• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A multi-directional controllable multi-scroll conservative chaos generator: Modelling,analysis,and FPGA implementation?

    2021-03-11 08:32:04EnZengDong董恩增RongHaoLi李榮昊andShengZhiDu杜升之
    Chinese Physics B 2021年2期
    關鍵詞:高附加值附加值關聯(lián)

    En-Zeng Dong(董恩增), Rong-Hao Li(李榮昊), and Sheng-Zhi Du(杜升之)

    1Tianjin Key Laboratory for Control Theory&Applications in Complicated Systems,Tianjin University of Technology,Tianjin 300384,China

    2Department of Electrical Engineering,Tshwane University of Technology,Pretoria 0001,South Africa

    Keywords: multi-directional controllable multi-scroll, conservative chaos, coexisting flows, field programmable gate array(FPGA)

    1. Introduction

    With the discovery of Lorenz chaotic oscillator in 1963,the researches on chaos have achieved many important progresses.[1–4]In general, chaotic systems can be classified into two categories: dissipative chaos and conservative chaos.[5]There are many physical models of dissipative chaos in natural world. Theoretically,the phase space volume of dissipative chaos is collapsed.[6–8]

    Different from the dissipative chaos, each trajectory in phase space of conservative chaos does not approach the equilibrium points finally with passage of time, which indicates there is no attractor in conservative chaos.[9]Moreover,there are some interesting discoveries on conservative chaos.Firstly,the positive and negative Lyapunov exponents are symmetric about zero.[10,11]Secondly, the Hamiltonian energy of the conservative chaos is a constant, which is only determined by the initial values,and the system trajectory in phase space motions on the energy equivalent hyper-sphere.[12]Duo to the better ergodic property, conservative chaos is more suitable for information encryption.[13,14]Furthermore,multiscroll conservative chaos have more complex dynamical behaviors. The complexity of time series varies with the number of scrolls.[15–20]If the scrolls can be controlled, the systems can be applied to the engineering field more effectively.[21–28]

    Coexistence behavior dependent on initial condition is one of the most significant characteristics in chaotic systems and it has great potential value in chaos-based engineering applications such as the design of pseudo-random signal generating circuits.[29–33]Although there is no attractor in conservative chaos,a little change of initial condition will lead to the change of Hamiltonian energy,which can result in the coexistence of multiple flows.[34]

    In 1984, Chua proposed a chaotic system with multiscroll and constructed the corresponding circuit model,which firstly built a bridge between chaos and nonlinear circuits.[35]Then, some multi-scroll dissipative chaotic systems were proposed and implemented by nonlinear circuits.[36–40]The chaos-based circuits consist of analog circuit and digital circuit realizations.[41]Analog chaotic circuits are susceptible to the influence of the environment resulting in parameter changes.[42]Compared with the analog circuits, because of the reprogrammable, low costs, stable operation, computational rapidity, FPGA chips are most suitable for the implementation of chaos-based generators.[43]Sadoudi et al. implemented the Chen system on a FPGA chip by using the fourthorder Runge–Kuta(RK4)algorithm.[44]Compared to the RK4 method, the Euler algorithm is easy to realize and convergent,and the error is within the acceptable scale.[45]Wang et al. proposed a hyper-chaotic system which was implemented physically by FPGA chips using the Euler algorithm.[46]

    The above works mainly focus on dissipative chaotic circuits implementation. Due to more uniform and dense orbits,the circuit implementation of conservative chaos is more difficult. Furthermore, because of the better ergodicity of multiscroll conservative chaotic flows, it is more challenging to implement multi-scroll conservative chaotic circuits by FPGA platform.

    In this paper,a novel multi-directional controllable multiscroll conservative chaos is constructed. The content of the paper is arranged as follows. In Section 2, combing with the generalized Hamiltonian system theory, the multi-directional controllable multi-scroll conservative chaotic system is constructed. In Section 3, the conservativity and dynamics characteristics including bifurcation and coexistence behaviors of the proposed system are revealed. In Section 4,the NIST tests are carried out to verify the randomness of time series and the FPGA circuits are designed. Some experimental results are presented for verification and show good ergodicity.

    2. A novel multi-directional controllable multiscroll conservative chaos

    A kind of multi-scroll conservative chaotic system with infinite equilibria is constructed in Ref. [10] and the mathematical model is given as follows:

    According to the generalized Hamiltonian system theory,[47]system(1)can be represented as follows:

    in which JS(X) is the interconnection conservation matrix and ?H(X)represents the gradient of the Hamiltonian energy function.

    One can deduce

    which is a skew symmetric matrix.The gradient of H(X)is

    To construct n-dimensional (n = 1,2,3) controllable multi-scroll conservative chaos, for system (1), assume?H(X) = (g(x),h(y),d(z),u)Tand the interconnection conservation matrix is

    The equilibrium points are determined by

    To control the distribution of the equilibria,we just need control the solutions of Eq.(6). Combining the sine function with the piecewise function,solutions control can be achieved.The function can be expressed as follows:

    Introducing the proposed function to system(1),the distribution of equilibria can be divided into three cases, which are shown in Fig.1.

    Fig.1. Distribution of equilibrium points: (a)1D case;(b)2D case;(c)3D case.

    2.1. Constructing 1D controllable multi-scroll conservative chaos

    Transform ?H(X)as(f(x),y,z,u)Tand the interconnection conservation matrix JS(X)as follows:

    One can obtain a novel 1D controllable multi-scroll conservative chaotic system as follows:

    Let ˙x= ˙y= ˙z= ˙u=0, the equilibria set(kπ,0,0,0),k ∈[?2n,2n]∩Z can be obtained, which indicates the number of equilibia of system (9) is always related to the piecewise points. The corresponding Jacobian matrix is

    Set parameters (a,b,c) as (6,4,6) and the initial values(x0,y0,z0,u0) as (1.9,1,1,1). By calculating the characteristic equation roots of the Jacobian matrix, one can conclude that the points(2kπ,0,0,0),k ∈[?n,n]are center points with eigenvalues(6i,?6i,6i,?6i)and(kπ,0,0,0),k ∈[?n,n]∩Z?are unstable saddle points with eigenvalues (6,?6,6i,?6i).Figure 2 depicts the phase portraits in x–y plane with different values of n,in which the red dots represent the center points.It is found that the scrolls always emerge from the neighborhood of the center points,and the bond orbits are generated from the neighborhood of the unstable saddle points.

    Fig.2. Phase diagrams in x–y plane of 1D controllable multi-scroll conservative chaos with respect to n: (a)n=1;(b)n=2;(c)n=3;(d)n=4.

    2.2. Constructing 2D and 3D controllable multi-scroll conservative chaos

    Similarly, transform ?H(X) as (f(x),f(y),z,u)T, (4n+1)·(4n+1) equilibrium points can be obtained and the corresponding Jacobian matrix eigenvalues are listed in Table 1.Through calculating, the unstable saddle points and the center points are cross-distributed in the x–y plane,which makes it possible for the system to generate 2D multi-scroll chaotic flow. Set the parameters and the initial conditions the same as the above,figure 3 depicts the phase portraits in x–y plane with different piecewise points. One can see that 2D controllable scrolls can be generated along x-direction and y-direction,and the scrolls just emerge from the neighborhood of the marked center points.

    For generating 3D controllable multi-scroll conservative chaos, transform ?H(X) as (f(x),f(y),f(z),u)T, then,(2n+1)·(2n+1)·(2n+1) scrolls can be generated along x-direction, y-direction, and z-direction. The phase portraits with different n are shown in Fig.4. One can see that the scrolls just emerge from the neighborhood of the marked equilibria(2 jπ,2kπ,2lπ,0),j,k,l,∈[?n,n].

    Fig.3. Phase diagrams in x–y plane of 2D controllable multi-scroll conservative chaos with respect to n: (a)n=1;(b)n=2;(c)n=3;(d)n=4.

    Table 1. Equilibrium points and the corresponding eigenvalues.

    Fig.4. Phase diagrams in x–y–z space of 3D controllable multi-scroll conservative chaos with respect to n: (a)n=1;(b)n=2;(c)n=3;(d)n=4.

    3. Analysis of the proposed system

    3.1. Energy analysis

    Recently, Hamiltonian energy-based analysis method is widely used for analyzing the dynamics behaviors of nonlinear systems. According to Helmholtz’s theorem, the vector field F(X)of system(9)can be expressed as follows:

    By solving the equation ?HT(X)Fc(X)=0,one can obtain the Hamiltonian energy function. Due to the existence of piecewise term,the solutions need to be discussed as follows.

    (1)When x <?2nπ,one can obtain f(x)=x+2nπ and the solution is

    (2)When ?2nπ ≤x ≤2nπ, f(x)=sin(x). The Hamiltonian energy function can be expressed as

    (3)When x ≥2nπ, f(x)=x ?2nπ,the Hamiltonian energy function can be expressed as

    Moreover,the time domian derivative of the Hamiltonian energy function is

    低附加值向高附加值轉變。傳統(tǒng)的出版業(yè)向讀者所提供的產品僅僅是紙質圖書,所提供的服務幾乎沒有附加值。在轉型升級的語境下,通過二維碼、微信公眾號、關聯(lián)數(shù)據(jù)庫平臺或者網站,為用戶提供增值知識服務,使得用戶在原有的圖書知識基礎上能夠享受到額外的知識服務,這是低附加值向高附加值轉變的體現(xiàn)之一。在功能上,傳統(tǒng)出版所提供的主要是整體閱讀功能,轉型升級語境下的新興出版,向著碎片化閱讀,查詢、復制、粘貼、知識關聯(lián)和知識圖譜的方向進化,這也是高附加值的重要體現(xiàn)。

    which illustrates that the Hamiltonian energy of system (9)is locally invariable. It should be denoted that the energy of scrolls is always not equal to the energy of the marginal bond orbits.

    3.2. Volume conservativity

    According to Liouville’s theorem,[48]the rate of volume change is

    Furthermore,the divergence of system(9)is

    One can conclude that the proposed system is a volumeconservative nonlinear dynamics system, which is also characterized by the fact that the sum of the Lyapunov exponents always approximates to zero over time.

    3.3. Dynamics behaviors with varying parameter b

    In order to investigate the dynamical behaviors with the change of parameter b,let parameters a=6,c=6 and initial conditions (x0,y0,z0,u0) = (1.9,1,1,1). The corresponding bifurcation diagram and Lyapunov exponents spectrum with increasing parameter b from ?6 to 6 are shown in Figs. 5(a)and 5(b),respectively. One can see the effect of the parameter b on the dynamics behaviors of system(9).In particular,when b ∈[?0.42,0.08],the bifurcation diagram shows the different quasi-periodic orbits.

    Fig.5. Dynamics behaviors of system(9)with respect to b. (a)Bifurcation diagram;(b)Lyapunov exponents spectrum.

    3.4. Coexisting conservative motions

    For system(9), in order to fully observe the influence of the initial values x(0)and y(0), the system parameters a=6,b=4, c=6, n=1 and initial values z(0)=1, u(0)=1 are chosen, then, various coexisting flows can be found and the dynamical evolution map is shown in Fig.6, in which the parts of cyan,purple,red,and yellow represent different quasiperiodic states and the blue region represents the multi-scroll conservative chaotic flow. Under different initial conditions(ICs), some coexisting quasi-periodic orbits obtained by numerical simulation are shown in Fig.7, which indicates rich coexistence behaviors.

    Furthermore, by analyzing the symmetry property, one can deduce that,when(x,y,z,u)is the solution of system(9),(?x,?y,z,u) is also the solution of system (9), which means any orbit has a symmetrical orbit with regard to the zou-plane.Therefore,for the flows in the red and purple regions,there are coexisting symmetrical flows,which are plotted in Fig.8.

    Fig.6. Dynamical evolution map with different initial values of x(0)and y(0), in which the parts of cyan, purple, red, and yellow represent different quasi-periodic states and the part of blue represents chaotic state.

    Fig.7. Phase portraits in x–y phase of coexisting quasi-periodic orbits with parameters set(a,b,c)=(6,4,6): (a)quasi-periodic orbit in purple region; (b) quasi-periodic orbit in cyan region; (c) quasi-periodic orbit in yellow region;(d)quasi-periodic orbit in red region.

    Fig.8. Symmetrical coexisting quasi-periodic orbits: (a)quasi-periodic orbit with initial value (?0.6,?0.8,1,1); (b) quasi-periodic orbit with initial value(?1,?1,1,1).

    4. FPGA implementation

    4.1. Design of FPGA circuits

    In order to implement the proposed system,sinusoidal operation needs to be implemented with minimal error firstly.The 10Q45 signed fixed-point format is adopted here to ensure the accuracy. Utilizing the graphical modules in DSPBuilder provided by Altera, the sine operation module is designed. Firstly,define two maps as follows:

    Choosing n=6,for the arbitrary signal x ∈[?π/2,π/2],the sine approximation can be obtained by calculating Taylor’s formula. Generally, to compute the sine approximation value of the signal x ∈R, it needs to be normalized to the interval x ∈[?π/2,π/2].

    Considering the periodic property, the Divider block is called firstly to convert the value of the signal to the interval[?2π,2π],the relevant expression is

    Then Comparator-1 is called to judge the range of the value of xRem,if the value is in the interval(0,2π],the parallel adder Subtractor-1 is invoked to decrease the value by 2π,the mathematical expression is

    Then Comparator-4 and Comparator-5 are called to judge the range of the value of xSub,if it is in the interval[?π/2,0],the Taylor arithmetic unit (TAU) is called to obtain the sine approximation of the input signal. If the value of xSubis in the interval[?3π/2,?π/2),considering the coordinate transformation and property of odd function, the parallel adder Subtractor-2 is called to increase the value by π,then the gain block is called to multiply the numerical by ?1. After normalization, the sine approximation can be computed by conducting Taylor polynomial operation. If the numerical of xSubis less than ?3π/2,the parallel adder Subtractor-3 is called to increase the value by 2π, then, by calling the TAU, the sine approximate value can be obtained.

    Figure 9 illustrates the hardware architecture of the sine function, bits variable is put to control the data path of the multiplexer. The relationship between the value of variable and data paths is illustrated in Table 2.

    Fig.9. Hardware realization of sine operation.

    Table 2. Data paths description.

    With the input x ∈[?5π,5π], the experimental result is presented in Fig.10(a), the obtained error compared with the computational result of the lookup table (LUT) method is shown in Fig.10(b).

    To achieve the algorithm, the built-in hardware multipliers of FPGA are utilized, and the occupancy rate is about 20%. It can be seen that the maximum error is no more than 2×10?9,which illustrates a good result.

    To implement the proposed chaotic system physically, it needs to be discretized. Utilizing the Euler algorithm,the discrete description of system(9)can be expressed as follows:

    in which τ represents the discrete time step and k represents the discrete number.

    The top-layer RTL viewer of the above realization is shown in Fig.11, and the outputs of the block include two categories. “Data outA [13:0]” and “Data_outB [13:0]” represent the outputs of each step of any two variables. The“clock_outA” and “clock_outB” are the clocks for the external DAC chip.

    Fig.10. Experimental results: (a)output wave;(b)error analysis.

    Fig.11. Top-layer RTL of the proposed multiscroll conservative chaos generator.

    Fig.12. The experimental hardware platform for the proposed chaotic system.

    The hardware platform is developed with an Altera Cyclone IV FPGA EP4CGX150DF31, an external DAC chip AD9764, and a digital oscilloscope Tektronix MSO4054B.Utilizing the D/A converter and the digital oscilloscope, one can obtain the experimental portraits generated by FPGA.The hardware architecture of this platform is shown in Fig.12.

    4.2. Experimental results

    4.2.1. NIST tests

    Fig.13. Probability distribution of P-value for non-overlapping template.

    The NIST tests are used to determine whether the time sequence meets certain characteristics of a random sequence,which include 16 tests. To finish these tests, 100 M data are needed. Divide the data into 100 groups and set other parameters as default values,one can obtain the test results consisting of the P-values and the relevant proportions. As shown in Table 3,all P-values obtained in statistical tests are greater than the significance level,α =0.01. The relevant proportions are all within [0.9601,1.0298]. It can be concluded that the tests are fully successful. Figure 13 illustrates that the distribution of P-values for the non-overlapping template is uniform. The other 14 tests also show uniformity. One can conclude that system(9)is suitable as a pseudo-random signal generator.

    Table 3. NIST tests of the proposed system.

    Fig.14. Experimental portraits of 1D,2D,3D controllable multi-scroll conservative chaos with n=2: (a)phase diagram in x–y plane of 1D case; (b) phase diagram in x–z plane of 1D case; (c) phase diagram in x–y plane of 2D case; (d) phase diagram in x–z plane of 2D case; (e)phase diagram in x–y plane of 3D case;(f)phase diagram in x–z plane of 3D case.

    4.2.2. Experimental phase diagrams

    Figure 14 presents the 1D,2D,and 3D controllable multiscroll conservative chaotic flows with n=2,which are consistent with the simulation results depicted in Figs. 2(b), 3(b),4(b). The experimental portraits of the proposed system show good ergodicity, so it is suitable for the application of secure communication and other engineering fields.

    5. Conclusion

    In this paper, based on the generalized Hamiltonian system theory, a class of multi-directional controllable multiscroll conservative chaos is proposed by controlling the number of equilibria. The bifurcation and coexistence behaviors are revealed, which illustrate the dynamics characteristics. Furthermore, the passing of the NIST tests verifies that the signal generated by the proposed system has certain characteristics of a random sequence. Finally, FPGA circuits are designed to realize the chaotic system and the circuit implementation results are consistent with the numerical simulation,all of them show good ergodicity and are suitable for information encryption and other engineering applications.

    猜你喜歡
    高附加值附加值關聯(lián)
    煉廠低附加值硫磺作改性瀝青穩(wěn)定劑的探索研究
    石油瀝青(2021年6期)2021-02-10 06:15:34
    “一帶一路”遞進,關聯(lián)民生更緊
    當代陜西(2019年15期)2019-09-02 01:52:00
    陶氏公司舉辦中國高附加值有機硅樹脂工廠奠基儀式
    上海建材(2019年4期)2019-02-13 20:00:17
    附加值
    雜文月刊(2018年22期)2018-11-14 04:33:08
    附加值
    奇趣搭配
    鄭州航空港建設背景下河南現(xiàn)代農業(yè)發(fā)展問題研究
    商情(2017年27期)2017-09-09 04:24:41
    智趣
    讀者(2017年5期)2017-02-15 18:04:18
    山西省科技服務業(yè)與裝備制造業(yè)升級研究
    日本高附加值線材生產工藝及品種概況
    上海金屬(2014年6期)2014-12-20 07:59:55
    亚洲国产中文字幕在线视频| 欧美日本中文国产一区发布| 午夜福利乱码中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区久久| 亚洲精品国产av成人精品| 色婷婷久久久亚洲欧美| 麻豆乱淫一区二区| 免费看av在线观看网站| 18禁动态无遮挡网站| 国产欧美日韩一区二区三区在线| 国产精品久久久久成人av| 久久精品亚洲熟妇少妇任你| 最近2019中文字幕mv第一页| 麻豆精品久久久久久蜜桃| 人妻人人澡人人爽人人| 中文乱码字字幕精品一区二区三区| 在现免费观看毛片| 在现免费观看毛片| 韩国av在线不卡| 欧美成人精品欧美一级黄| 国产乱人偷精品视频| videos熟女内射| 日韩欧美一区视频在线观看| 国产av一区二区精品久久| 一本一本久久a久久精品综合妖精| 90打野战视频偷拍视频| 制服丝袜香蕉在线| 亚洲av国产av综合av卡| 日本色播在线视频| 少妇人妻 视频| 精品午夜福利在线看| 亚洲欧洲日产国产| 日日爽夜夜爽网站| 99久久99久久久精品蜜桃| 我要看黄色一级片免费的| 亚洲欧美一区二区三区国产| 国产精品蜜桃在线观看| 十八禁高潮呻吟视频| 免费黄频网站在线观看国产| avwww免费| 亚洲欧美成人精品一区二区| 日韩,欧美,国产一区二区三区| 精品酒店卫生间| 免费观看人在逋| 亚洲精品自拍成人| 欧美人与性动交α欧美精品济南到| 日本vs欧美在线观看视频| 中文字幕色久视频| 亚洲国产精品一区三区| av国产久精品久网站免费入址| 亚洲欧美日韩另类电影网站| 亚洲精品中文字幕在线视频| 欧美亚洲日本最大视频资源| 欧美日韩亚洲高清精品| 十八禁高潮呻吟视频| 久久精品aⅴ一区二区三区四区| 久久亚洲国产成人精品v| 国产免费现黄频在线看| 高清黄色对白视频在线免费看| 欧美亚洲 丝袜 人妻 在线| 一本色道久久久久久精品综合| av免费观看日本| 别揉我奶头~嗯~啊~动态视频 | 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久午夜乱码| 又黄又粗又硬又大视频| 亚洲欧美日韩另类电影网站| 欧美 日韩 精品 国产| 国产日韩欧美亚洲二区| 欧美黑人精品巨大| 宅男免费午夜| 欧美黄色片欧美黄色片| 中文字幕另类日韩欧美亚洲嫩草| 大香蕉久久成人网| 操美女的视频在线观看| 久久久精品94久久精品| 看免费av毛片| 美女国产高潮福利片在线看| 久久人人爽人人片av| 九九爱精品视频在线观看| 秋霞伦理黄片| 亚洲国产日韩一区二区| 国产免费福利视频在线观看| 亚洲美女黄色视频免费看| 狂野欧美激情性xxxx| 91老司机精品| 国产老妇伦熟女老妇高清| 久久久久久人人人人人| 在线观看人妻少妇| 欧美激情 高清一区二区三区| 精品人妻熟女毛片av久久网站| 叶爱在线成人免费视频播放| 亚洲精品久久久久久婷婷小说| 精品国产一区二区久久| 久久久久视频综合| 多毛熟女@视频| 99久久99久久久精品蜜桃| 在线免费观看不下载黄p国产| 精品人妻一区二区三区麻豆| 久久久欧美国产精品| 黑丝袜美女国产一区| 日韩大码丰满熟妇| av片东京热男人的天堂| 欧美精品av麻豆av| 亚洲综合精品二区| 麻豆精品久久久久久蜜桃| 波多野结衣av一区二区av| 国产成人av激情在线播放| 99九九在线精品视频| 亚洲精品在线美女| 国产乱人偷精品视频| 亚洲视频免费观看视频| 黄色一级大片看看| 男女边摸边吃奶| 视频区图区小说| 亚洲国产欧美在线一区| 91老司机精品| 亚洲一区中文字幕在线| 成年av动漫网址| 亚洲精品久久成人aⅴ小说| 国产一区二区激情短视频 | 亚洲欧美一区二区三区国产| 国产爽快片一区二区三区| 日韩欧美一区视频在线观看| 色网站视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品国产一区二区精华液| 精品少妇久久久久久888优播| 国产精品嫩草影院av在线观看| 欧美 日韩 精品 国产| 考比视频在线观看| 色网站视频免费| 欧美日韩视频精品一区| 男女国产视频网站| 亚洲国产最新在线播放| 久久久久久免费高清国产稀缺| 国产又爽黄色视频| 不卡视频在线观看欧美| 国产成人精品无人区| 久久久精品国产亚洲av高清涩受| 丰满乱子伦码专区| 亚洲婷婷狠狠爱综合网| 亚洲精品第二区| 午夜福利视频在线观看免费| 岛国毛片在线播放| 1024视频免费在线观看| 十分钟在线观看高清视频www| 久久99热这里只频精品6学生| 久久精品亚洲熟妇少妇任你| 中文字幕亚洲精品专区| 久久久精品免费免费高清| 久久国产精品大桥未久av| 哪个播放器可以免费观看大片| av一本久久久久| 高清欧美精品videossex| 老汉色∧v一级毛片| av视频免费观看在线观看| 久久人妻熟女aⅴ| 亚洲国产av新网站| 亚洲 欧美一区二区三区| 少妇 在线观看| 国产免费又黄又爽又色| 国产男女超爽视频在线观看| 99香蕉大伊视频| 国产精品免费大片| 日韩免费高清中文字幕av| 久久人人97超碰香蕉20202| 男女无遮挡免费网站观看| 国产免费现黄频在线看| 亚洲熟女精品中文字幕| 多毛熟女@视频| 在现免费观看毛片| 女人高潮潮喷娇喘18禁视频| 女性生殖器流出的白浆| 国产熟女欧美一区二区| 男人操女人黄网站| 伦理电影免费视频| 色婷婷久久久亚洲欧美| 亚洲国产精品国产精品| 精品酒店卫生间| 免费观看a级毛片全部| 亚洲国产精品一区三区| 亚洲精品日本国产第一区| 女的被弄到高潮叫床怎么办| 一本一本久久a久久精品综合妖精| 久久99一区二区三区| 免费不卡黄色视频| 国产av国产精品国产| 国产精品99久久99久久久不卡 | 欧美日韩福利视频一区二区| 少妇人妻 视频| 亚洲一级一片aⅴ在线观看| 国产成人a∨麻豆精品| 国产无遮挡羞羞视频在线观看| 狂野欧美激情性bbbbbb| 黑人巨大精品欧美一区二区蜜桃| 97在线人人人人妻| 国产伦理片在线播放av一区| 亚洲精品aⅴ在线观看| 久久这里只有精品19| 色视频在线一区二区三区| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 国产av码专区亚洲av| 日韩制服骚丝袜av| 中文字幕av电影在线播放| 少妇 在线观看| 午夜福利一区二区在线看| 母亲3免费完整高清在线观看| 国产精品人妻久久久影院| av卡一久久| 飞空精品影院首页| 1024香蕉在线观看| 汤姆久久久久久久影院中文字幕| 免费av中文字幕在线| 日本欧美国产在线视频| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 一区二区av电影网| 看免费av毛片| 一边摸一边做爽爽视频免费| 国产精品香港三级国产av潘金莲 | 男的添女的下面高潮视频| 一本色道久久久久久精品综合| 大片免费播放器 马上看| av片东京热男人的天堂| 搡老乐熟女国产| 亚洲欧美精品综合一区二区三区| 亚洲精品久久成人aⅴ小说| 满18在线观看网站| 色综合欧美亚洲国产小说| 99久国产av精品国产电影| 国产亚洲精品第一综合不卡| 丝袜美腿诱惑在线| 精品一区二区免费观看| 91精品伊人久久大香线蕉| 久久精品久久久久久久性| 热99久久久久精品小说推荐| 亚洲精品视频女| 青春草亚洲视频在线观看| 麻豆乱淫一区二区| 国产av一区二区精品久久| 电影成人av| www.熟女人妻精品国产| 最近的中文字幕免费完整| 国产免费又黄又爽又色| 男女免费视频国产| 最新在线观看一区二区三区 | 男女边吃奶边做爰视频| 国产 精品1| 国产日韩欧美在线精品| 母亲3免费完整高清在线观看| 亚洲欧洲日产国产| 激情视频va一区二区三区| 99国产精品免费福利视频| 中文欧美无线码| 精品一区二区三区av网在线观看 | 亚洲欧洲国产日韩| 国产成人a∨麻豆精品| 18禁动态无遮挡网站| 国产不卡av网站在线观看| 老汉色av国产亚洲站长工具| 母亲3免费完整高清在线观看| 一级毛片电影观看| 女性被躁到高潮视频| 国产日韩欧美视频二区| 国产又色又爽无遮挡免| www.av在线官网国产| 一区二区三区精品91| 天堂8中文在线网| 中文字幕制服av| 美女脱内裤让男人舔精品视频| 少妇的丰满在线观看| a级毛片黄视频| 日韩一区二区视频免费看| 久久免费观看电影| 在线观看国产h片| 999精品在线视频| 久久精品人人爽人人爽视色| 日本vs欧美在线观看视频| 国产片特级美女逼逼视频| 国产成人午夜福利电影在线观看| 中文欧美无线码| 国精品久久久久久国模美| 97在线人人人人妻| 男女免费视频国产| 丰满迷人的少妇在线观看| 国产深夜福利视频在线观看| 欧美日韩亚洲综合一区二区三区_| 99热网站在线观看| 曰老女人黄片| 一个人免费看片子| 亚洲av欧美aⅴ国产| 我的亚洲天堂| 精品亚洲乱码少妇综合久久| 男女之事视频高清在线观看 | 亚洲第一青青草原| 国产精品偷伦视频观看了| 9色porny在线观看| 欧美成人精品欧美一级黄| 精品酒店卫生间| 少妇人妻久久综合中文| 亚洲四区av| 精品人妻在线不人妻| 亚洲精品,欧美精品| 国产成人av激情在线播放| www.自偷自拍.com| 亚洲人成77777在线视频| 久久久久精品久久久久真实原创| 精品第一国产精品| 亚洲熟女毛片儿| 日韩,欧美,国产一区二区三区| 亚洲国产av影院在线观看| 五月天丁香电影| 少妇被粗大的猛进出69影院| 久久精品亚洲av国产电影网| 久久青草综合色| 亚洲av成人不卡在线观看播放网 | 女性被躁到高潮视频| 久久精品熟女亚洲av麻豆精品| a级毛片在线看网站| 国产男女内射视频| 亚洲精品在线美女| 色94色欧美一区二区| 中文精品一卡2卡3卡4更新| 欧美精品亚洲一区二区| 在线精品无人区一区二区三| 亚洲美女视频黄频| 91精品国产国语对白视频| 极品少妇高潮喷水抽搐| 电影成人av| 日韩成人av中文字幕在线观看| 国产无遮挡羞羞视频在线观看| 国产av码专区亚洲av| 欧美日韩亚洲国产一区二区在线观看 | 大片电影免费在线观看免费| 一级a爱视频在线免费观看| 国产成人精品福利久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲av高清不卡| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 自线自在国产av| 母亲3免费完整高清在线观看| 啦啦啦中文免费视频观看日本| 最近的中文字幕免费完整| 欧美精品高潮呻吟av久久| 美女脱内裤让男人舔精品视频| 国产极品粉嫩免费观看在线| 中国国产av一级| 我的亚洲天堂| 一本大道久久a久久精品| 亚洲专区中文字幕在线 | 69精品国产乱码久久久| 日本猛色少妇xxxxx猛交久久| 一本久久精品| 欧美成人精品欧美一级黄| 亚洲国产精品999| 中文天堂在线官网| av又黄又爽大尺度在线免费看| 中文字幕高清在线视频| 午夜精品国产一区二区电影| 久久av网站| 中文字幕人妻熟女乱码| 一本大道久久a久久精品| 熟女av电影| 色吧在线观看| 侵犯人妻中文字幕一二三四区| 看十八女毛片水多多多| 男女边吃奶边做爰视频| 女的被弄到高潮叫床怎么办| 亚洲精品aⅴ在线观看| 午夜福利视频精品| 精品一品国产午夜福利视频| 少妇被粗大猛烈的视频| av不卡在线播放| 久久av网站| 午夜激情久久久久久久| 在线观看www视频免费| 亚洲一码二码三码区别大吗| 免费观看性生交大片5| 亚洲欧美色中文字幕在线| 免费在线观看黄色视频的| 精品少妇一区二区三区视频日本电影 | 看十八女毛片水多多多| 欧美国产精品一级二级三级| 国产日韩欧美亚洲二区| 一区在线观看完整版| 9热在线视频观看99| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| 亚洲精品久久久久久婷婷小说| 又黄又粗又硬又大视频| 尾随美女入室| 久久久久国产一级毛片高清牌| 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 久久99热这里只频精品6学生| 精品国产一区二区三区四区第35| 日本一区二区免费在线视频| 久久人人爽人人片av| 狠狠婷婷综合久久久久久88av| 久久97久久精品| 热99久久久久精品小说推荐| 一本色道久久久久久精品综合| 飞空精品影院首页| 一级片免费观看大全| 美国免费a级毛片| 亚洲久久久国产精品| 777米奇影视久久| 在线亚洲精品国产二区图片欧美| 亚洲激情五月婷婷啪啪| 欧美日韩国产mv在线观看视频| 欧美黄色片欧美黄色片| 男女边吃奶边做爰视频| av在线app专区| 日本av免费视频播放| 国产精品久久久久久精品电影小说| 波野结衣二区三区在线| 中国国产av一级| 精品一区二区三卡| 亚洲欧洲国产日韩| 国产乱来视频区| 伊人亚洲综合成人网| 一级毛片我不卡| 十八禁网站网址无遮挡| 亚洲精品国产色婷婷电影| av在线老鸭窝| 又大又黄又爽视频免费| 韩国av在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲,一卡二卡三卡| 两个人免费观看高清视频| 亚洲一级一片aⅴ在线观看| 久久久久久人人人人人| 超色免费av| 婷婷色综合www| 青春草视频在线免费观看| 99精品久久久久人妻精品| 一二三四在线观看免费中文在| 老司机影院毛片| 观看美女的网站| 日韩欧美一区视频在线观看| 各种免费的搞黄视频| 国产爽快片一区二区三区| 国产黄频视频在线观看| 亚洲精品日本国产第一区| 久久国产精品大桥未久av| 久久97久久精品| 黄片小视频在线播放| 亚洲av福利一区| 亚洲av在线观看美女高潮| 国产精品国产三级专区第一集| 国产精品久久久久久久久免| 久久狼人影院| 日日撸夜夜添| 999久久久国产精品视频| 婷婷色麻豆天堂久久| 男人爽女人下面视频在线观看| 女性生殖器流出的白浆| 天堂8中文在线网| 久久久欧美国产精品| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 精品国产一区二区久久| 国产乱来视频区| 久久久久久久久久久久大奶| 无限看片的www在线观看| 看免费成人av毛片| 国产精品女同一区二区软件| 在线观看免费视频网站a站| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久小说| 婷婷色av中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产精品99久久99久久久不卡 | 欧美乱码精品一区二区三区| www.av在线官网国产| 色视频在线一区二区三区| 国产又色又爽无遮挡免| 日韩av免费高清视频| 男女午夜视频在线观看| 人人妻人人澡人人看| 久久久精品区二区三区| 久久久久久久久久久久大奶| 国产片特级美女逼逼视频| 成年美女黄网站色视频大全免费| 王馨瑶露胸无遮挡在线观看| 久久久国产精品麻豆| 国产日韩欧美视频二区| 成人亚洲欧美一区二区av| 伦理电影免费视频| av在线老鸭窝| 一本色道久久久久久精品综合| 国产亚洲精品第一综合不卡| 亚洲国产av影院在线观看| 久久人人97超碰香蕉20202| 大香蕉久久成人网| 日韩中文字幕欧美一区二区 | 如日韩欧美国产精品一区二区三区| 国产日韩欧美视频二区| 亚洲精品自拍成人| 午夜激情av网站| 久久久亚洲精品成人影院| 国产黄色视频一区二区在线观看| 亚洲精品aⅴ在线观看| 下体分泌物呈黄色| 国产成人精品无人区| 在线 av 中文字幕| 男女之事视频高清在线观看 | 黑人欧美特级aaaaaa片| 久久久精品免费免费高清| 国产精品三级大全| 亚洲第一av免费看| 女人精品久久久久毛片| 国产亚洲精品第一综合不卡| 国产成人91sexporn| 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 国产乱人偷精品视频| 性少妇av在线| 精品亚洲成国产av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av在线观看美女高潮| 性少妇av在线| 新久久久久国产一级毛片| 女人精品久久久久毛片| av在线老鸭窝| 在线观看三级黄色| 久久久国产欧美日韩av| 日韩中文字幕视频在线看片| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9 | 亚洲国产中文字幕在线视频| 一区福利在线观看| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区三区| 欧美人与善性xxx| 国产成人av激情在线播放| 国产在线视频一区二区| 亚洲精品av麻豆狂野| 欧美人与善性xxx| 亚洲国产中文字幕在线视频| 丝袜喷水一区| 国产男女内射视频| 蜜桃在线观看..| 黄色怎么调成土黄色| 黄色一级大片看看| 99久久综合免费| 久久久国产精品麻豆| 天美传媒精品一区二区| 国产精品.久久久| 亚洲欧美一区二区三区久久| 看免费成人av毛片| 免费观看性生交大片5| 91精品三级在线观看| 亚洲精品av麻豆狂野| 久久国产精品大桥未久av| 老司机深夜福利视频在线观看 | 蜜桃国产av成人99| 精品国产乱码久久久久久小说| 999久久久国产精品视频| 性少妇av在线| 久久国产精品男人的天堂亚洲| 美女扒开内裤让男人捅视频| 久久毛片免费看一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲在久久综合| 热re99久久国产66热| 久久人妻熟女aⅴ| 国产 精品1| 91国产中文字幕| 亚洲专区中文字幕在线 | 97在线人人人人妻| 可以免费在线观看a视频的电影网站 | 国产欧美亚洲国产| 美女福利国产在线| 天堂中文最新版在线下载| 曰老女人黄片| 成人手机av| 久久精品国产a三级三级三级| 中文字幕色久视频| 夫妻性生交免费视频一级片| 免费日韩欧美在线观看| 天堂中文最新版在线下载| 久久久久网色| 亚洲人成电影观看| 国产精品蜜桃在线观看| 少妇人妻 视频| 丝袜喷水一区| 国产精品免费大片| 在线精品无人区一区二区三| 色视频在线一区二区三区| 人人妻人人澡人人爽人人夜夜| 最近手机中文字幕大全| 一级片免费观看大全| 国产成人欧美| 操美女的视频在线观看| 亚洲精品久久成人aⅴ小说| 久久综合国产亚洲精品| 女性生殖器流出的白浆| 99久国产av精品国产电影| 又大又爽又粗| 国产无遮挡羞羞视频在线观看| 一区二区av电影网| 日韩视频在线欧美| 成人18禁高潮啪啪吃奶动态图| 女性生殖器流出的白浆| 国产精品熟女久久久久浪| 亚洲av中文av极速乱| 狠狠精品人妻久久久久久综合|