线观看 | 午夜福利在线在线| 少妇人妻一区二区三区视频| 草草在线视频免费看| 高清日韩中文字幕在线| 亚洲国产欧美在线一区| 久久ye,这里只有精品| 视频中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 一本一本综合久久| 亚洲人与动物交配视频| 欧美丝袜亚洲另类| 亚洲精品成人av观看孕妇| 国产无遮挡羞羞视频在线观看| 亚洲精品乱码久久久v下载方式| 久久久a久久爽久久v久久| 亚洲三级黄色毛片| 亚洲精品一二三| 国产成人精品福利久久| 我的老师免费观看完整版| 91午夜精品亚洲一区二区三区| 黄片无遮挡物在线观看| 视频区图区小说| 国产精品国产三级国产av玫瑰| 中国国产av一级| 国产免费视频播放在线视频| 国产在视频线精品| 亚洲欧美一区二区三区国产| 女的被弄到高潮叫床怎么办| av在线老鸭窝| 尾随美女入室| 三级经典国产精品| 精品人妻偷拍中文字幕| 婷婷色综合大香蕉| xxx大片免费视频| 亚洲精品久久午夜乱码| 久久久久久久精品精品| 亚洲精品色激情综合| 舔av片在线| 99久久综合免费| 国产黄色视频一区二区在线观看| a级毛色黄片| 丝瓜视频免费看黄片| 免费人成在线观看视频色| 高清视频免费观看一区二区| 插逼视频在线观看| 婷婷色麻豆天堂久久| 又大又黄又爽视频免费| 九色成人免费人妻av| 久久99热这里只频精品6学生| 91精品伊人久久大香线蕉| 久久国内精品自在自线图片| 青春草国产在线视频| 新久久久久国产一级毛片| 在线播放无遮挡| 国产av精品麻豆| 五月伊人婷婷丁香| 一本色道久久久久久精品综合| 久久人人爽av亚洲精品天堂 | 麻豆乱淫一区二区| av女优亚洲男人天堂| 人妻少妇偷人精品九色| 亚洲精品国产av蜜桃| 国产伦精品一区二区三区四那| 在线精品无人区一区二区三 | 91久久精品国产一区二区成人| 色婷婷久久久亚洲欧美| 日韩一区二区三区影片| 国产在线一区二区三区精| h视频一区二区三区| h日本视频在线播放| 亚洲av中文av极速乱| 视频区图区小说| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久av不卡| 国产中年淑女户外野战色| 国产乱人偷精品视频| 欧美+日韩+精品| 一级毛片黄色毛片免费观看视频| 国产一区二区三区av在线| 亚洲av福利一区| 久久99热这里只频精品6学生| 女性被躁到高潮视频| 99热这里只有精品一区| 精品亚洲成国产av| av黄色大香蕉| 亚洲最大成人中文| 两个人的视频大全免费| 国产精品av视频在线免费观看| 多毛熟女@视频| 日韩欧美精品免费久久| 干丝袜人妻中文字幕| 久久婷婷青草| 国产高清不卡午夜福利| 91aial.com中文字幕在线观看| 啦啦啦在线观看免费高清www| 久久国产亚洲av麻豆专区| 在线免费观看不下载黄p国产| 久久精品国产a三级三级三级| 国产精品人妻久久久久久| 免费观看av网站的网址| 亚洲天堂av无毛| 久久久精品94久久精品| 国产精品久久久久成人av| 中文字幕亚洲精品专区| 国产午夜精品一二区理论片| 国产精品久久久久久久电影| 欧美bdsm另类| 国国产精品蜜臀av免费| 18禁在线无遮挡免费观看视频| 纯流量卡能插随身wifi吗| 日韩在线高清观看一区二区三区| 国产白丝娇喘喷水9色精品| 日本与韩国留学比较| 亚洲国产欧美在线一区| 王馨瑶露胸无遮挡在线观看| a级毛色黄片| 在线观看免费视频网站a站| 精品国产露脸久久av麻豆| 少妇被粗大猛烈的视频| 97在线视频观看| 高清欧美精品videossex| 成年av动漫网址| 99国产精品免费福利视频| 男女啪啪激烈高潮av片| 大码成人一级视频| 毛片一级片免费看久久久久| 一级av片app| 久久久精品免费免费高清| 你懂的网址亚洲精品在线观看| 亚洲天堂av无毛| 丰满迷人的少妇在线观看| 熟女人妻精品中文字幕| 亚洲人成网站高清观看| 欧美区成人在线视频| 哪个播放器可以免费观看大片| 一级a做视频免费观看| 日韩免费高清中文字幕av| 久久精品国产亚洲av天美| 色综合色国产| 亚洲欧美日韩无卡精品| 伦理电影免费视频| a 毛片基地| 日韩电影二区| 一级毛片黄色毛片免费观看视频| 亚洲国产精品专区欧美| 久久99热这里只频精品6学生| 麻豆乱淫一区二区| av视频免费观看在线观看| 国产女主播在线喷水免费视频网站| 色婷婷av一区二区三区视频| 国产精品久久久久久av不卡| 亚洲人成网站高清观看| 国产精品久久久久久久电影| 国内揄拍国产精品人妻在线| 久久精品久久精品一区二区三区| 国产精品一区www在线观看| 老熟女久久久| 亚洲经典国产精华液单| 亚洲天堂av无毛| 美女xxoo啪啪120秒动态图| 最近的中文字幕免费完整| 欧美一级a爱片免费观看看| 国产高清不卡午夜福利| 亚洲欧美成人综合另类久久久| av国产精品久久久久影院| 亚洲人与动物交配视频| 99久久精品一区二区三区| 国产成人精品久久久久久| 五月玫瑰六月丁香| 春色校园在线视频观看| 国产91av在线免费观看| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 丰满乱子伦码专区| 国产成人aa在线观看| 日韩视频在线欧美| 我的老师免费观看完整版| 午夜激情久久久久久久| 女性被躁到高潮视频| 日韩视频在线欧美| 三级国产精品欧美在线观看| xxx大片免费视频| av不卡在线播放| 尤物成人国产欧美一区二区三区| 网址你懂的国产日韩在线| 美女主播在线视频| 青春草亚洲视频在线观看| 久久精品国产亚洲网站| 亚洲精品一二三| 亚洲美女黄色视频免费看| 亚洲av电影在线观看一区二区三区| 性色av一级| 欧美日本视频| 久久99精品国语久久久| 青春草亚洲视频在线观看| 天堂俺去俺来也www色官网| 久热这里只有精品99| 男女啪啪激烈高潮av片| 成人18禁高潮啪啪吃奶动态图 | 国产色婷婷99| 纵有疾风起免费观看全集完整版| 国产精品免费大片| 久久久久国产精品人妻一区二区| 在线播放无遮挡| 国产一区二区三区av在线| 亚洲欧美日韩卡通动漫| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花 | 亚洲最大成人中文| 男女下面进入的视频免费午夜| 高清不卡的av网站| 久久精品国产a三级三级三级| 色网站视频免费| 国产亚洲91精品色在线| av女优亚洲男人天堂| 人妻 亚洲 视频| 国产真实伦视频高清在线观看| 免费观看性生交大片5| 欧美极品一区二区三区四区| 成人免费观看视频高清| 亚洲伊人久久精品综合| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 国产黄色免费在线视频| 成人影院久久| 国产一级毛片在线| av天堂中文字幕网| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品久久久com| 久久久精品免费免费高清| 亚洲av中文av极速乱| 在线观看国产h片| 国产视频内射| 伦理电影大哥的女人| 十分钟在线观看高清视频www | 噜噜噜噜噜久久久久久91| 老女人水多毛片| 国产精品国产三级专区第一集| 99久久精品国产国产毛片| 国产欧美亚洲国产| 国产精品三级大全| 老熟女久久久| 亚洲精品久久久久久婷婷小说| 丰满少妇做爰视频| 国产伦精品一区二区三区四那| 3wmmmm亚洲av在线观看| 成人无遮挡网站| 91精品一卡2卡3卡4卡| 国产伦精品一区二区三区视频9| 久久久久国产精品人妻一区二区| 十八禁网站网址无遮挡 | 26uuu在线亚洲综合色| 国产人妻一区二区三区在| 亚洲性久久影院| 免费不卡的大黄色大毛片视频在线观看| 色视频www国产| 亚洲第一区二区三区不卡| 亚洲色图综合在线观看| 亚洲三级黄色毛片| 欧美日韩精品成人综合77777| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站高清观看| 亚洲精品,欧美精品| 欧美日韩国产mv在线观看视频 | 日韩大片免费观看网站| 99热这里只有是精品在线观看| 天堂中文最新版在线下载| 色视频在线一区二区三区| 国产大屁股一区二区在线视频| 永久免费av网站大全| av国产久精品久网站免费入址| 亚洲精华国产精华液的使用体验| 精品一区二区免费观看| 久久久久性生活片| 大陆偷拍与自拍| 深爱激情五月婷婷| 精品视频人人做人人爽| 精品国产乱码久久久久久小说| 在线 av 中文字幕| 亚洲经典国产精华液单| 精品一区在线观看国产| 老熟女久久久| 国产黄频视频在线观看| 免费观看的影片在线观看| 亚洲欧美一区二区三区国产| 日韩欧美一区视频在线观看 | 女性生殖器流出的白浆| av又黄又爽大尺度在线免费看| 美女视频免费永久观看网站| 成人毛片60女人毛片免费| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 99热这里只有是精品在线观看| 欧美xxⅹ黑人| 久久ye,这里只有精品| 尤物成人国产欧美一区二区三区| 日本与韩国留学比较| 亚洲精品日本国产第一区| 亚洲欧美日韩东京热| 夫妻午夜视频| 晚上一个人看的免费电影| 亚洲精品视频女| 一级毛片我不卡| 不卡视频在线观看欧美| 日韩av免费高清视频| 在线免费十八禁| 国产精品人妻久久久久久| 一级毛片 在线播放| 日本欧美国产在线视频| 国产精品国产av在线观看| 日本vs欧美在线观看视频 | 久久精品久久久久久久性| 国产女主播在线喷水免费视频网站| 91精品伊人久久大香线蕉| 亚洲精品一二三| 国产亚洲91精品色在线| 香蕉精品网在线| 蜜臀久久99精品久久宅男| 午夜福利影视在线免费观看| 麻豆成人av视频| 欧美另类一区| 大又大粗又爽又黄少妇毛片口| 亚洲伊人久久精品综合| 亚洲av不卡在线观看| 免费人妻精品一区二区三区视频| 国产黄色视频一区二区在线观看| 一级毛片黄色毛片免费观看视频| 欧美zozozo另类| 另类亚洲欧美激情| 午夜激情久久久久久久| 国产在线一区二区三区精| 最黄视频免费看| 97精品久久久久久久久久精品| videos熟女内射| 久久99蜜桃精品久久| a 毛片基地| 男女免费视频国产| 22中文网久久字幕| 亚洲综合精品二区| 国产黄片美女视频| 高清不卡的av网站| 国产一区二区三区综合在线观看 | 我要看日韩黄色一级片| 成人美女网站在线观看视频| 高清日韩中文字幕在线| 欧美成人午夜免费资源| 亚洲天堂av无毛| 日本黄色片子视频| 亚洲欧美一区二区三区黑人 | 欧美精品一区二区免费开放| 成年人午夜在线观看视频| 欧美最新免费一区二区三区| av在线播放精品| 日韩成人伦理影院| 亚洲内射少妇av| 国产色婷婷99| 亚洲自偷自拍三级| 老女人水多毛片| 国产精品一及| 久久久久久久久久久丰满| 日韩中字成人| 精品人妻熟女av久视频| 亚洲av欧美aⅴ国产| 中文字幕精品免费在线观看视频 | 网址你懂的国产日韩在线| 久久精品久久精品一区二区三区| 亚洲性久久影院| 国产精品精品国产色婷婷| 久久久欧美国产精品| 麻豆国产97在线/欧美| 日本欧美视频一区| 亚洲美女视频黄频| 一级黄片播放器| 寂寞人妻少妇视频99o| 女性被躁到高潮视频| 亚洲av日韩在线播放| 大片免费播放器 马上看| 久久鲁丝午夜福利片| 久久综合国产亚洲精品| 在线播放无遮挡| 丰满迷人的少妇在线观看| 亚洲国产精品999| 舔av片在线| 亚洲丝袜综合中文字幕| 五月玫瑰六月丁香| 中文在线观看免费www的网站| 国产精品av视频在线免费观看| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 99热这里只有是精品在线观看| 日日啪夜夜撸| 免费在线观看成人毛片| 欧美亚洲 丝袜 人妻 在线| 韩国av在线不卡| 自拍偷自拍亚洲精品老妇| 97精品久久久久久久久久精品| 91午夜精品亚洲一区二区三区| 乱系列少妇在线播放| freevideosex欧美| 国产中年淑女户外野战色| 中文天堂在线官网| 中文乱码字字幕精品一区二区三区| 大话2 男鬼变身卡| 国产片特级美女逼逼视频| 午夜福利高清视频| 水蜜桃什么品种好| 日韩一本色道免费dvd| 免费黄色在线免费观看| 蜜臀久久99精品久久宅男| 欧美丝袜亚洲另类| 中文欧美无线码| 亚洲国产精品成人久久小说| 两个人的视频大全免费| 麻豆成人午夜福利视频| 91久久精品电影网| 少妇 在线观看| 亚洲激情五月婷婷啪啪| 麻豆精品久久久久久蜜桃| 少妇人妻一区二区三区视频| 蜜桃亚洲精品一区二区三区| 精品国产三级普通话版| 精品人妻一区二区三区麻豆| 黑人高潮一二区| 中文字幕久久专区| 国产成人精品婷婷| 免费看不卡的av| 免费观看性生交大片5| 国产一区二区三区综合在线观看 | 久久青草综合色| 老司机影院毛片| 春色校园在线视频观看| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 男女边摸边吃奶| 性色av一级| 国产 一区精品| 亚洲精品乱码久久久v下载方式| 亚洲综合色惰| 国产免费又黄又爽又色| 精品久久国产蜜桃| 亚洲精品一二三| 91在线精品国自产拍蜜月| 女人久久www免费人成看片|