• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature?

    2021-03-11 08:32:12JingYueXuan宣景悅GuoDongZhao趙國棟XiaoBoShi史小波WeiGeng耿偉HengZhengLi李恒征MeiLingSun孫美玲FuChaoJia賈福超ShuGangTan譚樹剛GuangChaoYin尹廣超andBoLiu劉波
    Chinese Physics B 2021年2期
    關鍵詞:劉波美玲趙國

    Jing-Yue Xuan(宣景悅), Guo-Dong Zhao(趙國棟), Xiao-Bo Shi(史小波), Wei Geng(耿偉),Heng-Zheng Li(李恒征), Mei-Ling Sun(孫美玲), Fu-Chao Jia(賈福超),Shu-Gang Tan(譚樹剛), Guang-Chao Yin(尹廣超),?, and Bo Liu(劉波),§

    1Laboratory of Functional Molecular and Materials,School of Physics and Optoelectronic Engineering,Shandong University of Technology,Zibo 255000,China

    2Institute of Artificial Intelligence,Henan Finance University,Zhengzhou 450046,China

    Keywords: ZnO,H2S gas sensor,room temperature

    1. Introduction

    ZnO,as one of the important n-type metal oxide semiconductors, has attracted wide attention in gas-sensing applications due to its advantages of low-cost,non-toxicity,and high mobility of conduction electrons.[1–8]Recently, many ZnObased nanomaterials have been used to detect H2S and have exhibited a good response and selectivity, so it has been regarded as one of the most promising H2S sensing materials.However, in most work, the ZnO sensors generally require a high operating temperature(around 200–450?C),[9–16]which inevitably increases the energy consumption,shortens the life of the device, thereby extremely limits the practical application. Thus, achieving room-temperature detection of lowconcentration H2S is of significant importance.

    In order to achieve room-temperature detection of H2S, many works concentrate on compounding with noble materials[17]or other semiconductor materials, doping by other elementals,[18–20]or testing under assistance of UV-illumination,[21,22]which obviously require complex processes, expensive equipments, and high production costs. So far,unmodified ZnO nanomaterials used as room-temperature H2S sensors have rarely been reported yet. According to the typical gas-sensing mechanism,that is,the gas sensing behavior is related to the redox reaction of surface electrons and target gas,which extremely depends on the specific surface area of the sensors. Therefore,decreasing the grain size of the sensors for larger specific surface areas via morphology regulation may be a promising strategy. For example,Patil et al.[23]prepared ZnO nanoparticles with sizes of 18–40 nm by successive ion layer adsorption and reaction(SILAR)technique to detect NO2at low temperature(150?C).Deng et al.[24]synthesized ZnO quantum dots with average grain size of 14.6 nm via a colloidal procedure to detect H2S at 90?C. In addition, the device structure of the gas sensor also plays a vital role in improving the effective specific surface area of the sensors. For a typical gas-sensing device,the gas-sensing materials generally are coated on the prefabricated ceramics plate’s electrodes by a screen-printing or doctor-blading method, then annealed at an appropriate temperature to form a film for the gas-sensing detection.[25,26]However,it will inevitably cause the problem of large thickness and material agglomeration,as a result,only a small portion of gas-sensing materials can be exposed to the gas atmosphere for reacting with the target gas.[27]Based on the above considerations,synthesizing small-sized nanomaterials and controlling the thickness of the material may be a promising strategy.

    In this work, a simple sol-gel method is used to synthesize nano-sized ZnO nanoparticles (NPs), a facile dropcoating technology is used for in-situ preparation of ZnO NPs on the gas-sensing electrode with controllable thickness. Asprepared ZnO NPs sensors will measure low-concentration H2S at room temperature to study their response/recovery speed, response value, minimum detection limit, and selectivity nature. In addition, the effect of the calcine time and thickness of the film on gas-sensing performance will be investigated,and the corresponding physical mechanism of H2S detection will also be discussed.

    2. Experiments and methods

    The preparation and measurement processes of gas sensors are shown in Fig.1,which is further explained in detail in the following part.

    Fig.1. Preparation schematic of ZnO NPs on the gas-sensing electrode,and sketch of the intelligent gas-sensing test system.

    2.1. Synthesis of ZnO NPs sensors

    The alumina-based plate-type electrode was used as a gas-sensing electrode, which has five pairs of Ag–Pd fingers with 200μm in separation as the electrode materials. Before the preparation of ZnO sensors,the gas-sensing electrode was cleaned ultrasonically with acetone,isopropanol,ethanol,and deionized water for 30 min in turn respectively, and subsequently dried with nitrogen.

    The ZnO NPs sensors were in-situ fabricated on the electrode by a simple sol-gel method and drop-coating technology.Firstly, 40 ml of an aqueous solution containing 0.05 M zinc acetate and 0.05 M diethanolamine was prepared at 30?C in advance.Then,the gas-sensing electrode was placed on a level surface(calibrated by bubble level). Next,a capillary(diameter of about 1 mm)was used to take a drop of the seed solution(about 0.02 g) to the center of the electrode. Finally, the solution was free to diffuse and allowed for air dry (40 s). The above steps are defined as one cycle. At this time,the relative humidity is 50% and the operation temperature is room temperature. Finally, the gas-sensing electrode was calcined for a certain time at 400?C to obtain ZnO NPs films. To study the effect of the calcining time, the number of cycles was set to 2, and the calcining time was set to 30 min, 60 min, and 120 min,hereinafter designated as T-30,T-60, and T-120,respectively. To study the effect of the thickness of the films,the calcining time was set to 30 min firstly, the number of cycles was set to 2, 4, and 6, which were denoted as C-2, C-4, and C-6,respectively.

    2.2. Characterizations and gas measurement

    The morphologies and microstructure of the ZnO NPs sensors were examined by a scanning electron microscope(SEM,SU8010)and high-resolution transmission electron microscopy(HRTEM,JEOL JEM-2200FS),respectively. The xray diffraction(XRD,Germany BrukerAXS D8 Advance)pattern was used to confirm the crystalline structure of the samples. The gas-sensing properties were tested using an intelligent gas-sensing analysis system (CGS-4TPS, Ltd, China).The response value of gas sensors is defined as the ratio of the resistance of the ZnO NPs sensor exposed to air(Ra)and target gas(Rg)atmosphere,which can be expressed as

    3. Results and discussion

    3.1. Morphology and structure

    The morphologies, microstructures, and elemental composition distributions of the ZnO NPs films prepared with different conditions are investigated in Fig.2. As shown in Figs. 2(a) and 2(b), the circuit of the gas-sensing electrode consists of five pairs of interdigital fingers,where the distance between the interdigital fingers is about 200μm.In Figs.2(c)–2(e),the morphologies of T-30,T-60,and T-120 are shown. It can be seen that all samples show relatively regular spherical particles. As the calcining time increases, the grain size(diameter) of the ZnO NPs gradually increases. The average grain sizes of T-30,T-60,and T-120 are about 16 nm,21 nm,and 28 nm, respectively. In addition, as the calcining time increases, the uniformity of the ZnO NPs is weakened. In particular, a small number of large particles appear in T-120,which may form by agglomeration of small particles. Figure 2(f) shows the HRTEM images. Several fringe patterns can be obviously seen,where the lattice spacings of 0.247 nm,0.26 nm,and 0.281 nm can correspond to the interplanar distances of the {101}, {002}, and {100} facets of hexagonal ZnO(JCPDS No.36-1451). The EDX elemental mapping images of the ZnO NPs sensor are shown in Fig.2(g). Among them,Al and Ag elements should derive from the gas-sensing electrode. The sufficient Zn and O elements can further indicate that ZnO NPs have been successfully prepared.

    Fig.2. SEM images of(a),(b)bare gas-sensing electrode,(c)T-30,(d)T-60, and (e) T-120. (f) HRTEM image of T-30. (g) EDX elemental mapping images of ZnO NPs sensor.

    Figure 3 shows the XRD patterns of the samples with different condition to further confirm the crystalline structure and study the effect of the calcine time on ZnO.In order to avoid the interference caused by the high diffraction signal of alumina substrate and Ag circuit, an ordinary amorphous glass without obvious diffraction peak(black line) was used as the preparation substrate of ZnO NPs. When ZnO NPs were synthesized on the glass substrate, several obvious characteristic peaks appear at 31.8?, 34.4?, 36.3?, 47.5?, 56.6?, and 62.9?,which correspond to (100), (002), (101), (102), (110), and(103)facets of hexagonal ZnO(JCPDS No. 36-1451),respectively. As the calcine time increases,the position and number of characteristic diffraction peaks have no change. However,the intensity and sharpness of the diffraction peaks significantly reduce,especially for the sample with 120 min calcine time. This may be due to the fact that the increase of the grain size of ZnO NPs causes the spread of full width half maximum(FWHM)of the diffraction peaks,which corresponds to the SEM results.

    Fig.3. The XRD patterns of substrate and ZnO NPs sensors with different calcine time.

    3.2. Gas sensing properties and mechanism

    The H2S sensing characteristics of the ZnO NPs sensors with different conditions were measured at room temperature.As shown in Fig.4(a), the gas-sensing performance of ZnO NPs obtained with different calcine time for 750 ppb H2S is compared.It can be seen that as the calcination time increases,the response value decreases. The response values of T-30,T-60, and T-120 are 73.3%, 35.2%, and 6.9%, respectively.The decrease of the response value should be related to the decrease in the specific surface area caused by the larger grain size. In addition, according to Ahn et al.,[28]the gas-sensing performance has a positive correlation with the oxygen defect density. Generally, a calcine process can reduce the defect density and increase the crystallinity of nanomaterials,which may further reduce the response values of T-60 and T-120.Except for the change of the response value, the response time and recovery time of T-60 (110 s, 106 s) and T-120 (120 s,118 s) are longer than those of T-30 (93 s, 90 s). This is because they are more difficult to reach the stable state compared to T-30 exposed to H2S at the same time, which may be due to the fact that the agglomeration of ZnO NPs hinders gas diffusion. Figures 4(c)and 4(e)show the gas-sensing characteristics of T-30, T-60, and T-120 exposed to different concentration H2S at room temperature. It can be seen that T-30 has the highest response value for all concentrations. And the response values of all samples show a well linear relationship with the H2S concentration,which will be beneficial for being quantified in the practical application. In Figs.4(b),4(d),and 4(f),the effect of the thickness of the ZnO NPs films on their H2S sensing performance is investigated. Obviously, there is a negative correlation between the response value and the film thickness in different concentration H2S.And compared with C-2,the response time and recovery time of C-4(95 s,120 s)and C-6(100 s,123 s)with larger thickness also increase. We compare our results with the previously reported ones(shown in Table 1),the ZnO NPs sensor exhibits much higher gas sensitivity and lower operating temperatures. The reason will be explained in the reaction mechanism below.

    Table 1. H2S sensing properties of the different samples in our study and in the literature.

    Fig.4. The gas-sensing characteristics of ZnO NPs sensors with(a),(c),(e)different calcine time and(b),(d),(f)different thickness exposed to different concentration H2S at room temperature.

    The reaction mechanisms between ZnO NPs and H2S will be explained by electron depletion layer and grain boundaries potential barrier theories.[33,34]As shown in the right panel of Fig.5, when ZnO NPs sensors are exposed to air, due to the fact that ZnO possesses an electron spin resonance signal reflecting the concentration of free electrons,and the freely conducting electrons on ZnO can interact equally with both oxygen nuclei,thus oxygen ions are adsorbed with the molecular axis parallel to the surface on ZnO.[35,36]At the same time,since the suspension bonds on the surface of nanomaterials introduce impurity energy levels in the semiconductor band gap,which can excite electrons and holes at lower temperatures,thereby enhancing the adsorption of oxygen and hydrated hydroxyl groups.[37,38]The oxygen adsorbed on the surface of ZnO will trap electrons in the conduction band of ZnO to form chemically adsorbed oxygen(O?2),thereby resulting in the formation of a wide electron depletion layer and the band bending upwards. Meanwhile,the high potential barrier appears in the interface of multiple ZnO NPs. Therefore, this process will make the resistance of ZnO NPs increase gradually and reach the maximum in dynamic balance. The above process can be described by[39–41]

    When ZnO NPs sensors are transferred to the H2S condition,the chemisorbed O2?reacts with H2S and returns electrons to the ZnO NPs. Thereby, the electron density near the surface of the ZnO NPs is increased (resistance is reduced), and the depletion layer is narrowed. Meanwhile,at the interfaces,the height of the grain boundary potential barrier is significantly reduced, which will reduce the obstruction to the transmission of electrons. In addition, the hydrated hydroxyl groups adsorbed on the surface of ZnO can saturate the suspension bonds on the surface of the ZnO NPs and reduce the electronic transition barrier, which will further reduce the resistance of the ZnO NPs sensors.[37,42]This process can be described by[9,10,17,43,44]

    According to the above mechanism,the proportion of the depletion layer in the whole nanoparticle directly affects the gas-sensing response value. However,the thickness of the depletion layer cannot exceed the Debye length of nanomaterials. Thus, the larger grain size caused by longer calcine time will decrease the proportion of the depletion layer,and thereby decrease the response value. For the effect of the thickness of the ZnO NPs sensor, due to the accumulation of particles derived from gravity, except that a small part of the surface is porous, most of the surface is dense at the bottom (as shown in Fig.5(b)),which makes the effective thickness that participates in the response of ZnO NPs limited.For a similar reason,the increased thickness obviously decreases the proportion of the effective thickness in the whole film, finally resulting in the reduced response value of the ZnO NPs.

    Fig.5. Schematic diagram and cross-section SEM of(a)C-2 and(b)C-6,as well as their schematic diagram of reaction mechanism in the right.

    The selectivity nature of ZnO NPs sensors was also investigated. As shown in Fig.6(a), it can be seen that ZnO exhibits superior response value to H2S even at low concentrations. The response values of above several interference gases(such as formaldehyde, isopropanol, acetone, ethanol, acetic acid,methanol,H2,and NH3)with high concentration are also obviously lower than that of H2S.The excellent selectivity to H2S may be ascribed to the extra chemical reaction between ZnO and H2S, that is, H2S directly reacts with ZnO NPs to form ZnS. According to the previous researches, the formation of ZnS will introduce a shallow donor level in the band gap of ZnO NPs. When ZnO NPs sensors are thermally excited(above absolute zero),electrons transit from the shallow donor level to the conduction band of ZnO, further reducing the resistance and increasing the sensitivity. The corresponding reaction can be described by[45,46]

    To prove the above reaction and study the degree of reaction,the H2S sensing tests were carried out in normal air and hypoxia environment, respectively, as shown in Fig.6(b). The hypoxia environment is realized through advance vacuum and 30 min N2flushing to exhaust O2. It can be seen that the response value to H2S is significantly reduced from 73.3% to 8%in hypoxia environment, which indicates the existence of the above reaction. Meanwhile, the rationality of the above mechanism can be confirmed, that is, H2S sensing behavior mainly relates to its reaction with chemisorbed O?2. However,the response and recovery processes are also different in the air and hypoxia environment. There is a complete response and recovery in air,while the response value of ZnO NPs cannot normally recover. This should due to the below reaction reported by Wang et al.:[46]

    ZnS will restore to ZnO again with the assistance of O2. Thus,the reaction between ZnO with H2S is not a simple adsorption/desorption reaction. And this reaction can ensure repeatability and improve the selectivity of the H2S sensing behavior in an oxygen-containing environment.

    Fig.6. (a)The selectivity nature of ZnO NPs sensors;(b)H2S sensing behaviors in air and hypoxia environment.

    4. Conclusion

    In summary, we fabricated ZnO NPs sensors based on gas-sensing electrode by a simple sol-gel method with shorttime calcine process to detect H2S.Under the synergistic effect of morphology control and device design,the as-prepared ZnO NPs sensors achieved the room-temperature detection of ppblevel H2S, the minimum detection limit reached 30 ppb and the response value was 7.5%. In addition,the effect of calcine time and thickness of film on H2S sensing behavior were investigated. The results indicate that shorter calcining time and thinner film thickness are beneficial to obtain a small particle size and increasing the effective surface area of the film, and thereby increase the H2S sensing performance of the ZnO NPs sensors.

    猜你喜歡
    劉波美玲趙國
    劉波作品
    國畫家(2023年1期)2023-02-16 07:57:50
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    師與書·趙國華
    江蘇教育(2017年45期)2017-07-05 11:31:34
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    趙美玲
    春天的早晨
    古法奇觀
    Experimental Investigation on Flow and Heat Transfer of Jet Impingement inside a Semi-Confined Smooth Channel*
    成人av在线播放网站| 国产精品嫩草影院av在线观看| 国产亚洲av嫩草精品影院| 99久久精品热视频| 欧美在线一区亚洲| 亚洲成人精品中文字幕电影| 亚洲欧美精品自产自拍| 人人妻人人看人人澡| 精品久久久久久久久久久久久| 如何舔出高潮| 日本在线视频免费播放| 国产亚洲欧美98| 99久久精品国产国产毛片| 五月伊人婷婷丁香| 国产女主播在线喷水免费视频网站 | 日韩 亚洲 欧美在线| 日日干狠狠操夜夜爽| a级毛片a级免费在线| 乱人视频在线观看| 国产亚洲精品久久久com| 51国产日韩欧美| 男人和女人高潮做爰伦理| 在线免费观看不下载黄p国产| 亚洲不卡免费看| 亚洲三级黄色毛片| 国产伦在线观看视频一区| av专区在线播放| 美女被艹到高潮喷水动态| 黄色配什么色好看| 日韩av不卡免费在线播放| 无遮挡黄片免费观看| av免费在线看不卡| 狠狠狠狠99中文字幕| 男插女下体视频免费在线播放| 久久精品夜色国产| 精品一区二区三区av网在线观看| 国产精品一区二区三区四区免费观看 | 色5月婷婷丁香| 国产白丝娇喘喷水9色精品| 麻豆久久精品国产亚洲av| 日日啪夜夜撸| 亚洲一级一片aⅴ在线观看| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜爱| 久久午夜亚洲精品久久| 欧美3d第一页| 18+在线观看网站| av福利片在线观看| 最新中文字幕久久久久| 国产成人福利小说| 精品久久久久久久末码| 久久人人爽人人片av| 午夜精品国产一区二区电影 | 久久午夜亚洲精品久久| 亚洲欧美日韩无卡精品| 3wmmmm亚洲av在线观看| 麻豆久久精品国产亚洲av| 国产成人一区二区在线| 国内精品久久久久精免费| 亚洲天堂国产精品一区在线| 亚洲美女搞黄在线观看 | 深夜a级毛片| 夜夜看夜夜爽夜夜摸| av.在线天堂| 亚洲色图av天堂| 亚洲,欧美,日韩| 18+在线观看网站| 亚洲电影在线观看av| 人人妻人人澡欧美一区二区| 免费高清视频大片| 性插视频无遮挡在线免费观看| 麻豆乱淫一区二区| 99热这里只有精品一区| 欧美人与善性xxx| 91久久精品电影网| 久久久成人免费电影| 丰满乱子伦码专区| 免费搜索国产男女视频| 久久久精品94久久精品| 国产亚洲精品综合一区在线观看| 99riav亚洲国产免费| 一进一出好大好爽视频| 日韩一本色道免费dvd| 国产精品一区二区三区四区免费观看 | 国产亚洲欧美98| 中出人妻视频一区二区| 18禁在线无遮挡免费观看视频 | 免费黄网站久久成人精品| 99久国产av精品| 天堂网av新在线| 网址你懂的国产日韩在线| 国产精品无大码| 变态另类丝袜制服| 精品久久久久久久末码| 亚洲av电影不卡..在线观看| 婷婷亚洲欧美| 国产真实伦视频高清在线观看| 深夜精品福利| 一边摸一边抽搐一进一小说| 国产91av在线免费观看| 国产精品国产高清国产av| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区 | 日本欧美国产在线视频| 国产91av在线免费观看| 成年版毛片免费区| 亚洲18禁久久av| 我要搜黄色片| 最新在线观看一区二区三区| 看十八女毛片水多多多| 五月玫瑰六月丁香| 久99久视频精品免费| 日韩欧美在线乱码| 久久精品久久久久久噜噜老黄 | 有码 亚洲区| 久久精品国产亚洲网站| 色综合色国产| 亚洲国产欧洲综合997久久,| 久久久久性生活片| 亚洲经典国产精华液单| 九色成人免费人妻av| 最近的中文字幕免费完整| 久久亚洲国产成人精品v| 亚洲精品日韩av片在线观看| 久久久久九九精品影院| 亚洲欧美成人精品一区二区| 亚洲欧美日韩无卡精品| 亚洲最大成人手机在线| 免费av观看视频| 91av网一区二区| 精品久久久久久久末码| a级一级毛片免费在线观看| av中文乱码字幕在线| 日本a在线网址| 久久久久久久久久久丰满| 日本-黄色视频高清免费观看| 亚洲熟妇熟女久久| 国产视频内射| 日本黄色视频三级网站网址| 欧美一区二区亚洲| 男女那种视频在线观看| 波多野结衣高清无吗| 日韩欧美免费精品| 亚洲在线观看片| 男人舔奶头视频| 精品免费久久久久久久清纯| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 校园人妻丝袜中文字幕| 丝袜喷水一区| 国产真实伦视频高清在线观看| 亚洲高清免费不卡视频| 18+在线观看网站| 久久精品国产自在天天线| 最近手机中文字幕大全| 久久久久免费精品人妻一区二区| 久久精品国产清高在天天线| 熟女人妻精品中文字幕| 国语自产精品视频在线第100页| 精品乱码久久久久久99久播| 日本黄色片子视频| 国产一级毛片七仙女欲春2| 中文字幕熟女人妻在线| 久久人妻av系列| 三级男女做爰猛烈吃奶摸视频| 亚洲精品日韩av片在线观看| 岛国在线免费视频观看| 国产中年淑女户外野战色| 精品人妻一区二区三区麻豆 | 日本与韩国留学比较| 国产精品一及| 欧美zozozo另类| a级毛色黄片| 看片在线看免费视频| 中文亚洲av片在线观看爽| 男女做爰动态图高潮gif福利片| 听说在线观看完整版免费高清| 男插女下体视频免费在线播放| 亚洲国产精品久久男人天堂| 欧美+日韩+精品| 大型黄色视频在线免费观看| 少妇的逼好多水| 久久精品国产亚洲网站| 99视频精品全部免费 在线| 欧美性猛交黑人性爽| 中出人妻视频一区二区| 国产午夜福利久久久久久| 国产一区二区三区在线臀色熟女| 乱码一卡2卡4卡精品| 日本免费一区二区三区高清不卡| 国产精品久久视频播放| 亚洲,欧美,日韩| 我的女老师完整版在线观看| 欧美中文日本在线观看视频| 国产亚洲精品av在线| 亚洲精品在线观看二区| 中文字幕熟女人妻在线| 热99re8久久精品国产| 国产探花在线观看一区二区| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩无卡精品| 九九热线精品视视频播放| 午夜精品在线福利| av黄色大香蕉| 婷婷亚洲欧美| av国产免费在线观看| 日韩欧美免费精品| 99热这里只有是精品在线观看| 午夜免费男女啪啪视频观看 | 成人av在线播放网站| 联通29元200g的流量卡| 男人狂女人下面高潮的视频| 成人特级黄色片久久久久久久| 乱人视频在线观看| 联通29元200g的流量卡| 国产伦精品一区二区三区视频9| 国产精品一区www在线观看| 色综合色国产| 久久精品综合一区二区三区| 国产色爽女视频免费观看| 午夜福利在线在线| 日本欧美国产在线视频| 免费无遮挡裸体视频| 国产精品三级大全| 精品99又大又爽又粗少妇毛片| 国产爱豆传媒在线观看| 99久久精品国产国产毛片| 国产免费男女视频| 国产精品日韩av在线免费观看| 亚洲av电影不卡..在线观看| 日本与韩国留学比较| 免费观看的影片在线观看| 国产伦在线观看视频一区| 国产高清视频在线观看网站| 亚洲国产精品久久男人天堂| 一进一出抽搐gif免费好疼| 少妇的逼好多水| 91久久精品国产一区二区成人| 国产老妇女一区| 国产成年人精品一区二区| 成人av在线播放网站| 国产精品不卡视频一区二区| 精品久久久久久久久亚洲| 一个人观看的视频www高清免费观看| 成熟少妇高潮喷水视频| 搞女人的毛片| 色噜噜av男人的天堂激情| 插阴视频在线观看视频| av黄色大香蕉| 婷婷精品国产亚洲av在线| 日本免费a在线| 日本在线视频免费播放| 欧美一区二区精品小视频在线| 国产黄a三级三级三级人| 秋霞在线观看毛片| 国产精品乱码一区二三区的特点| 一a级毛片在线观看| 男插女下体视频免费在线播放| 可以在线观看毛片的网站| 亚洲精品亚洲一区二区| 亚洲最大成人av| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 国产精品综合久久久久久久免费| 欧美精品国产亚洲| 男人和女人高潮做爰伦理| 中文字幕久久专区| 日本免费一区二区三区高清不卡| 男女边吃奶边做爰视频| 99久国产av精品国产电影| 亚洲欧美日韩高清在线视频| 不卡一级毛片| 精品久久久久久久久av| 在线免费观看不下载黄p国产| 国产精品99久久久久久久久| 亚洲av成人av| 国内久久婷婷六月综合欲色啪| 亚洲成人精品中文字幕电影| 99热全是精品| 在线观看av片永久免费下载| 亚洲高清免费不卡视频| 又黄又爽又免费观看的视频| 日本爱情动作片www.在线观看 | 九九久久精品国产亚洲av麻豆| 麻豆精品久久久久久蜜桃| 国产精品久久久久久久电影| 欧美成人一区二区免费高清观看| 精品少妇黑人巨大在线播放 | 99热只有精品国产| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| 美女高潮的动态| 三级国产精品欧美在线观看| 国产成人影院久久av| 久久久久久久久久成人| 亚洲av成人av| 久久人妻av系列| 久久精品久久久久久噜噜老黄 | 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 舔av片在线| 啦啦啦观看免费观看视频高清| 国产高清激情床上av| 日本黄色片子视频| 波多野结衣高清无吗| 日本欧美国产在线视频| 国产午夜福利久久久久久| 久久午夜福利片| 国产精品乱码一区二三区的特点| 综合色丁香网| 国产午夜精品论理片| 国产一区二区激情短视频| 成人美女网站在线观看视频| 国产精品国产三级国产av玫瑰| 成熟少妇高潮喷水视频| 少妇丰满av| 最新在线观看一区二区三区| 国产av在哪里看| 一进一出抽搐动态| 免费观看在线日韩| 99久国产av精品国产电影| 欧美区成人在线视频| 夜夜爽天天搞| 三级经典国产精品| 99久久无色码亚洲精品果冻| 大香蕉久久网| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| 免费看美女性在线毛片视频| 亚洲无线观看免费| 欧美性感艳星| 精品少妇黑人巨大在线播放 | 精品午夜福利在线看| 直男gayav资源| 3wmmmm亚洲av在线观看| 色av中文字幕| 18禁黄网站禁片免费观看直播| 欧美丝袜亚洲另类| 此物有八面人人有两片| 国产精品一区www在线观看| 三级国产精品欧美在线观看| 亚洲国产精品成人久久小说 | 亚洲18禁久久av| 国产又黄又爽又无遮挡在线| 亚洲美女视频黄频| 亚洲国产精品久久男人天堂| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久国内视频| 国产精品久久久久久久电影| 亚洲欧美清纯卡通| 在线a可以看的网站| 国产成人a∨麻豆精品| 少妇高潮的动态图| 久久韩国三级中文字幕| 白带黄色成豆腐渣| 欧美成人一区二区免费高清观看| 国产精品一区二区三区四区免费观看 | 精品久久久久久成人av| av国产免费在线观看| 干丝袜人妻中文字幕| 国产精品福利在线免费观看| 又爽又黄无遮挡网站| 亚洲自拍偷在线| 美女高潮的动态| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 中文字幕av成人在线电影| 熟女人妻精品中文字幕| 婷婷精品国产亚洲av在线| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲网站| 嫩草影视91久久| 国产真实乱freesex| 一进一出抽搐gif免费好疼| 精品欧美国产一区二区三| 高清午夜精品一区二区三区 | 级片在线观看| 成人三级黄色视频| 极品教师在线视频| 亚洲乱码一区二区免费版| 禁无遮挡网站| 国产极品精品免费视频能看的| 亚洲四区av| 亚洲欧美精品自产自拍| 给我免费播放毛片高清在线观看| 国产熟女欧美一区二区| 日韩高清综合在线| 日本黄色视频三级网站网址| 午夜爱爱视频在线播放| 天天躁夜夜躁狠狠久久av| 亚洲国产精品成人久久小说 | 亚洲精品粉嫩美女一区| 久久久欧美国产精品| 久久精品综合一区二区三区| 国产伦精品一区二区三区四那| 一区福利在线观看| 亚洲欧美清纯卡通| 夜夜爽天天搞| 国产又黄又爽又无遮挡在线| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 麻豆一二三区av精品| 99国产极品粉嫩在线观看| 嫩草影院精品99| 99久久成人亚洲精品观看| 久久久久久九九精品二区国产| 卡戴珊不雅视频在线播放| 免费av观看视频| 国产精品国产三级国产av玫瑰| 免费看av在线观看网站| 色哟哟哟哟哟哟| 天天躁日日操中文字幕| av在线亚洲专区| 99在线人妻在线中文字幕| 免费黄网站久久成人精品| 99国产极品粉嫩在线观看| 久久九九热精品免费| 又黄又爽又免费观看的视频| 欧美性猛交黑人性爽| 国产精品久久电影中文字幕| 亚洲真实伦在线观看| 性色avwww在线观看| 午夜日韩欧美国产| 免费看a级黄色片| 在现免费观看毛片| 全区人妻精品视频| 亚洲精品影视一区二区三区av| 赤兔流量卡办理| 日日撸夜夜添| 国产视频内射| 大型黄色视频在线免费观看| 亚洲va在线va天堂va国产| 日本熟妇午夜| 长腿黑丝高跟| 亚洲av不卡在线观看| 色哟哟哟哟哟哟| 中国国产av一级| 欧美一级a爱片免费观看看| av天堂在线播放| 毛片女人毛片| 大香蕉久久网| 日韩强制内射视频| 青春草视频在线免费观看| 日产精品乱码卡一卡2卡三| 国产亚洲精品久久久com| 欧美日韩国产亚洲二区| 国产一区二区在线av高清观看| 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清激情床上av| 麻豆精品久久久久久蜜桃| 亚洲人成网站在线播放欧美日韩| 97在线视频观看| 久久久久精品国产欧美久久久| 最好的美女福利视频网| 97热精品久久久久久| 国产探花极品一区二区| 99热网站在线观看| 国产中年淑女户外野战色| 成年版毛片免费区| 日韩强制内射视频| 老司机福利观看| 日韩一本色道免费dvd| 51国产日韩欧美| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久亚洲av鲁大| 久久6这里有精品| 在线国产一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 99久久精品国产国产毛片| 日韩在线高清观看一区二区三区| 搡女人真爽免费视频火全软件 | 欧洲精品卡2卡3卡4卡5卡区| 插逼视频在线观看| 国产精品精品国产色婷婷| 干丝袜人妻中文字幕| 伦理电影大哥的女人| a级毛片免费高清观看在线播放| 久久午夜亚洲精品久久| 全区人妻精品视频| 精品久久久久久久末码| 欧美激情久久久久久爽电影| 免费大片18禁| 美女被艹到高潮喷水动态| 成人特级av手机在线观看| 成人亚洲精品av一区二区| 少妇被粗大猛烈的视频| 少妇熟女欧美另类| 免费看a级黄色片| 亚洲一区高清亚洲精品| 无遮挡黄片免费观看| 一级av片app| 午夜影院日韩av| 男人狂女人下面高潮的视频| 亚洲精品日韩av片在线观看| 成人二区视频| av天堂在线播放| 熟女人妻精品中文字幕| 此物有八面人人有两片| 国产精品一区www在线观看| 看十八女毛片水多多多| 天堂动漫精品| 欧美极品一区二区三区四区| 国产 一区精品| 99久国产av精品国产电影| 美女被艹到高潮喷水动态| 亚洲成人中文字幕在线播放| 最近手机中文字幕大全| 91在线观看av| 热99在线观看视频| 一进一出抽搐动态| 亚洲一区二区三区色噜噜| 听说在线观看完整版免费高清| 一级毛片aaaaaa免费看小| 午夜a级毛片| 女的被弄到高潮叫床怎么办| 无遮挡黄片免费观看| 日韩三级伦理在线观看| 色尼玛亚洲综合影院| 搡女人真爽免费视频火全软件 | 校园春色视频在线观看| 99久久久亚洲精品蜜臀av| 亚洲精品影视一区二区三区av| 国产精品野战在线观看| 丰满的人妻完整版| 欧美色欧美亚洲另类二区| 日本成人三级电影网站| 美女xxoo啪啪120秒动态图| 亚洲在线自拍视频| 亚洲国产欧洲综合997久久,| 校园春色视频在线观看| 少妇人妻一区二区三区视频| 美女cb高潮喷水在线观看| 老熟妇乱子伦视频在线观看| 嫩草影院入口| 人人妻人人澡人人爽人人夜夜 | 精品国产三级普通话版| 亚洲欧美日韩高清专用| 国内精品美女久久久久久| 国内精品宾馆在线| 网址你懂的国产日韩在线| 18禁在线无遮挡免费观看视频 | 男女之事视频高清在线观看| 淫妇啪啪啪对白视频| 深夜精品福利| 成人一区二区视频在线观看| 亚洲内射少妇av| 麻豆一二三区av精品| 91久久精品国产一区二区三区| 久久久久久久久中文| 91久久精品国产一区二区三区| 午夜日韩欧美国产| 欧美性感艳星| 色5月婷婷丁香| 搡老妇女老女人老熟妇| 欧美激情久久久久久爽电影| 久久6这里有精品| 网址你懂的国产日韩在线| 99久久无色码亚洲精品果冻| 小说图片视频综合网站| 免费观看的影片在线观看| 亚洲成人久久性| 熟女人妻精品中文字幕| 自拍偷自拍亚洲精品老妇| 蜜桃亚洲精品一区二区三区| 色噜噜av男人的天堂激情| 日韩欧美国产在线观看| 国产精品人妻久久久影院| 亚洲欧美日韩高清在线视频| 色综合站精品国产| 国产白丝娇喘喷水9色精品| 在现免费观看毛片| 国产一区二区在线观看日韩| 真实男女啪啪啪动态图| or卡值多少钱| 亚洲电影在线观看av| 久久草成人影院| 精品久久久久久久久av| 网址你懂的国产日韩在线| 国产黄色视频一区二区在线观看 | 91午夜精品亚洲一区二区三区| 别揉我奶头 嗯啊视频| 久久久精品94久久精品| 国产精品久久久久久久电影| 老司机午夜福利在线观看视频| 国产欧美日韩精品亚洲av| 老熟妇乱子伦视频在线观看| 麻豆乱淫一区二区| 亚洲自偷自拍三级| 白带黄色成豆腐渣| 久久精品夜色国产| 亚州av有码| 国产精品一区二区三区四区免费观看 | 伊人久久精品亚洲午夜| 国产人妻一区二区三区在| 色综合亚洲欧美另类图片| 久久亚洲国产成人精品v| 好男人在线观看高清免费视频| 国产一区二区在线观看日韩| 在线国产一区二区在线| 99久久精品国产国产毛片| 五月伊人婷婷丁香| 小蜜桃在线观看免费完整版高清| 99riav亚洲国产免费| 搡老岳熟女国产| 天堂av国产一区二区熟女人妻| 亚洲精品影视一区二区三区av| 国产午夜精品久久久久久一区二区三区 | 国产亚洲精品久久久久久毛片| 女人被狂操c到高潮| 有码 亚洲区| 成人亚洲欧美一区二区av| 夜夜夜夜夜久久久久| 天堂√8在线中文| 免费av不卡在线播放|