• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Snapback-free shorted anode LIGBT with controlled anode barrier and resistance?

    2021-03-11 08:34:18ShunLi李順JinShaZhang張金沙WeiZhongChen陳偉中YaoHuang黃垚LiJunHe賀利軍andYiHuang黃義
    Chinese Physics B 2021年2期
    關(guān)鍵詞:陳偉金沙

    Shun Li(李順), Jin-Sha Zhang(張金沙), Wei-Zhong Chen(陳偉中),2,?,Yao Huang(黃垚), Li-Jun He(賀利軍), and Yi Huang(黃義)

    1College of Electronics Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

    2Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: shorted anode lateral-insulated gate bipolar transistor,snapback,barrier,trade-off

    1. Introduction

    Lateral insulated gate bipolar transistor(LIGBT)is a popular power device due to its voltage control and low power loss at forward conduction,which is widely used in the field of the power integrated circuits.[1–9]However,the excessive carriers in the N-drift lead to the large turn-off loss Eoff.[10–17]The shorted anode (SA) LIGBT can effectively accelerate the extraction of electrons by introducing the N+anode in anode.[18]However, the snapback effect is induced when the working mode of the device transforms from unipolar mode to bipolar mode. In order to solve this problem, several novel structures have been proposed. The separated shorted anode(SSA)LIGBT is adopted to suppress the snapback by controlling the distance between N+anode and P+anode.[19]The trench shorted anode(TSA)LIGBT is proposed to alleviate the snapback by inducing an oxide trench between N+ anode and P+anode, which extends the path of the electrons.[20]The segmented trench in the anode region(STA)LIGBT can avoid the snapback by inducing a deep trench in anode.[21,22]The multiple current plugs(MCP)LIGBT can eliminate the snapback by introducing three separated current plugs into N-buffer.[23]

    In this work, a novel SA LIGBT featuring a controlled anode barrier and resistance(CBR)is proposed and discussed to achieve the snapback-free and better trade-off characteristic between Vonand Eoff. The devices simulation results and validations are obtained by the TCAD MEDICI tools,and the parallel field mobility model,concentration-dependent model, perpendicular electric field mobility model, auger recombination, and Shockley–Read–Hall recombination model are adopted.[24]

    2. Device structure and mechanism

    Figure 1(a) shows the schematic views of the CBR LIGBT. An oxide trench is set to be in anode region, which divides the N-drift into two parts. The P-float is set to be on the left of the oxide trench, which forms an electron barrier Vbarrierto inhibit the electrons from flowing into the N+anode.The N-type doping polysilicon layer is located on the top of the oxide trench, while the N-float is set to be on the right of the oxide trench,which forms the anode resistance RSAin series.The key parameters for the different structures compared with each other in this paper are listed in Table 1,where t and Npolyare the thickness and doping concentration of the polysilicon layer, respectively; NP?and NN?are the doping concentrations of the P-float and N-float,respectively;LBis the distance between N+anode and P+anode of the SSA LIGBT;Ltis the length of oxide trench of the TSA LIGBT.

    Figure 1(b) shows the equivalent circuit and operating mechanism of the CBR LIGBT.The polysilicon layer and Nfloat are respectively regarded as the R1and R2in series,while the P-float is an electron barrier to block electrons flowing into the N+anode. The height of the potential barrier Vbarrieris expressed as

    where niis the intrinsic carrier concentration, Nbufferis the doping of the N-buffer, NP?and k0are the doping of the Pfloat and Boltzmann constant,respectively.

    Fig.1. (a) Schematic diagram of CBR LIGBT, Ndrift doping Nd =1.8×1014 cm?3,N-drift length Wd=30μm. (b)Equivalent circuit and operating mechanism of CBR LIGBT in unipolar mode.

    Table 1. Key parameters of different LIGBTs.

    The value of R1and R2can be obtained from

    where Lpolyand LN?are the length of the polysilicon layer and N-float,respectively,tnis the thickness of the N-float,and Z is the length of the device in the vertical direction. Thus,the proposed device obtains a larger RSAthan the SA LIGBT.At the initial forward conduction stage (IA·RSA<0.7 V),the device operates in unipolar mode with single electrons,and the P-body/N-drift/P+ anode triode is turned off. When IA·RSA≥0.7 V, the PNP transistor is turned on, and the P+ anode injects holes into the N-drift. The device works in the bipolar mode. When the device transforms from unipolar mode to bipolar mode,the turnover voltage of snapback effect VSBcan be approximated as the following expression:[25]

    where Rdand Rchare the resistance of N-drift region and channel,respectively;RSAcan be calculated from

    So, the snapback VSBcan be suppressed by increasing the Vbarrier,R1or R2in the anode.

    At turning off stage, the N-buffer/P-float/Polysilicon layer/N-float forms a low-resistance path to accelerate the extraction of electrons,which effectively reduces the Eoffof the CBR LIGBT.

    3. Results and discussion

    3.1. Forward conduction characteristics

    Figure 2(a) shows the comparison of forward conduction characteristics among the CBR LIGBT,SA LIGBT,SSA LIGBT,and TSA LIGBT.For the SA LIGBT,it switches from unipolar mode to bipolar mode with abrupt voltage due to the shorted effect of the N+ anode. Thus it exhibits the most serious snapback phenomenon in all the LIGBTs above. For the SSA LIGBT, it still suffers a tiny snapback even if the LBincreases to 20 μm, which leads to the waste of the chip length. For the TSA LIGBT, the snapback effect can be effectively suppressed when the oxide trench is deep enough(Lt≥3 μm). The CBR LIGBT achieves the snapback-free characteristic, because the RSAand the Vbarriercan be easily increased by adjusting the doping concentration of polysilicon layer and P-float. Additionally,both the CBR LIGBT and TSA LIGBT achieve the lowest voltage drop of 1.12 V at JAof 100 A/cm2.

    Figure 2(b) shows the current distributions in the anode region of the CBR LIGBT at points A and B. At point A of JA=3 A/cm2, the device operates in a unipolar mode, and the P+ anode/N-buffer junctions is turned off. The electron current flows to the N+ anode along the path of N-buffer/ Pfloat/Polysilicon layer/N-float. At point B of JA=40 A/cm2,the P+anode/N-buffer junction is turned on,and the P+anode begins to inject holes into the N-drift. The device mode transforms into bipolar mode with exponentially increased current.

    Fig.2. (a)Forward conduction characteristics of CBR LIGBT,SA LIGBT,SSA LIGBT (LB =20 μm), and TSA LIGBT (Lt =3 μm), with voltage applied to the gate Vgate being 15 V, and cathode connected to the ground Vcathode=0 V.(b)Current distributions in anode at points A and B of CBR LIGBT(points A and B are shown in(a)).

    Fig.3. Forward conduction characteristics of CBR LIGBT (a) at different values of Npoly,NN?,and(b)NP?.

    Figure 3 shows the forward conduction characteristics of CBR LIGBT at different values of NP?,NN?,and Npoly. Obviously, the decreasing of Npolyand NN?are favorable for suppressing the snapback because the R1and R2are increased as shown in Fig.3(a). In Fig.3(b), increasing NP?is helpful in suppressing the snapback because the Vbarrieris increased according to Eqs. (1) and (4). Moreover, the inhibition effect of NP?and Npolyon snapback are more obvious than that of NN?. So adjusting NP?and Npolyare a promising method to eliminate the snapback phenomenon.

    Figure 4 shows the influences of Npolyon forward voltage drop Vonat different temperatures T of CBR LIGBT.For the given T, both the Vonand ?VSBgradually increase with Npolyincreasing, and it also illustrates that reducing Npolyis beneficial to solving the snapback problem and reducing the Von. In addition, at the same Npoly, Vondecreases obviously with the increase of T, and a higher temperature is also easier to achieve the snapback-free characteristic. This is because the mobility decreases with the increase of temperature,which leads to a larger RSAfor the CBR LIGBT.At T =400 K,the device exhibits snapback effect only at Npolyof 1×1018cm?3.

    Fig.4. Influences of Npolyon forward voltage drop Von at different temperatures of CBR LIGBT, with Von calculated at anode current density of 100 A/cm2.

    3.2. Turn off characteristics

    In Fig.5 the turn-off characteristics of different LIGBTs are compared among each other. All the devices are compared mutually at the same Vonof 1.3 V.The turnoff time Toffis calculated from 90%IAto 10%IA. For the SSA LIGBT,it shows the longest Toffof 570 ns, because a long LBis designed to suppress the snapback and also reduce the Von, resulting in a long extraction path with high resistance at turn-off stage. For the TSA LIGBT,it has Toffof 160 ns, because the trench oxide in anode will prevent the electrons from being extracted.The Toffof SA LIGBT is 90 ns,which is slightly slower than that of the CBR LIGBT. This is the result of a long and high doping concentration P+ anode necessary to achieve the Vonof 1.3 V,which is not conducive to the extraction of electrons.For the CBR LIGBT,it achieves the shortest Toffof 70 ns,because the N-buffer/P-float/polysilicon layer/N-float provides a low-resistance path to accelerate the extraction of electrons in N-drift.

    Figure 6 shows the distributions of the electron concentration Neof different LIGBTs (y=4 μm) from t1to t4period, and the devices start to be turned off at t1period. At t2and t3periods,the Neof CBR LIGBT is lower obviously than that of the SSA LIGBT and TSA LIGBT.At t4period,the SA LIGBT and CBR LIGBT have completed the turn-off process,while there remain a lot of electrons in SSA LIGBT and TSA LIGBT.

    Fig.5. Turn-off characteristics of different LIGBTs at the same Von of 1.3 V,obtained in the same circuit with bus voltage (Vbus) 200 V, gate resistance(Rg)10 Ω,load inductance(LC)10μH,and stray inductance(Ls)10 nH.

    Fig.6. Distributions of electron concentration Ne along x direction(y=4μm)of different LIGBTs at(a)t1 period,(b)t2 period,(c)t3 period,and(d)t4 period. (Curves at period t1–t4 are shown in Fig.5).

    Fig.7. Turn-off characteristics of CBR LIGBT(a)at different values of Npoly and(b)different values of NP?.

    Figure 7(a) shows the turn-off characteristics of CBR LIGBT at different values of Npoly. The CBR LIGBT has a Toffof 390 ns at an Npolyof 1×1015cm?3. The Toffdecreases gradually with Npolyincreasing due to R1decreasing,thus the turn-off loss Eoffcan be further reduced. Figure 7(b) shows the turn-off characteristics of CBR LIGBT at different values of NP?. The Toffdecreases from 390 ns to 160 ns with NP?decreasing form 2.5×1016cm?3to 1×1016cm?3due to the enhanced Vbarrier. Furthermore, a reasonable Npolyor NP?is important to obtain a better trade-off between Vonand Eoff.

    3.3. Trade-off characteristic

    Figure 8 displays the influences of Npolyand L on ?VSBand Eoff. For the device with Npolyof 1×1015cm?3,it shows that the snapback-free characteristic occurs with the increase of L. However, it also results in a large Eoff. For the device with Npolyof 1×1016cm?3and 1×1017cm?3, the ?VSBincreases with L increasing,and a higher Npolywill bring a larger?VSB. On the other hand,the Eoffdecreases with the increase of L, and increasing Npolyis beneficial to obtaining a lower Eoff. Because L can be regarded as the width of the cross section of electron path from P-float to polysilicon layer,increasing L leads to a narrower path for electrons, which is helpful in reducing the value of Eoff.

    Fig.8. Influences of Npoly and L on ?VSB and Eoff of CBR LIGBT, with L shown in Fig.1(b).

    Fig.9. Trade-off characteristics between Von and Eoff, showing (a) influences of Npoly and t on Von and Eoff of CBR LIGBT, and (b) the influences of temperature T and NP?on Von and Eoff of CBR LIGBT,with t shown in Fig.1(b).

    Figure 9(a) displays the influences of Npolyand t on Vonand Eoff. It is observed that increasing the width of the cross section t or Npolywill lead the value of Vonto increase. Simultaneously, the Eoffdecreases because the R1decreases with the increase of t and doping Npoly. Figure 9(b) shows the influences of temperature T and NP?on Vonand Eoff. The Vondecreases with T increasing due to a lower mobility, while the Eoffincreases. Meanwhile,the increasing NP?can bring a higher Eoffand a lower Von.

    Figure 10 shows the trade-off characteristics between Vonand Eoffof different LIGBTs. The CBR LIGBT achieves the best trade-off characteristics in all LIGBTs. At the same Vonof 1.3 V, it realizes 85%, 73%, and 59.6% reductions in Eoffcompared with that of the SSA LIGBT, convention LIGBT,and TSA LIGBT, respectively. Additionally, at the same Eoffof 1.5 mJ/cm2, the Vonof the CBR LIGBT reduces by 26%,24%,and 6%compared with that of the SSA LIGBT,conventional LIGBT and TSA LIGBT, respectively. Thus, the proposed device not only achieves the snapback-free characteristic, but also obtains a better trade-off characteristics between Vonand Eoff.

    Fig.10. Trade-off characteristics between Von and Eoff of different LIGBTs,with Von values of different LIGBTs obtained at JA =100 A/cm2 and Eoff value calculated by varying concentration of P+anode.

    3.4. Key process of CBR LIGBT

    Figure 11 shows the key process of fabricating the CBR LIGBTs. The main process can be divided into 8 steps. The oxide trench can be formed simultaneously with the SOI structure as shown in Fig.11(a). In Figs. 11(b) and 11(c), the P-body, N-buffer, P+ anode, and N+ anode can be realized by using the multiple ion implantation. Then the oxide insulation layer and polysilicon are formed by deposition and etching process as shown in Figs. 11(d) and 11(e). Note that the secondary ion implantation is needed to reach the doping concentration of the polysilicon gate as shown in Fig.11(f).Finally,the excess polysilicon and insulating layer are etched and electrodes are placed.

    Fig.11. Key process of fabricating CBR LIGBT, showing (a) oxide trench and SOI structure formation, (b) P-body, N-buffer, P-float, and N-float formations, (c) P+ and N+ cathode formations, P+ and N+ anode formations, (d) oxide layer formation by deposition and etching, (e) doping of the polysilicon layer,(f)secondary ion implantation to form polysilicon gate,(g)etching excess polysilicon,and(h)etching the oxide layer and place the electrode.

    4. Conclusions

    The controlled barrier and resistance CBR in the anode is introduced to control the Vbarrierand RSAfor the SA LIGBT by adjusting the doping of the P-float,N-float and polisilicon layer.The results show that the CBR LIGBT not only achieves the snapback-free characteristic but also obtains better tradeoff property between Vonand Eoffthan the SSA LIGBT,conventional LIGBT,and TSA LIGBT.

    猜你喜歡
    陳偉金沙
    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
    《論三星堆文明與金沙文明的關(guān)系》附圖
    跨世紀(2022年5期)2022-09-24 09:10:54
    Repulsive bubble–bubble interaction in ultrasonic field?
    陳偉教授簡介
    當遠方不再遙遠
    如果……就……
    快樂語文(2019年33期)2019-03-14 05:29:08
    夢回金沙
    陳偉博士簡介
    歡樂小野人
    Recent Progress in Heavy Fuel Aviation Piston Engine
    亚洲国产精品合色在线| 嫁个100分男人电影在线观看| 99在线人妻在线中文字幕| 99在线人妻在线中文字幕| 女生性感内裤真人,穿戴方法视频| 日韩成人在线观看一区二区三区| 国产99白浆流出| 亚洲专区国产一区二区| 少妇的丰满在线观看| 国产成年人精品一区二区| 久久欧美精品欧美久久欧美| 亚洲 欧美 日韩 在线 免费| 亚洲av中文字字幕乱码综合| 国产 一区 欧美 日韩| 久久久久久久久中文| 一级毛片女人18水好多| 国产日本99.免费观看| 精品免费久久久久久久清纯| 啦啦啦免费观看视频1| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩高清在线视频| 国产高清三级在线| 国产一级毛片七仙女欲春2| 国产主播在线观看一区二区| 听说在线观看完整版免费高清| 免费观看人在逋| 久久精品夜夜夜夜夜久久蜜豆| 欧美在线黄色| 亚洲av日韩精品久久久久久密| 国产激情偷乱视频一区二区| 午夜福利高清视频| 综合色av麻豆| 欧美成人性av电影在线观看| 免费观看人在逋| 淫秽高清视频在线观看| 一进一出好大好爽视频| 热99在线观看视频| 伊人久久大香线蕉亚洲五| 日韩精品青青久久久久久| 99视频精品全部免费 在线| 在线观看免费视频日本深夜| 男女午夜视频在线观看| 精品国产三级普通话版| 日韩欧美精品v在线| 999久久久精品免费观看国产| 观看免费一级毛片| 精品午夜福利视频在线观看一区| 内地一区二区视频在线| 午夜激情福利司机影院| svipshipincom国产片| 国产精品电影一区二区三区| 成人欧美大片| 日本在线视频免费播放| 最近在线观看免费完整版| 九色成人免费人妻av| 亚洲精品日韩av片在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 国产激情偷乱视频一区二区| 日本三级黄在线观看| 在线观看日韩欧美| 天天躁日日操中文字幕| 亚洲七黄色美女视频| 中文字幕人妻丝袜一区二区| 亚洲欧美日韩卡通动漫| 美女 人体艺术 gogo| 亚洲成a人片在线一区二区| 噜噜噜噜噜久久久久久91| 国内揄拍国产精品人妻在线| 一区二区三区高清视频在线| 久久久久久人人人人人| 老汉色∧v一级毛片| 97人妻精品一区二区三区麻豆| 欧美一区二区亚洲| 法律面前人人平等表现在哪些方面| 成人国产综合亚洲| 男人舔女人下体高潮全视频| 90打野战视频偷拍视频| 日韩欧美免费精品| www.999成人在线观看| 国产伦精品一区二区三区视频9 | 国产一区二区三区视频了| 欧美精品啪啪一区二区三区| 欧美乱码精品一区二区三区| 欧美又色又爽又黄视频| 九色成人免费人妻av| 国产精品 国内视频| 日韩高清综合在线| 性色av乱码一区二区三区2| 欧美午夜高清在线| 97人妻精品一区二区三区麻豆| 国产伦精品一区二区三区视频9 | a级毛片a级免费在线| 观看美女的网站| 久久九九热精品免费| 国产精华一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 久久中文看片网| 国内揄拍国产精品人妻在线| 亚洲精品亚洲一区二区| 男女午夜视频在线观看| 99国产极品粉嫩在线观看| 欧美在线黄色| 久久久精品欧美日韩精品| 精品久久久久久久末码| 99国产精品一区二区蜜桃av| 亚洲,欧美精品.| 男女下面进入的视频免费午夜| 国产真实伦视频高清在线观看 | 欧美3d第一页| 搞女人的毛片| 91久久精品电影网| 亚洲自拍偷在线| 精品一区二区三区视频在线观看免费| 国产一级毛片七仙女欲春2| 国产99白浆流出| 此物有八面人人有两片| avwww免费| av中文乱码字幕在线| 色老头精品视频在线观看| 老熟妇仑乱视频hdxx| 草草在线视频免费看| 免费av毛片视频| av国产免费在线观看| 久久精品国产亚洲av香蕉五月| 村上凉子中文字幕在线| 国产精品久久久久久精品电影| 欧美黄色片欧美黄色片| 欧美性猛交╳xxx乱大交人| 97超级碰碰碰精品色视频在线观看| 中文字幕av在线有码专区| 欧美三级亚洲精品| 日韩免费av在线播放| 小说图片视频综合网站| 欧美区成人在线视频| 国产精品国产高清国产av| 夜夜看夜夜爽夜夜摸| 亚洲精品成人久久久久久| 丁香欧美五月| 亚洲精品粉嫩美女一区| 中出人妻视频一区二区| 不卡一级毛片| 51午夜福利影视在线观看| 婷婷丁香在线五月| 91九色精品人成在线观看| 欧美日韩综合久久久久久 | 成人永久免费在线观看视频| 精品久久久久久久人妻蜜臀av| 欧美乱码精品一区二区三区| 婷婷精品国产亚洲av| 国产男靠女视频免费网站| av欧美777| 丁香欧美五月| 五月伊人婷婷丁香| 免费看a级黄色片| 美女免费视频网站| 久久亚洲精品不卡| 欧美一区二区亚洲| 天堂网av新在线| 日韩人妻高清精品专区| 99在线人妻在线中文字幕| 亚洲五月婷婷丁香| 成年免费大片在线观看| 国产精品久久久久久久久免 | av欧美777| av国产免费在线观看| 波多野结衣高清作品| 99久久精品国产亚洲精品| 久久久久国产精品人妻aⅴ院| 国产午夜精品久久久久久一区二区三区 | or卡值多少钱| 国产成人福利小说| 婷婷六月久久综合丁香| 欧美性猛交黑人性爽| 99久国产av精品| 黄色成人免费大全| 国产精品av视频在线免费观看| 舔av片在线| 欧美zozozo另类| 性色avwww在线观看| 久9热在线精品视频| 欧美色欧美亚洲另类二区| 国产综合懂色| 日韩大尺度精品在线看网址| 在线播放无遮挡| 精品久久久久久,| 亚洲av熟女| 亚洲欧美精品综合久久99| 美女被艹到高潮喷水动态| 国产激情偷乱视频一区二区| 无限看片的www在线观看| 国产黄片美女视频| 成人三级黄色视频| or卡值多少钱| 色精品久久人妻99蜜桃| 少妇的丰满在线观看| 亚洲精品一卡2卡三卡4卡5卡| 无遮挡黄片免费观看| 国产一区二区亚洲精品在线观看| 天天添夜夜摸| 哪里可以看免费的av片| 变态另类丝袜制服| 国模一区二区三区四区视频| 18禁黄网站禁片午夜丰满| 欧美国产日韩亚洲一区| 日韩欧美在线乱码| 一区二区三区激情视频| 日韩欧美免费精品| 久久久久久久亚洲中文字幕 | 国产激情偷乱视频一区二区| netflix在线观看网站| 国产精品99久久久久久久久| 国产乱人伦免费视频| 日本免费一区二区三区高清不卡| 亚洲激情在线av| 欧美性感艳星| 国产欧美日韩一区二区精品| 亚洲av中文字字幕乱码综合| 午夜福利在线在线| 成年女人永久免费观看视频| 免费人成视频x8x8入口观看| 精品久久久久久久末码| 性欧美人与动物交配| 91麻豆av在线| 真人做人爱边吃奶动态| 黄色成人免费大全| 国产精品久久久久久精品电影| 观看美女的网站| 成人18禁在线播放| 在线天堂最新版资源| 久久亚洲精品不卡| 我要搜黄色片| 一本一本综合久久| 亚洲不卡免费看| 国产亚洲精品综合一区在线观看| av福利片在线观看| 国产三级中文精品| 男女床上黄色一级片免费看| 51国产日韩欧美| 99久久九九国产精品国产免费| 丰满的人妻完整版| 精品久久久久久久末码| 在线看三级毛片| 国产高清三级在线| 国产精品99久久99久久久不卡| 我的老师免费观看完整版| 国产成年人精品一区二区| 国产高清有码在线观看视频| 亚洲欧美激情综合另类| 亚洲欧美日韩高清在线视频| 高清日韩中文字幕在线| 亚洲精品乱码久久久v下载方式 | 最近最新中文字幕大全免费视频| 在线免费观看不下载黄p国产 | 亚洲成人久久性| 12—13女人毛片做爰片一| 精品乱码久久久久久99久播| 免费搜索国产男女视频| 人妻久久中文字幕网| 成人国产综合亚洲| АⅤ资源中文在线天堂| 51国产日韩欧美| 最新美女视频免费是黄的| 搡老熟女国产l中国老女人| 国产精品1区2区在线观看.| 国产真实伦视频高清在线观看 | 欧美色欧美亚洲另类二区| 国产伦精品一区二区三区四那| 日韩成人在线观看一区二区三区| 欧美成人性av电影在线观看| 亚洲人与动物交配视频| 久久伊人香网站| 亚洲欧美日韩高清在线视频| 欧美绝顶高潮抽搐喷水| 亚洲成人久久性| 欧美日韩中文字幕国产精品一区二区三区| 午夜老司机福利剧场| 成人18禁在线播放| 亚洲乱码一区二区免费版| 99久久无色码亚洲精品果冻| 精品久久久久久久久久久久久| 好看av亚洲va欧美ⅴa在| 亚洲中文字幕一区二区三区有码在线看| av国产免费在线观看| 18禁国产床啪视频网站| 啪啪无遮挡十八禁网站| 亚洲国产精品久久男人天堂| 激情在线观看视频在线高清| 亚洲片人在线观看| 久久久国产成人精品二区| 国产免费一级a男人的天堂| 欧美日韩乱码在线| svipshipincom国产片| 日韩国内少妇激情av| 黄色日韩在线| 神马国产精品三级电影在线观看| 亚洲国产欧洲综合997久久,| 99国产精品一区二区蜜桃av| 精品人妻一区二区三区麻豆 | 国产免费男女视频| 舔av片在线| 精品人妻一区二区三区麻豆 | 免费在线观看亚洲国产| 91麻豆av在线| 男女那种视频在线观看| 免费在线观看影片大全网站| 国产精品久久久久久精品电影| 天天躁日日操中文字幕| 国产精品久久电影中文字幕| 亚洲精品日韩av片在线观看 | 婷婷丁香在线五月| 国产亚洲精品av在线| 国产爱豆传媒在线观看| 久久中文看片网| 亚洲av第一区精品v没综合| 国产成人aa在线观看| 国产精品 欧美亚洲| 无限看片的www在线观看| 神马国产精品三级电影在线观看| 丰满乱子伦码专区| e午夜精品久久久久久久| 国产精品综合久久久久久久免费| 亚洲欧美日韩高清专用| 小蜜桃在线观看免费完整版高清| 国产男靠女视频免费网站| 午夜福利免费观看在线| 国产亚洲av嫩草精品影院| 99久久成人亚洲精品观看| 淫妇啪啪啪对白视频| 一个人看的www免费观看视频| 一级a爱片免费观看的视频| 99国产综合亚洲精品| 色视频www国产| 无限看片的www在线观看| 久久精品综合一区二区三区| 午夜免费男女啪啪视频观看 | 欧美性感艳星| 午夜激情欧美在线| 波多野结衣巨乳人妻| 波多野结衣高清无吗| 亚洲国产欧洲综合997久久,| 午夜福利在线观看吧| 国内精品久久久久精免费| 国产单亲对白刺激| 午夜久久久久精精品| 亚洲专区中文字幕在线| 99国产综合亚洲精品| 国产成人啪精品午夜网站| 日本成人三级电影网站| 久久精品国产自在天天线| 国产高清视频在线观看网站| 嫁个100分男人电影在线观看| 少妇人妻精品综合一区二区 | 老汉色∧v一级毛片| 欧美性猛交╳xxx乱大交人| 午夜日韩欧美国产| 最近视频中文字幕2019在线8| 最新美女视频免费是黄的| 国产野战对白在线观看| 亚洲最大成人手机在线| 成年免费大片在线观看| 成人精品一区二区免费| 男女午夜视频在线观看| 99在线人妻在线中文字幕| 日韩欧美免费精品| 尤物成人国产欧美一区二区三区| 悠悠久久av| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美国产一区二区入口| 欧美丝袜亚洲另类 | 熟妇人妻久久中文字幕3abv| 88av欧美| 亚洲avbb在线观看| 亚洲一区二区三区色噜噜| 久久婷婷人人爽人人干人人爱| 久久亚洲真实| 99久久成人亚洲精品观看| 日本黄大片高清| 美女高潮喷水抽搐中文字幕| 欧美黄色淫秽网站| 少妇高潮的动态图| 国产精品免费一区二区三区在线| 麻豆成人午夜福利视频| 国产精品国产高清国产av| 69av精品久久久久久| 成人高潮视频无遮挡免费网站| 女人十人毛片免费观看3o分钟| 国产精品一区二区三区四区免费观看 | 久久久久亚洲av毛片大全| 久久中文看片网| 高清毛片免费观看视频网站| 首页视频小说图片口味搜索| 日本熟妇午夜| 岛国视频午夜一区免费看| 欧美日韩福利视频一区二区| 亚洲中文日韩欧美视频| 在线视频色国产色| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 日本 欧美在线| 亚洲国产欧美网| 99久久精品热视频| 麻豆国产av国片精品| 窝窝影院91人妻| 99视频精品全部免费 在线| 国产精品久久久人人做人人爽| 美女 人体艺术 gogo| 国产精品乱码一区二三区的特点| 国产精品香港三级国产av潘金莲| 在线观看日韩欧美| 动漫黄色视频在线观看| 国产美女午夜福利| 精品久久久久久,| 成熟少妇高潮喷水视频| 色吧在线观看| 窝窝影院91人妻| 中文字幕熟女人妻在线| 中文字幕av在线有码专区| АⅤ资源中文在线天堂| 日韩欧美国产在线观看| 99国产极品粉嫩在线观看| 天美传媒精品一区二区| 亚洲av电影不卡..在线观看| 国产老妇女一区| 19禁男女啪啪无遮挡网站| e午夜精品久久久久久久| 变态另类成人亚洲欧美熟女| 欧美一区二区国产精品久久精品| 国产精品美女特级片免费视频播放器| 欧美精品啪啪一区二区三区| 一个人免费在线观看电影| 欧美日韩瑟瑟在线播放| 欧美xxxx黑人xx丫x性爽| 全区人妻精品视频| 亚洲精品久久国产高清桃花| 国产午夜精品论理片| 哪里可以看免费的av片| 国产成人欧美在线观看| 女同久久另类99精品国产91| 国产欧美日韩精品亚洲av| 桃色一区二区三区在线观看| 日本熟妇午夜| 色综合站精品国产| xxx96com| 精品国产三级普通话版| 中文字幕精品亚洲无线码一区| 观看美女的网站| 日韩欧美国产在线观看| 长腿黑丝高跟| 久久精品亚洲精品国产色婷小说| 日本 欧美在线| 亚洲一区二区三区色噜噜| 午夜激情欧美在线| 人人妻,人人澡人人爽秒播| 国产淫片久久久久久久久 | 色视频www国产| 亚洲国产高清在线一区二区三| 久久久久久久精品吃奶| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| svipshipincom国产片| 成人三级黄色视频| 欧美日韩一级在线毛片| 精品一区二区三区人妻视频| 99久久无色码亚洲精品果冻| 午夜视频国产福利| 日本精品一区二区三区蜜桃| 一本精品99久久精品77| 麻豆国产97在线/欧美| 无限看片的www在线观看| 亚洲精品影视一区二区三区av| 亚洲国产高清在线一区二区三| 无人区码免费观看不卡| 一a级毛片在线观看| 国产在线精品亚洲第一网站| 天天添夜夜摸| 三级男女做爰猛烈吃奶摸视频| 精品一区二区三区视频在线 | 亚洲欧美日韩东京热| 久久精品91无色码中文字幕| 久久久久久九九精品二区国产| 久久精品国产99精品国产亚洲性色| 亚洲片人在线观看| 免费人成在线观看视频色| 日韩欧美免费精品| 全区人妻精品视频| 97超级碰碰碰精品色视频在线观看| 久久亚洲精品不卡| 日日摸夜夜添夜夜添小说| 深爱激情五月婷婷| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 国产精品久久久久久久电影 | 免费av不卡在线播放| 岛国在线免费视频观看| 免费一级毛片在线播放高清视频| 男人舔女人下体高潮全视频| 在线观看免费午夜福利视频| 日韩国内少妇激情av| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 亚洲av美国av| 亚洲国产精品久久男人天堂| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 好男人电影高清在线观看| 女警被强在线播放| 一级黄色大片毛片| 日本a在线网址| 亚洲中文日韩欧美视频| 久久精品国产自在天天线| 99热6这里只有精品| 日韩免费av在线播放| 国产欧美日韩一区二区精品| 日本成人三级电影网站| 69av精品久久久久久| 一本综合久久免费| 国产精品精品国产色婷婷| 在线观看舔阴道视频| 国内毛片毛片毛片毛片毛片| 成人永久免费在线观看视频| 国产精品自产拍在线观看55亚洲| 中文字幕人妻熟人妻熟丝袜美 | 一夜夜www| 99热精品在线国产| 午夜福利欧美成人| 亚洲avbb在线观看| 午夜影院日韩av| 禁无遮挡网站| 人妻夜夜爽99麻豆av| 给我免费播放毛片高清在线观看| 村上凉子中文字幕在线| 日本在线视频免费播放| 日本 av在线| 亚洲天堂国产精品一区在线| 国产91精品成人一区二区三区| 亚洲一区高清亚洲精品| 国产精品影院久久| 亚洲最大成人手机在线| 国产老妇女一区| а√天堂www在线а√下载| 精品久久久久久久久久免费视频| 丁香欧美五月| 首页视频小说图片口味搜索| 村上凉子中文字幕在线| 女人被狂操c到高潮| 3wmmmm亚洲av在线观看| 国产色婷婷99| 最近最新中文字幕大全免费视频| 国产高清视频在线播放一区| 亚洲不卡免费看| 精品久久久久久久毛片微露脸| 女同久久另类99精品国产91| 欧美丝袜亚洲另类 | 国产精品1区2区在线观看.| 最近最新免费中文字幕在线| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 9191精品国产免费久久| 变态另类丝袜制服| 脱女人内裤的视频| 国产精品久久久久久精品电影| 一卡2卡三卡四卡精品乱码亚洲| 男女下面进入的视频免费午夜| 内地一区二区视频在线| 久久这里只有精品中国| 99久久成人亚洲精品观看| 久久久成人免费电影| 小蜜桃在线观看免费完整版高清| 在线观看午夜福利视频| 日韩欧美精品v在线| 精品国内亚洲2022精品成人| 天天躁日日操中文字幕| 女人高潮潮喷娇喘18禁视频| 淫妇啪啪啪对白视频| 香蕉丝袜av| 白带黄色成豆腐渣| 青草久久国产| 久久久久久九九精品二区国产| 在线看三级毛片| 国产成人系列免费观看| 午夜福利成人在线免费观看| 丁香欧美五月| e午夜精品久久久久久久| av天堂在线播放| 国产69精品久久久久777片| 亚洲成人中文字幕在线播放| 亚洲久久久久久中文字幕| 久久中文看片网| 国产探花在线观看一区二区| 九色成人免费人妻av| 香蕉久久夜色| 日本 欧美在线| 好看av亚洲va欧美ⅴa在| 日韩亚洲欧美综合| 男女做爰动态图高潮gif福利片| 搡老熟女国产l中国老女人| 日本一二三区视频观看| 一a级毛片在线观看| 99久久99久久久精品蜜桃| 男人和女人高潮做爰伦理| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲精品av在线| 欧美色视频一区免费| 丁香欧美五月| 亚洲天堂国产精品一区在线| 久久久久久大精品| 老司机深夜福利视频在线观看| 国产黄色小视频在线观看| 免费av不卡在线播放| 欧美xxxx黑人xx丫x性爽| 国产午夜福利久久久久久| 成人av在线播放网站| 午夜影院日韩av| 成人18禁在线播放|