• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability

    2023-12-02 09:23:06JinPingZhang張金平WeiChen陳偉ZiXunChen陳子珣andBoZhang張波
    Chinese Physics B 2023年11期
    關(guān)鍵詞:張波陳偉金平

    Jin-Ping Zhang(張金平), Wei Chen(陳偉), Zi-Xun Chen(陳子珣), and Bo Zhang(張波)

    1State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China

    2Chongqing Institute of Microelectronics Industry Technology,University of Electronic Science and Technology of China,Chongqing 401331,China

    Keywords: SiC trench MOSFET,switching power loss,figure of merit,safe operating area

    1.Introduction

    Silicon carbide metal–oxide–semiconductor field-effect transistor (SiC MOSFET) is suitable for high frequency and high voltage applications owing to its material properties.[1,2]It opens the ways to diverse industries, including new energy vehicles,rail transit,and smart grids.In these applications,it is necessary to deal with short circuit, high temperature, and other extreme cases, which requires SiC MOSFET to be improved not only in performance, but also in reliability.SiC planar gate MOSFET demonstrates good reliability and has been commercialized for a long time.Compared with the planar counterparts,SiC trench gate MOSFETs(TMOSs)are preferred to further improve the device performance, owing to higher channel density and absence of junction field-effect transistor (JFET) region.[3]However, in the case of conventional TMOS,the high electric field present in the trench oxide during the blocking state leads to premature breakdown prior to the drain bias reaching an avalanche breakdown voltage(BVav).

    With the development of the material and device manufacturing technology, many methods to optimize the SiC MOSFET structure have been proposed.Rohmet al.proposed an SiC double trench MOSFET(DTMOS)with a heavily doped p-type shielding region (P+SLD) at the sidewall and bottom of the source trench.[4,5]The DTMOS achieves an ultra-low specific on-resistance(Ron,sp).However,its large gate capacitance causes high switching power loss (Psw).In comparison with the DTMOS, the asymmetric TMOS (ATMOS) proposed in Refs.[6,7] shows better robustness, owing to the shielding effect provided by the half-surrounded P+SLD.[8]However, the inherently large MOS channel density of the trench structures results in a large saturation drain current(Id,sat),which reduces the short-circuit(SC)withstand time(tsc)and limits the improvement of the short circuit safe operating area (SCSOA).To further improve the switching characteristics and reduce thePsw,split/shield gate(SG)is introduced in Refs.[9–11].Introducing SG is an effective way to reduce gate–drain capacitance (Cgd).Moreover, unlike the Si counterpart, a thicker shield gate oxide thickness(Tsgox)is conducive to alleviating the maximum electric field in the gate oxide (Eox,peak) for the SiC SG-TMOS, which improves the gate oxide reliability.However,the coupling between the gate and source electrode still brings about large gate–source capacitance (Cgs) and the switching speed improvement is limited.

    In this paper, a novel SiC trench MOSFET with a dual shield gate(DSG)and optimized JFET layer(ODSG-TMOS)is proposed.Compared with the conventional ATMOS(Con-ATMOS),the proposed structure shows good trade-off among theRon,sp,breakdown voltage(BV),and gate oxide reliability.The DSG structure reduces not onlyCgdbut alsoCgssignificantly.Therefore,the gate–drain charge(Qgd)and gate charge(Qg)are both reduced.As a result,the switching speed is improved and thePswis reduced, which significantly improves the dynamic performance.In addition,thetscis increased withId,satdecreasing and the large-current turn-off capability is also enhanced substantially.

    2.Device structure and mechanism

    Figures 1(a) and 1(b) show schematic cross-sectional view of the proposed ODSG-TMOS and Con-ATMOS, respectively.Both devices have an asymmetric trench gate structure on the surface.Compared with the Con-ATMOS,the proposed device features a fin-shaped gate which is surrounded by dual source-connected SGs and an L-shaped JFET layer.The shielding effect provided by the lower SG conduces to reducing theCgdand the reduced overlapping area between the narrower fin-shaped gate and lower SG creates reducedCgs.Apart from that,the interaction between the gate and the side wall of the source-connected P+SLD for the Con-ATMOS is transformed into the interaction between the fin-shaped gate and fin-shaped source-connected SG.Since the oxide layer between the two fin-shaped electrodes is much thicker than that at the side wall of the gate trench,the interaction between them is greatly decoupled,which can further reduce theCgsof the proposed structure.Therefore,the reverse transfer capacitance(Crss),input capacitance(Ciss),gate charge(Qg)as well as gate–drain charge(Qgd)are reduced,which improve the dynamic performance of the device.Furthermore, the thicker oxide layer of the DSG reduces the peak electric field at the trench corner, and combined with an optimized JFET layer,Ron,spis reduced without sacrificing theBV.In addition,since the lower SG is connected to the source,its potential remains 0 V instead of the gate drive voltage of 15 V or 18 V when the ODSG-TMOS is under saturation.Therefore,electrons do not gather near the side wall nor in corner of the lower SG.The depletion region is expanded widely in that region,which reduces the width of electron conduction path and enhances the JFET effect.As a result, theId,satis reduced and thetscis increased.By using the Silvaco TCAD with the modified models used in our previous work, such as band gap narrowing (BGN), CONSRH, CONWELL, SULFMOB, incomplete ionization,Auger and analytic models,the performance of the device is simulated.[11–13]The device parameters used in the simulation are shown in Table 1.The parameters not listed are the same for the two structures.The device areas used in this work for the two devices are both 1 cm2,unless otherwise mentioned.

    Parameters Con-ATMOS ODSG-TMOS Gate oxide thickness,Tox (nm) 50 50 Trench width,Wtrench (μm) 1 1 Trench depth,Ttrench (μm) 1.15 1.15 P+ region width under trench,Wps (μm) 0.7 0.7 P+ region thickness under trench,Tps (μm) 0.4 0.4 N- drift region thickness,Td (μm) 11 11 Gate depth,Tg (μm) 1.1 –Shield gate thickness,Tsg (μm) – 0.4 Shield gate oxide thickness,Tsgox (μm) – 0.1 Control gate width,Wf (μm) – 0.2 Control gate thickness,Tf (μm) – 0.6 JFET region width,WJF (μm) – 0.3 Cell width,Wcell (μm) 2.5 2.5 N- drift region concentration,Nd (cm-3) 1×1016 1×1016 N+ region concentration,NN+ (cm-3) 3×1019 3×1019 P+ channel region concentration,NPC (cm-3) 3×1017 3×1017 P+ shielding region concentration,NPS (cm-3) 5×1018 5×1018 JFET region concentration,NJF (cm-3) – 4×1016

    3.Results and discussion

    Figure 2(a) shows conductionI–Vcurves and blockingI–Vcurves for the proposed ODSG-TMOS and Con-ATMOS,respectively.Even with the source-connected SGs, theRon,spis 1.99 m?·cm2for the Con-ATMOS and 1.69 m?·cm2for the ODSG-TMOS.It is improved by 15.1%owing to the introduction of the additional JFET layer.Owing to the fact that the JFET layer has high doping concentration(NJF),at low drain–source voltage(Vds)the lateral expansion of the depletion region formed in the drift region is limited.Therefore,the conducting path for electrons moving from the channel to the drift region is widened and has a low-resistance.Contributed by the thickerTsgox,theBVavof the ODSG-TMOS is 1215 V,which is only 3% lower than that of the Con-ATMOS.The electric field contours at avalanche breakdown are shown in Fig.2(b).The maximum electric field in the gate oxide(Eox,peak)for the Con-ATMOS is 3.29 MV/cm,which is higher than that for the ODSG-TMOS.It exceeds 3 MV/cm,a recognized value commonly used to define the gate oxide breakdown (BVox) from the perspective of long-term reliability.Further investigation results show that theBVoxof the Con-ATMOS is only 960 V,at which theEox,peakreaches 3 MV/cm.The limiting factor to determine the device breakdown is changed and it shifts from the avalanche breakdown for the proposed ODSG-TMOS to the gate oxide breakdown for the Con-ATMOS.Compared with the Con-ATMOS, the proposed structure demonstrates good trade-off among theRon,sp,BV,and gate oxide reliability.

    The transfer characteristics of the two structures are shown in Fig.3.TheVdsremains 0.1 V when the gate voltage (Vgs) increases.It can be seen that the values of drainsource current (Ids) of both structures increase quickly when theVgsis larger than 5 V.The threshold voltage(Vth)extracted atIds=10 mA/cm2is 5.6 V for the ODSG-TMOS and 5.7 V for the Con-ATMOS.The slight difference inVthis due to the decreasedRon,spand alleviative JFET effect caused by the highly doped JFET region at lowVds.

    Figure 4 shows the dependence of the extractedCiss,Crss,and output capacitance (Coss) onVdsfor the two structures.It can be seen that asVdsincreases,Cissremains almost unchanged, whileCossandCrssshow obvious nonlinear characteristics.The two parameters for the proposed device at theVdsof about 5 V change suddenly,which is caused by the depletion of the heavily doped JFET layer.In theVdsrange from 0 V to 1000 V,theCissandCrssof the proposed ODSG-TMOS structure are both smaller than those of the Con-ATMOS structure.The values extracted at theVdsof 600 V are shown in Fig.4.At theVdsof 600 V, theCossof the two structures are almost the same, while theCissandCrssof the ODSGTMOS decrease by 69.3%and by an order of magnitude when compared to those of the Con-ATMOS,respectively.It can be concluded that the reduced gate depth as well as decoupled interaction between the gate and drain/source introduced by the DSG structure results in the improvement of theCissandCrss.TheCissandCrssfor a power switching device are of particular importance since it has a great influence on thePsw.Moreover,the smaller ratio ofCrsstoCissfor the proposed structure is of benefit to suppressing the false turn-on of the device.Considering that the capacitance characteristics at a certain terminal voltage cannot fully reflect the influence of the parasitic capacitance on the switching characteristic of a device,the gate charging characteristic is studied.Figure 5 shows the comparison of gate charging characteristic between the two structures.The test circuit is also shown in the inset.SmallerCissandCrssenable faster charging speed and also improve theQgdandQg.WithVgsin a range from 0 V to 15 V, theQgdandQgare 144 nC/cm2and 1330 nC/cm2for the Con-ATMOS,and 28 nC/cm2and 370 nC/cm2for the ODSG-TMOS, respectively.TheQgdandQgfor the ODSG-TMOS are reduced by 80.6% and 72.2% compared with those for Con-ATMOS,respectively.The high frequency figure of merit (HFFOM,Ron·Qgd) of the Con-ATMOS is 286.56 m?·nC while that of the ODSG-TMOS is only 47.32 m?·nC.In addition, another widely used HFFOM,theRon·Qg,is 2646.70 m?·nC for the Con-ATMOS and 625.30 m?·nC for the ODSG-TMOS.They are improved by 83.5%and 76.4%,respectively.To better demonstrate the advantage of the ODSG-TMOS, the HHFOMs of the reported devices are also compared.TheRon·QgdandRon·Qgfor the device in Ref.[14] are 438 m?·nC and 1722.8 m?·nC while those for the device proposed in Ref.[15]are 449 m?·nC and 2094 m?·nC, respectively.It is obvious that the performance of the ODSG-TMOS is improved significantly.

    The switching waveforms with inductive load for the two devices are plotted in Fig.6(a).TheVgsis turned on att=0μs and turned off att=20 μs.It is obvious in Fig.6(a) that the Miller platform of the proposed ODSG-TMOS is significantly shortened,which is consistent with the result mentioned above.Owing to the reducedCissandCrss, the switching delay time of the ODSG-TMOS decreases significantly and the switching speed increases.The turn-on delay time and the turn-off delay time of the Con-ATMOS are 1.92μs and 3.24μs while those of the ODSG-TMOS are only 540 ns and 920 ns,they decreasing by 71.9% and 71.6%, respectively.In addition,power loss of the proposed ODSG-TMOS also decreases.The total power loss, including the conduction power loss(Pcon)andPswof the two structures at different frequencies are depicted in Fig.6(b).ThePconandPswof the ODSG-TMOS are 15.6%and 77.0%lower than those of the Con-ATMOS,respectively.As frequency increases,thePconremains constant,with the same duty cycle of 50%, but the difference inPswbecomes greater.Benefiting from the higher switching speed and lowerPsw, the ODSG-TMOS is more promising to high frequency applications than the Con-ATMOS.

    Figure 7(a)showsI–Vcharacteristic curves varying with drain voltage till saturation for the two structures under different values ofVgs.It can be seen that when theVgs=8 V and 10 V, the values ofId,satfor the Con-ATMO and the ODSGTMOS are almost the same.However, when theVgs=15 V and 18 V, the values ofId,satof the ODSG-TMOS are much smaller than those of the Con-ATMOS, owing to the lateral depletion effect provided by the lower SG under gate as shown in Fig.7(b).The black lines in the figures are depletion edges of the two structures at theVdsof 600 V withVgs=15 V.It is obvious that the depletion region of the ODSG-TMOS expands widely, thus reducing the width of electron conduction path.SmallerId,satconduces to reducing the power density when the device is under the short-circuit condition.Therefore,a longertscis obtained for the ODSG-TMOS as shown in Fig.8.For the SC simulation,aVgsof 15 V,a gate resistor of 1 ? and a bus voltage of 600 V with electrothermal coupling models are used.The dotted current curves represent the critical time at which the devices can be turned off normally.On the contrary, the solid current curves refer to the case where the devices fail in a longer short-circuit operation time.It can be seen that thetscis 1.6 μs for the Con-ATMOS and 3.0 μs for the ODSG-TMOS.It is improved by 87.5%,with theId,satreduced.Once the two MOSFETs are turned on,their SC currents rapidly increase and reach the corresponding values ofId,sat.After that, the saturation currents of the two structures start to decrease owing to the self-heating effect as well as reduced carrier mobility in the inversion MOS channel and drift region with the increase of junction temperature.Owing to the large power loss under the SC condition,once the junction temperature reaches the intrinsic temperature limit, the current increases rapidly and then thermal runaway occurs.

    To evaluate the reverse-biased SOA(RBSOA)of the proposed device, the large-current turn-off capability with an inductive load is discussed in Fig.9.In the simulation,an initial junction temperature of 448 K, a bus voltage of 1200 V and a large current of 1800 A (6 times the nominal current) are used, with the electro-thermal coupling model adopted.The values ofVgsof the two devices both turn from 15 V to 0 V att=2μs.After a delay of a few microseconds,the ODSGTMOS is normally turned off while the Con-ATMOS cannot.It can be found that for the Con-ATMOS,after theVdsreaches the bus voltage of 1200 V,theIdsstarts to drop normally.However, after a short drop, theIdsrecovers to 1800 A again and theVdsof the Con-ATMOS starts to drop.The Con-ATMOS fails in the large-current turn-off process and losses blocking capability.The junction temperatures of the two devices in the turn-off process are also shown in the figure.It is found that the junction temperature of the Con-ATMOS increases to about 2000 K while the proposed ODSG-TMOS shows much less temperature rise.Like the results shown in Fig.6, the slower turn-off speed and higherPswfor the Con-ATMOS contribute to the rapid rise of the junction temperature.

    The influence of the fin-shaped control gate width (Wf)on the performance of the ODSG-TMOS at 50 kHz is shown in Fig.10.In the simulation,the fin-shaped source-connected SG keeps the width identical with that of the fin-shaped gate.It can be seen in Fig.10(a)that theCgdkeeps almost unchanged owing to good shielding effect provided by the lower SG while theCgssignificantly increases as theWfincreases from 0.1μm to 0.4 μm.Accordingly, theQgdshown in Fig.10(b) keeps almost unchanged while theQgandPswincrease withWfincreasing.The smaller theWf, the better performance can be obtained.Further research results show that the smallerWfnot only reduces the overlapping area between the gate and lower SG, but also increases the thickness of the oxide layer between the fin-shaped gate and the fin-shaped source-connected SG,which both decouple the interaction between the gate and source,and therefore,significantly reducing theCgsof the device.It shows that theCgsaffects not only the switching speed but also the switching power loss, especially when theCgdis small enough.

    Figures 11(a) and 11(b) show the relationship betweenId,satandRon,sp,and the relationship between BFOM andNJFfor different values of JFET layer width(WJF),respectively.It can be seen from Fig.11(a)that with the sameWJF,theRon,spdecreases andId,satincreases with the increase of theNJF.Similarly,theRon,spdecreases andId,satincreases with the increase of theWJFwhen theNJFis kept unchanged.The reason is that increasingNJFand/orWJFof the JFET layer provides a low resistance path for electrons in the conduction state at lowerVdsregime.However,the JFET effect provided by the lower SG at largeVdsis also attenuated since the JFET layer is more difficult to deplete.Figure 11(b)shows the influence of theWJFandNJFon the Baliga’s figure of merit(BFOM,BV2/Ron,sp)for the proposed device.As mentioned above,the blocking capability of the device is determined by the lower one of theBVavandBVox.When theNJFis low, theBVavis a lower one and the BFOM increases as theNJFincreases,owing toRon,spdecreasing.However,theBVoxdecreases rapidly with the increase ofNJF,owing toEox,peakincreasing in the trench corner.TheBVoxbecomes lower thanBVavwhen theNJFis greater than a certain value.And after that, the BFOM decreases rapidly with the increase ofNJF,owing to theBVoxdecreasing.Therefore,considering the influence of theWJFandNJF, there appears a balance after the conduction performance,BFOM and SCSOA for the proposed ODSG-TMOS have been optimized.

    Figure 12 shows the influence of concentration of the Ndrift region (Nd) on theBVandRon,sp, respectively.As expected,the two parameters both decrease with the increase ofNd.WhenNdincreases from 7×1015cm-3to 1.3×1016cm-3,BVdecreases from 1559 V to 938 V andRon,spdeclines from 2.21 m?·cm2to 1.44 m?·cm2.It can be found that to ensure that theBVis larger than 1200 V,theNdmust be kept less than or equal to 1×1016cm-3.Therefore, the optimizedRon,spis obtained when theNdis equal to 1×1016cm-3.In this case,theBVof the ODSG-TMOS is almost the same as that of the Con-ATMOS while theRon,spis 15.1%lower.

    In order to show the feasibility of the proposed ODSGTMOS structure, a possible manufacturing process flowchart is shown in Fig.13.Firstly,an epitaxial lightly doped N-drift layer is grown on an N+substrate.After forming the epitaxial layer, the P+SLD, N+source region and P-base form via multiple ion implantation as shown in Fig.13(b).After the gate trench is etched, an L-shaped JFET area forms through tilted multiple ion implantation as shown in Figs.13(c)–13(d).Using thermal oxidation to form an oxide layer on the surface and the bottom and sidewalls of the trench, the gate trench is filled with polysilicon and then etched to form the lower split gate as shown in Figs.13(e)–13(g).Similarly, the fin-shaped gate and source also form by filling and etching process as shown in Figs.13(h)–13(j).[14,15]The process of forming finshaped gate is a self-aligned process andWfis determined by the deposited thickness of the polysilicon film and subsequent etching process.After that, dielectric is deposited and metal process is utilized to form the source and drain electrode.The final structure fabricated is shown in Fig.13(l).

    4.Conclusions

    A novel SiC ODSG-TMOS structure is proposed and investigated in this work.Comparing with the Con-ATMOS,BVavkeeps almost unchanged while theEox,peakbecomes 3.29 MV/cm for the Con-ATMOS, and 2.94 MV/cm for the proposed ODSG-TMOS, which improves theBVoxand gate oxide reliability.And theRon,spis also improved by 15.1%due to the introduction of the highly doped JFET layer.More importantly,compared with the Con-ATMOS,the ODSG-TMOS shows high dynamic performance and improved SOA capability.TheCissandCrssof the ODSG-TMOS decrease by 69.3%and by an order of magnitude when compared to those of the Con-ATMOS, respectively.The value ofQgdandQgare reduced by 80.6%and 72.2%, respectively.Therefore, the HFFOM ofRon,sp·QgdandRon,sp·Qgfor the proposed ODSGTMOS are improved by 83.5%and 76.4%, respectively.ThePswof the proposed ODSG-TMOS is 77.0% lower than that of the Con-ATMOS.In addition,the SCSOA and RBSOA are also improved.With a significantly reducedId,sat, thetscis 87.5%longer than that of the Con-ATMOS at theVgof 15 V.The ODSG-TMOS can be normally turned off under a bus voltage of 1200 V and a large current of 1800 A while the Con-ATMOS fails in the turn-off process.The key parameters that have a strong influence on performance of the ODSG-TMOS are discussed,which presents a further improvement direction for the proposed structure.Considering the improved switching performance and enhanced SOA, the ODSG-TMOS is a promising candidate for high-frequency and high-power applications.

    Acknowledgement

    Project supported by the China Postdoctoral Science Foundation(Grant No.2020M682607).

    猜你喜歡
    張波陳偉金平
    入木三分
    Rapid identification of volatile organic compounds and their isomers in the atmosphere
    《健聽女孩》:無(wú)聲世界里的有情人生
    意林彩版(2022年1期)2022-05-03 10:25:07
    Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
    Best fight
    陳偉教授簡(jiǎn)介
    南城秋意
    赤水源(2018年6期)2018-12-06 08:38:10
    陳偉博士簡(jiǎn)介
    Recent Progress in Heavy Fuel Aviation Piston Engine
    張波:行走在神經(jīng)外科前沿
    免费高清视频大片| 亚洲美女搞黄在线观看 | 国产精品美女特级片免费视频播放器| 国产午夜精品久久久久久一区二区三区 | 一级毛片久久久久久久久女| 简卡轻食公司| 亚洲av成人精品一区久久| 老熟妇乱子伦视频在线观看| 97人妻精品一区二区三区麻豆| 九九热线精品视视频播放| 国产亚洲av嫩草精品影院| 欧美极品一区二区三区四区| 国产精品乱码一区二三区的特点| 婷婷色综合大香蕉| 免费看美女性在线毛片视频| 国产成人欧美在线观看| 一个人看视频在线观看www免费| 国产精品久久久久久亚洲av鲁大| 99国产综合亚洲精品| 精品熟女少妇八av免费久了| 成人美女网站在线观看视频| 亚洲精品在线美女| 亚洲内射少妇av| 亚洲五月婷婷丁香| 精品久久久久久久久久久久久| 亚洲欧美日韩东京热| 欧美日本亚洲视频在线播放| 亚洲性夜色夜夜综合| 欧美xxxx性猛交bbbb| 99热精品在线国产| 又粗又爽又猛毛片免费看| 亚洲国产欧洲综合997久久,| 最近在线观看免费完整版| 国产综合懂色| 12—13女人毛片做爰片一| 日本精品一区二区三区蜜桃| 给我免费播放毛片高清在线观看| 国产精品电影一区二区三区| 此物有八面人人有两片| 国产亚洲欧美在线一区二区| 久久久久性生活片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品一区av在线观看| 国产一区二区亚洲精品在线观看| 国产真实乱freesex| 国产成人a区在线观看| 在线观看免费视频日本深夜| 久久精品夜夜夜夜夜久久蜜豆| 最近中文字幕高清免费大全6 | 首页视频小说图片口味搜索| 激情在线观看视频在线高清| 国产免费av片在线观看野外av| 国产精品久久久久久人妻精品电影| 欧美黄色淫秽网站| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| 日韩av在线大香蕉| 国产在视频线在精品| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久九九精品二区国产| 悠悠久久av| 国产精品永久免费网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品久久国产高清桃花| 可以在线观看的亚洲视频| 最新在线观看一区二区三区| 别揉我奶头 嗯啊视频| 亚洲国产日韩欧美精品在线观看| 99视频精品全部免费 在线| 国产午夜精品久久久久久一区二区三区 | 91久久精品电影网| 成年版毛片免费区| 熟妇人妻久久中文字幕3abv| 人人妻人人看人人澡| 免费观看精品视频网站| 午夜免费男女啪啪视频观看 | 97超级碰碰碰精品色视频在线观看| 欧美一区二区国产精品久久精品| 一夜夜www| 色播亚洲综合网| 久9热在线精品视频| 亚洲成av人片免费观看| 麻豆成人午夜福利视频| 午夜激情福利司机影院| 又爽又黄无遮挡网站| 国产精品一区二区免费欧美| 久久久久久久久久成人| 一区二区三区四区激情视频 | 亚洲18禁久久av| 99在线人妻在线中文字幕| 久久6这里有精品| 可以在线观看的亚洲视频| 亚洲欧美日韩高清在线视频| 婷婷亚洲欧美| 夜夜看夜夜爽夜夜摸| h日本视频在线播放| 亚洲,欧美,日韩| 亚洲av五月六月丁香网| 成年版毛片免费区| 全区人妻精品视频| 亚洲精品一区av在线观看| 国产精品久久久久久亚洲av鲁大| 久久亚洲精品不卡| 欧美性猛交╳xxx乱大交人| 国产欧美日韩一区二区精品| 又爽又黄a免费视频| 黄色一级大片看看| 欧美日韩综合久久久久久 | 久久久久久久午夜电影| 国产熟女xx| 欧美日韩综合久久久久久 | av专区在线播放| 久久6这里有精品| 宅男免费午夜| 综合色av麻豆| 女人十人毛片免费观看3o分钟| 99在线视频只有这里精品首页| 午夜久久久久精精品| 一个人看的www免费观看视频| 欧美在线黄色| 久久久久久久午夜电影| 免费看美女性在线毛片视频| 免费在线观看亚洲国产| 久久精品国产99精品国产亚洲性色| 极品教师在线视频| 天堂av国产一区二区熟女人妻| 国产精品99久久久久久久久| 成人毛片a级毛片在线播放| 亚洲成人精品中文字幕电影| 亚洲片人在线观看| 五月伊人婷婷丁香| 人人妻人人澡欧美一区二区| 婷婷六月久久综合丁香| 十八禁网站免费在线| 国产一区二区在线av高清观看| 少妇裸体淫交视频免费看高清| 夜夜爽天天搞| 午夜激情福利司机影院| 久久人妻av系列| 亚洲,欧美,日韩| 久久国产精品人妻蜜桃| 免费无遮挡裸体视频| 搡老岳熟女国产| 国产精品日韩av在线免费观看| 欧美成人一区二区免费高清观看| 俺也久久电影网| 亚洲五月婷婷丁香| 内地一区二区视频在线| 夜夜躁狠狠躁天天躁| 内射极品少妇av片p| 99视频精品全部免费 在线| 97碰自拍视频| 亚洲av成人av| 男插女下体视频免费在线播放| 亚洲人成网站在线播| 欧美日本视频| 99久久九九国产精品国产免费| 精品久久久久久久久亚洲 | 久久国产乱子伦精品免费另类| 成年女人永久免费观看视频| 简卡轻食公司| 国产精品电影一区二区三区| 午夜福利在线观看免费完整高清在 | 国产一区二区三区视频了| 久久国产乱子免费精品| 色综合站精品国产| 午夜老司机福利剧场| 午夜福利成人在线免费观看| 在线国产一区二区在线| 在线观看av片永久免费下载| 久久久久久国产a免费观看| 亚洲欧美日韩高清专用| 级片在线观看| 精品不卡国产一区二区三区| 小蜜桃在线观看免费完整版高清| 欧美性猛交╳xxx乱大交人| 成人三级黄色视频| 欧美午夜高清在线| 99久久九九国产精品国产免费| 亚洲中文字幕一区二区三区有码在线看| 他把我摸到了高潮在线观看| 性色av乱码一区二区三区2| 久久九九热精品免费| av在线老鸭窝| 国产黄片美女视频| 日韩中字成人| 男女之事视频高清在线观看| 国产成人欧美在线观看| 中文资源天堂在线| 日韩欧美国产一区二区入口| 极品教师在线免费播放| 成年女人毛片免费观看观看9| 91九色精品人成在线观看| 国产精品精品国产色婷婷| 久久国产乱子伦精品免费另类| 国产三级黄色录像| 别揉我奶头~嗯~啊~动态视频| 成人美女网站在线观看视频| 成人国产综合亚洲| 窝窝影院91人妻| 99视频精品全部免费 在线| 国内揄拍国产精品人妻在线| 色播亚洲综合网| 免费黄网站久久成人精品 | 搡女人真爽免费视频火全软件 | 在线国产一区二区在线| 自拍偷自拍亚洲精品老妇| 内射极品少妇av片p| 精品日产1卡2卡| 国产成+人综合+亚洲专区| 国产三级在线视频| 99热只有精品国产| 最后的刺客免费高清国语| 久久精品国产亚洲av天美| 亚洲专区国产一区二区| 免费电影在线观看免费观看| 国产精品嫩草影院av在线观看 | 国产精品伦人一区二区| 亚洲最大成人中文| 欧美在线黄色| 最后的刺客免费高清国语| 免费人成在线观看视频色| 午夜两性在线视频| 丰满的人妻完整版| 国模一区二区三区四区视频| 亚洲久久久久久中文字幕| 成人特级黄色片久久久久久久| 少妇的逼好多水| 精品熟女少妇八av免费久了| 少妇的逼水好多| 精品久久久久久,| 欧美在线一区亚洲| 观看免费一级毛片| 国产一级毛片七仙女欲春2| 88av欧美| 一级毛片久久久久久久久女| 亚洲人成网站在线播放欧美日韩| 婷婷色综合大香蕉| 国产精品久久视频播放| 国产成人a区在线观看| 色哟哟哟哟哟哟| 亚洲,欧美精品.| 国产淫片久久久久久久久 | 丁香六月欧美| 国产三级在线视频| 噜噜噜噜噜久久久久久91| 桃色一区二区三区在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲 欧美 日韩 在线 免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品色激情综合| 少妇高潮的动态图| 成熟少妇高潮喷水视频| 91在线观看av| 精品久久久久久,| 一级a爱片免费观看的视频| 国产精品久久视频播放| 日日夜夜操网爽| 搞女人的毛片| 男女下面进入的视频免费午夜| 精品久久国产蜜桃| 女人被狂操c到高潮| 如何舔出高潮| 美女cb高潮喷水在线观看| 午夜久久久久精精品| 国产高潮美女av| 变态另类丝袜制服| 亚洲人成伊人成综合网2020| 国产亚洲精品综合一区在线观看| 美女免费视频网站| 日韩av在线大香蕉| 久久久久精品国产欧美久久久| 一区二区三区高清视频在线| 我要看日韩黄色一级片| 成人亚洲精品av一区二区| 国产精品国产高清国产av| www日本黄色视频网| 狠狠狠狠99中文字幕| x7x7x7水蜜桃| 韩国av一区二区三区四区| 国产男靠女视频免费网站| 免费观看人在逋| 亚洲欧美精品综合久久99| 9191精品国产免费久久| 丁香欧美五月| 日本免费a在线| 精品日产1卡2卡| 白带黄色成豆腐渣| 黄色女人牲交| 一边摸一边抽搐一进一小说| 精品久久久久久成人av| 成年女人看的毛片在线观看| 久久久精品欧美日韩精品| 国产精品亚洲av一区麻豆| 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出| 最近在线观看免费完整版| 91九色精品人成在线观看| 黄色女人牲交| 可以在线观看的亚洲视频| 在线观看舔阴道视频| 变态另类成人亚洲欧美熟女| 能在线免费观看的黄片| 色av中文字幕| 亚洲一区二区三区色噜噜| 露出奶头的视频| 国产精品美女特级片免费视频播放器| 亚洲最大成人中文| 美女黄网站色视频| 日韩有码中文字幕| 欧美日本视频| 久久精品夜夜夜夜夜久久蜜豆| 一本久久中文字幕| 成人精品一区二区免费| 午夜免费成人在线视频| 99在线人妻在线中文字幕| 在线免费观看的www视频| 两个人视频免费观看高清| 国产精品伦人一区二区| 国产精品乱码一区二三区的特点| av国产免费在线观看| 制服丝袜大香蕉在线| 亚洲美女搞黄在线观看 | 无遮挡黄片免费观看| 久久久久久九九精品二区国产| 有码 亚洲区| 精品日产1卡2卡| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久精品电影| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女| 极品教师在线免费播放| 又爽又黄a免费视频| 亚洲天堂国产精品一区在线| 中文字幕高清在线视频| 亚洲成人中文字幕在线播放| 亚洲自偷自拍三级| 亚洲欧美精品综合久久99| 国产精品综合久久久久久久免费| 男女之事视频高清在线观看| 又爽又黄a免费视频| 每晚都被弄得嗷嗷叫到高潮| 两个人视频免费观看高清| 亚洲久久久久久中文字幕| 国产精品亚洲一级av第二区| 国产亚洲欧美在线一区二区| 欧美极品一区二区三区四区| 精品国产亚洲在线| 日本精品一区二区三区蜜桃| 18美女黄网站色大片免费观看| 亚洲在线自拍视频| 亚洲经典国产精华液单 | 99精品久久久久人妻精品| 国产在线男女| 91九色精品人成在线观看| 搡女人真爽免费视频火全软件 | 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 美女黄网站色视频| 色精品久久人妻99蜜桃| 亚洲人成伊人成综合网2020| 亚洲av二区三区四区| 国产一区二区在线av高清观看| 免费在线观看亚洲国产| 国产毛片a区久久久久| 久久精品影院6| 极品教师在线视频| 又粗又爽又猛毛片免费看| 一个人观看的视频www高清免费观看| 啦啦啦韩国在线观看视频| 午夜福利欧美成人| 午夜激情福利司机影院| 在线天堂最新版资源| 在线观看66精品国产| 中文亚洲av片在线观看爽| a级毛片a级免费在线| 一级av片app| 免费在线观看影片大全网站| 久久久久久大精品| 啦啦啦观看免费观看视频高清| 香蕉av资源在线| 极品教师在线视频| 国产av在哪里看| 最近在线观看免费完整版| 女同久久另类99精品国产91| 国产黄色小视频在线观看| 可以在线观看毛片的网站| 久久久久久久久大av| 亚洲欧美清纯卡通| 亚洲色图av天堂| 性色av乱码一区二区三区2| 亚洲成av人片在线播放无| 亚洲国产欧洲综合997久久,| 一卡2卡三卡四卡精品乱码亚洲| 色哟哟哟哟哟哟| 男女视频在线观看网站免费| 天堂网av新在线| 国产伦一二天堂av在线观看| 天天一区二区日本电影三级| 国产高清激情床上av| 在线免费观看不下载黄p国产 | 3wmmmm亚洲av在线观看| 免费电影在线观看免费观看| 女生性感内裤真人,穿戴方法视频| a级毛片a级免费在线| 国产精品久久电影中文字幕| 人人妻人人澡欧美一区二区| 亚洲人成电影免费在线| 亚洲中文字幕一区二区三区有码在线看| 观看美女的网站| 中文资源天堂在线| 国产一区二区激情短视频| 中文字幕人妻熟人妻熟丝袜美| 3wmmmm亚洲av在线观看| 国内精品久久久久久久电影| 国内精品美女久久久久久| 欧美在线一区亚洲| 乱码一卡2卡4卡精品| 好男人电影高清在线观看| 色精品久久人妻99蜜桃| 97热精品久久久久久| 夜夜躁狠狠躁天天躁| 搡女人真爽免费视频火全软件 | 又紧又爽又黄一区二区| 一a级毛片在线观看| 精品欧美国产一区二区三| 国模一区二区三区四区视频| 男女做爰动态图高潮gif福利片| 亚洲国产高清在线一区二区三| 99久久99久久久精品蜜桃| 一a级毛片在线观看| 热99re8久久精品国产| 动漫黄色视频在线观看| 91在线精品国自产拍蜜月| 精品久久久久久久久久久久久| a级一级毛片免费在线观看| 色综合亚洲欧美另类图片| 色av中文字幕| 日本与韩国留学比较| 美女 人体艺术 gogo| 悠悠久久av| 给我免费播放毛片高清在线观看| 免费无遮挡裸体视频| 欧美日韩乱码在线| 中文字幕av在线有码专区| 国产av不卡久久| 久久精品国产99精品国产亚洲性色| 人妻久久中文字幕网| 亚洲 国产 在线| 最近在线观看免费完整版| 九九在线视频观看精品| 香蕉av资源在线| 18禁黄网站禁片午夜丰满| 又黄又爽又免费观看的视频| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 国产一区二区在线观看日韩| x7x7x7水蜜桃| 动漫黄色视频在线观看| 一本久久中文字幕| 免费av不卡在线播放| 免费人成视频x8x8入口观看| 中文资源天堂在线| 国产黄a三级三级三级人| 久久草成人影院| av在线老鸭窝| 中文资源天堂在线| 精品久久国产蜜桃| 看免费av毛片| 精华霜和精华液先用哪个| 成人鲁丝片一二三区免费| 在线天堂最新版资源| 最近视频中文字幕2019在线8| 久久精品国产亚洲av天美| 亚洲精品一区av在线观看| 久久久色成人| 免费无遮挡裸体视频| 噜噜噜噜噜久久久久久91| 欧美高清成人免费视频www| 国产欧美日韩精品亚洲av| 成人美女网站在线观看视频| 香蕉av资源在线| 亚洲男人的天堂狠狠| 少妇人妻一区二区三区视频| 国产日本99.免费观看| 免费看光身美女| 国内精品美女久久久久久| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 日韩精品中文字幕看吧| 国产一区二区亚洲精品在线观看| 精品一区二区三区av网在线观看| 欧美在线黄色| 成人性生交大片免费视频hd| 成人亚洲精品av一区二区| 直男gayav资源| 18禁黄网站禁片免费观看直播| 午夜福利在线观看吧| 亚洲精品一卡2卡三卡4卡5卡| 舔av片在线| 人妻丰满熟妇av一区二区三区| 亚洲内射少妇av| 人妻丰满熟妇av一区二区三区| 丰满人妻一区二区三区视频av| 国产在视频线在精品| 免费看a级黄色片| 免费在线观看亚洲国产| 午夜影院日韩av| 欧美中文日本在线观看视频| 午夜影院日韩av| 麻豆成人午夜福利视频| 女同久久另类99精品国产91| 国产91精品成人一区二区三区| 国产高清视频在线观看网站| 欧美日韩亚洲国产一区二区在线观看| 久久国产乱子伦精品免费另类| 成人av在线播放网站| 免费av不卡在线播放| 欧美日韩乱码在线| 午夜免费男女啪啪视频观看 | 国产综合懂色| 九九久久精品国产亚洲av麻豆| 女人被狂操c到高潮| 成人三级黄色视频| 99热6这里只有精品| 国产一区二区三区视频了| a在线观看视频网站| 亚洲第一区二区三区不卡| 俺也久久电影网| 成人高潮视频无遮挡免费网站| 欧美激情在线99| .国产精品久久| 成年人黄色毛片网站| 国产乱人视频| 日本撒尿小便嘘嘘汇集6| 五月伊人婷婷丁香| 亚洲不卡免费看| 久久精品国产亚洲av香蕉五月| 首页视频小说图片口味搜索| 亚洲精品一区av在线观看| a在线观看视频网站| 丝袜美腿在线中文| 老司机深夜福利视频在线观看| 国产高清有码在线观看视频| 熟妇人妻久久中文字幕3abv| 免费看美女性在线毛片视频| 中文字幕av在线有码专区| 国内毛片毛片毛片毛片毛片| 国产精品乱码一区二三区的特点| 91久久精品国产一区二区成人| 亚洲国产高清在线一区二区三| 男人和女人高潮做爰伦理| 日韩中文字幕欧美一区二区| 啪啪无遮挡十八禁网站| 婷婷精品国产亚洲av| 久久天躁狠狠躁夜夜2o2o| 黄色日韩在线| 99riav亚洲国产免费| 成人高潮视频无遮挡免费网站| 变态另类丝袜制服| 成人一区二区视频在线观看| 国产精品女同一区二区软件 | 波多野结衣巨乳人妻| 亚洲最大成人av| 91狼人影院| 色哟哟·www| 国产伦在线观看视频一区| 岛国在线免费视频观看| 欧美日韩综合久久久久久 | 一边摸一边抽搐一进一小说| 亚洲中文字幕一区二区三区有码在线看| 狂野欧美白嫩少妇大欣赏| 婷婷精品国产亚洲av在线| 午夜激情欧美在线| 日本五十路高清| 一级av片app| 国产精品,欧美在线| 亚洲av中文字字幕乱码综合| 免费大片18禁| 熟女电影av网| 99热6这里只有精品| 最新中文字幕久久久久| 久久人妻av系列| 亚洲国产欧美人成| 国产亚洲精品综合一区在线观看| 嫩草影院新地址| 99视频精品全部免费 在线| 别揉我奶头~嗯~啊~动态视频| 婷婷精品国产亚洲av在线| 欧美极品一区二区三区四区| 国产私拍福利视频在线观看| 久久久精品大字幕| 黄片小视频在线播放| 亚洲精品色激情综合| 十八禁国产超污无遮挡网站| 五月玫瑰六月丁香| 看片在线看免费视频| 亚洲av一区综合| 免费av不卡在线播放| 真人一进一出gif抽搐免费| 亚洲专区中文字幕在线| 欧美丝袜亚洲另类 | 悠悠久久av| 99热这里只有是精品在线观看 | 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av香蕉五月| 国产成人a区在线观看| 国产一区二区激情短视频| 老司机深夜福利视频在线观看| 久久久久国内视频| 国产高潮美女av| 一本久久中文字幕| bbb黄色大片| 人人妻,人人澡人人爽秒播| 老司机午夜福利在线观看视频|