• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    重組酶聚合酶擴(kuò)增:擴(kuò)增原理及性能分析

    2020-12-23 11:01:16李顯明侯賢燈
    關(guān)鍵詞:分析測試四川大學(xué)原理

    李顯明,鄭 婷,高 露,李 峰,,侯賢燈,,吳 鵬,

    (1.四川大學(xué)分析測試中心;2.化學(xué)學(xué)院,成都610064)

    1 Introduction

    DNA amplification is essential to most nucleic acid testing strategies,and thus is in the central of current medical diagnosis.Among the existing nucleic acid amplification protocols,polymerase chain reaction(PCR)is the most widely used technique,which in fact revolutionizes the modern molecular biology[1—3].However,the requirement of cyclic heating and cooling processes largely restricts its use in centralized laboratories.Isothermal nucleic acid amplification protocols are thus appealing,particularly for point-of-care testing(POCT)applications[4,5].Compared with other isothermal technologies,recombinase polymerase amplification(RPA)features rapid kinetics,high efficiency(up to 1012-fold amplification),low temperature and lyophilized format,thus is considered as an ideal platform for POCT[6—8].

    Principally,RPA is generally similar to PCR,except that the thermal cycling process in PCR is replaced by recombinase and accessary proteins in RPA(Fig.1).Therefore,RPA can be potentially used in places that are currently performed with PCR[9].Since it was first proposed by Armeset al.[10]in 2006,the developments of RPA grow rapidly in the past decade[8].For diagnosis applications,although promising and commercializing in step[6],few RPA-based testings have been approved by authoritative organizations.On one hand,the batch robustness of the amplification is still limited due to difficulty in precise control of the primer recombination and extension,making the amplification susceptible to environmental variations.On the other hand,the low working temperature may produce multiple non-target amplification,thus resulting in unexpected noise signals.Currently,several strategies aimed at improving the performance of RPA are emerged,such as introducing labels,designing unique primer structures,and specific readout technologies for amplicons.Nevertheless,the ultimate performance in RPA promoting is still limited,which delayed its theoretical status in nucleic acid amplification.

    Fig.1 Process of single cycle of recombinase polymerase amplification(RPA)(A)and polymerase chain reaction(PCR)(B)

    Herein,we make a summary on RPA,with particular interest in the process of the primer recombination and the dynamic balance of ATP that guide the eventual performance.It should be noted that there are already several reviews introducing the principle and applications of RPA,but the process of primer recombination and its dynamic environment that heavily influence the performance is seldom discussed[6—8,11—14].In addition,the basic rules for selection of ideal primer pairs and nucleic acid probes are included,according to the RPA instructions and also recent references.Moreover,readout technologies for amplicons,particularly those with high specificity,are also discussed.

    2 Mechanism and Dynamics of RPA Amplification

    As shown in Fig.1,the amplification cycle of RPA starts with the binding of primer with recombinase to form the active nucleoprotein filaments,which quickly scan the dsDNA library to recognize the homologous sequence.Upon hybridizing with primer,the nucleoprotein filaments invade the selected dsDNA with a D-loop formation.Subsequently,DNA polymerase is loaded onto the 3′-end of primer and start to extend the primer through displacing the complementary parent strand.Finally,a new dsDNA containing one parent strand is formed.In a full cycle of RPA,a pair of primers would generate two same dsDNAs,thus resulting in exponential amplification.Apparently,RPA employs recombinase for primer loading,thereby eliminating the thermal cycling process in PCR.Since the primer recombination is a crucial and rate-limited step for RPA,it is easily suffering from fluctuations from the reaction environment as well as operations[15].

    2.1 Recombinases-triggered Primer Recombination

    Recombinases is the key protein that catalyzes the DNA exchange reactions between the primer and the homologous dsDNA.Generally,there are two types of recombinases(Table 1),namely uvsX from bacteriophage T4 and RecA fromEscherichia coli.To accelerate the formation of the nucleoprotein filament,ssDNA binding proteins(SBPs)and accessory proteins are typically used[15].In the uvsX system,gp32 and uvsY act as the corresponding SBP and accessory protein,respectively.While in the RecA system,it employs single strand DNA-binding protein(SSB),RecF and RecO.

    Table 1 Functional substances involved in recombinase polymerase amplification

    The formation of the active nucleoprotein filament proceeds in three steps(Fig.2):(1)primer binding with SBPs;(2)loading of accessory protein;(3)recombinase displacing SBPs to form the active nucleoprotein filament.Without SBPs,primers tend to form undesirable secondary structures,which may restrict the access of recombinase[16—19].Besides,SBPs can weaken undesirable interaction between oligonucleotides(nontarget binding)[15,20]and facilitate the displacement of the outgoing strand during primer extension(binding with the displaced strand)[10],thus is crucial for RPA.However,the binding product of primer and SBPs is in fact not easily accessible to recombinase.The introduction of accessory protein changes the conformation of the above complex,thus weakening the above binding and facilitating the subsequent recombinase loading[21—24].Subsequently,the nucleoprotein filament formation begins with the nucleation of recombinase in the presence of ATP.Afterwards,the propagation of recombinase on the primer continues.The cooperative interaction between the loaded recombinase monomer can increase the affinity between recombinase and primer,thereby disassembling SBPs and forming active nucleoprotein filament.In this manner,homology search(>103bp per second)begins and strand exchange occurs after sequence matching,accompanied by ATP hydrolysis and release of related proteins for next cycle of amplification[25,26].

    Fig.2 Nucleoprotein filament formation from uvsX(A)and RecA(B)

    2.2 Factors Guiding the Efficient Primer Recombination

    From Fig.2,it is apparent that the cofactor ATP fuels the recombination process,which can adjust the dynamic assembly(ATP-assisted)and disassembly of recombinase(ATP hydrolysis).Therefore,to maintain the recombination process,an ATP refresh system is indispensable.Such refresh is typically achieved through the creatine kinase-catalyzed reaction(with an equilibrium constant ofca.140)[27]:

    However,for the uvsX system,hydrolysis of ATP can also generate AMP,which cannot be transferred back to ATP by the above reaction.Therefore,chicken myokinase is added to convert AMP to ADP[15]:

    Since pyrophosphate(PPi)from ATP hydrolysis is detrimental for RPA,the uvsX system(high activity for ATP hydrolysis)is preferred for fast amplification(20 min),while the RecA system(low activity for ATP hydrolysis)is thus suitable for stable and long-time amplification(<30 min)[15,28].

    Besides ATP,SBPs also contribute to the dynamic equilibrium of the recombination process.On one hand,SBPs is necessary for melting the secondary structure of the primer.On the other hand,it also competes with recombinase to inhibit the nucleation and propagation of recombinase.Owing to the higher affinity of SBPs with the primer over the recombinase,the active nucleoprotein filament may be deactivated due to the displacement of recombinase by SBPs,especially when the cofactor ATP cannot be efficiently refreshed[29].Accessory proteins can regulate the balance through destroying the cooperativity of the monomer SBPs[30],thus accelerating the nucleation of recombinase and maintaining the integrity of nucleoprotein filament[31,32].

    2.3 Selection of DNA Polymerase and Other Reagents

    Many DNA polymerases have been approved to be suitable for RPA,such as Sau polymerase,Klenow fragment ofE.coliDNA polymerase I,Bst DNA polymerase frombacillus stearothermophilus,and so on.Overall,there are three basic rules for the selection of the polymerase.First,polymerases with high processi-vity are desirable,as the loop or branch migration in RPA can cause the disassembly of polymerase with low processivity,resulting in poor efficiency and the accumulation of undesired short products.Second,the extra exonuclease activity of the polymerase should be taken into consider.Polymerases with 5′→3′exonuclease activity is not suitable for RPA,because they can digest the complementary strand of the template,resulting in low amplification efficiency.Although the 3′→5′exonuclease activity of polymerases may be beneficial for RPA since it can increase the fidelity of polymerase by incising misincorporations.However,the 3′→5′exonuclease activity of polymerases may also increase undesired extension,given that the unpaired bases from non-specific hybridization is excised.Last,the activity of polymerase in accessing the 3′-end of the recombination intermediates is important for efficient RPA.The recombination intermediates with multiple binding substances are different from those in PCR,thus may inhibit the loading of polymerases,especially in the uvsX system[15].Generally,two polymerases,one for accessing the 3′-end of the primer and the other for processivity,are recommended in RPA.

    Besides the above proteins,there are also some ingredients that contribute to RPA,including crowding reagents,dNTPs,and buffer.Obviously,the reagents required for RPA are much more than those in PCR,which makes the RPA process complicated and difficult to be precisely controlled.Overall,compared with PCR,the standardization of RPA operation is relatively difficult,and thus demands further endeavor for future optimization.

    3 Primer Design and Selection

    Generally,the optimal length of RPA primer should be 30—35 bases,which is suitable for the formation of stable nucleoprotein filament.Longer primers can work,but possible intra-or inter-primer interactions at low temperature would increase primer artifacts.While the signal-to-noise ratio of shorter primers is generally higher,but the mean amplification kinetics is typically slow.Due to the three hydrogen bonds between G-C base pair,primer containing over 70%and less than 30%GC should be avoided.Particularly,providing a GC clamp at the 3′-end of primer may be beneficial[12].Although DNA-based primers are preferred for RPA,but RNA,PNA(peptide nucleic acid)and LNA(locked nucleic acid)can also work[15].Last,the length of the amplicon would influence the performance of primer.Although up to 1.5 kb amplicons can be obtained,shorter ones(80—400 bps,especially 100—200 bps)are preferred.

    Non-targeted amplification,as typically encountered in other amplification protocols,is relatively serious in RPA due to the low working temperature.Elegant designing of the primer can alleviate non-targeted amplification to some extent.It’s suggested that primer with non-hydrolysable backbones at the 3′-end,such as phosphonothioate,morpholino and LNA,could efficiently reduce noise arising from mispairing[15].Self-avoiding molecular recognition(SAMRs)oligonucleotides,which form only one unstable H-bond between SAMRs primers but two stable H-bond with templates,can reduce the hybridization between primers but not the base pairing with the template[Fig.3(A)],thus largely avoiding the formation of primer dimers[33].

    Undesired extension can also be reduced through incorporating short competitor oligonucleotides that can hybridize with the 3′-end of the primer[15].Generally,there are two design types for the competitor oligonucleotides:primer-independent and primer-dependent[Fig.3(B)].In the independent design[Fig.3(B)a],the competitor oligonucleotide is 3′-end blocked(e.g.,dideoxy sugar and biotin)to inhibit the extension of polymerase.Besides,a non-phosphate linkage at the ultimate and/or penultimate backbone is necessary to restrict the exonuclease activity of polymerase(3′→5′).In real working condition,the hybridization between the primers and the competitor oligonucleotides(OFF state)can efficiently suppress the noise.However,the short length of such competitor oligonucleotides(6—15 bases)may be also detached from the primer(ON state),thus endowing highly efficient amplification.While in the primer-dependent protocol[Fig.3(B)b],the unlabeled competitor oligonucleotide is directly linked to the 5′-end of primer.Subsequent formation of a hairpin structure can restrict undesirable extension,while the dynamic equilibrium from the short oligonucleotide length(6—10 bases)also permits efficient amplification.It should be noted that primer-dependent protocol can form plenty of self-primers in the next cycles of amplification,which is advantageous and preferable for RPA-based diagnosis.

    Fig.3 Primers for reducing nose products

    For diagnosis applications,amplification efficiency and specificity are crucial.However,RPA is prone to suffer from subtle changes in primers,such as one base migration,addition,or excision.Although the primer can be designed in corresponding software,it is less efficient for RPA as compared with PCR,due to the complexity and incomplete understanding of the primer recombination process[34].Therefore,experimental verification seems to be inevitable for verification of the primer pair.

    4 Readout Technologies

    Currently,RPA kits are exclusively supplied by TwistAmp?.For highly sensitive detection of RPA amplicons,TwistAmp?has recommended two real-time fluorescent probes[exo probe and fpg probe,F(xiàn)ig.4(A)and(B)],the designing principle of which can be referred from the websites of TwistAmpTM.Besides,TwistAmp?also provides a lateral flow(LF)probe design suitable for end-point testing(POCT).Those probes have been widely used in RPA assays[7,8],but the performances of TwistAmp?probes are less predictable.

    Fig.4 Nucleic acid probes for RPA

    Fig.5 New amplicon testing methods

    To ease the RPA readout,several new types of probes are emerged recently[35—43].Colorimetric readout based on labeled AuNPs or catalytic oxidation of chromogenic substrates is relatively simple and less instrument-dependent[44,45].The most popular mode for colorimetric assays is the“sandwich”type[Fig.5(A)],the testing results of which are probe to be influenced by the primer dimers.Electrochemical chemical detection approach usually has high sensitivity and easily be implanted in portable devices[Fig.5(B)],but differentiation signals between target amplicons and side products needed further attention[46].CRISPR/Cas-based system seems a perfect match with RPA,since the CRISPR/Cas probe added a further recognition for the target amplicons by base-paring between the sgRNA and target amplicon,which largely increased the specificity of RPA-based detection[47-49].In addition,some Cas proteins(e.g.,Cas13a)possesses high cleavage activity for the probes,resulting in significant sensitivity improvement of RPA-based assays[47,48,50].The successful implement of CRISPR/Cas-based lateral flow assay largely simplified the signal readout,thus facilitating such technology for POCT applications[Fig.5(C)][48].However,CRISPR/Cas-based assay currently is only an end-point detection for RPA.The complexity of both technologies thus demands further care for successful coupling.Other technologies,such as chemiluminescence[51—53]and Raman scattering[54,55],are also been explored in detection of RPA amplicons.Although the sensitivity of these strategies are appealing,the requirement of specific devices for signal readout are not desirable in the applications of POCT.

    5 Performances of RPA-based Assays

    The request for decentralized nucleic acid testing(NAT)increases greatly in recent years.Isothermal amplifications,which feature less instrument-dependent and easier access to NAT-based POCT as compared with PCR,thus draw much attention.There are several isothermal nucleic acid amplification protocols(Table 2),among which RPA exhibits obvious advantages,including short reaction time(20 min)and low amplification temperature(30—42℃)[10,56~73].In addition,RPA components can be lyophilized with high stability[7],thus paving the way to resource-limited areas.Another advantage is the robustness of the reagents,since RPA can tolerate potential inhibitors presented in samples or during sample preparations[8,14].

    Table 2 Comparison of current isothermal amplification methods

    The excellent performances of RPA have permitted successful detection of pathogenic bacterium[44,48,49]and genetically modified organisms and genetic alterations[74—77],with limit of detection(LOD)down to even 1 copy of DNA or RPA target.However,it should be noted that the LODs and reaction time varied with the primer and the length of amplicons,thus demanding more effort for improving and standardizing the performance of RPA.Thanks to the rapid developments of RPA in recent years,several RPA-based kits for pathogens,includingCampylobacter,Listeria monocytogenes,Red snapper,andSalmonella,are already commercially available.

    Benefiting from its low-temperature amplification,RPA is easily accessible to portable devices for fielddeployable diagnostics,especially for resource-limited areas[78,79].Microfluidic chip is one of the ideal carriers for RPA-based portable diagnosis devices,because of its small size and multi-functionality[80—82].Particularly,disc-[83—86]and paper-based microfluidics[87,88]are promising due to their low cost and easy-to-automation.In addition,smartphone-based or specific signal-readout devices are also developed for field diagnosis[51,89].

    6 Conclusions and Future Perspectives

    Due to the similarity between RPA and PCR,RPA has the potential to supplement PCR in some applications.Meanwhile,RPA has unique advantages over other isothermal amplifications,such as low temperature,high efficiency,stable lyophilized format,and less instrument-dependent,which make RPA suitable and popular in the POCT area.In this review,we made a brief summarize on RPA from its basic principle to performance.We hope such information may be helpful for researchers to better understand RPA and promote its development and improvement.

    To further improve the performances of RPA,here we proposed several critical issues and potential points.First,the recombination kinetics of recombinase is far from excellent understanding[17,90,91],which demands further endeavor of basic research.In this manner,ideal primer pair and probes that are as simple and efficient as those in PCR will be expected[92].For example,caged-ATP that cannot directly fuel RPA,was reported to be activated by light,which may be potentially useful in precise regulation of RPA dymamic[15,93].Second,the undesirable artifacts due to low amplification temperature should be avoided.Although methods such as SMARS primer or introduction of short competitor oligonucleotides are introduced,the performances are far from satisfactory.Thus,new approaches that can destabilize the undesirable hybrids or increase the selectivity of primer are demanded,especially in diagnosis applications.Third,the performances of RPA are susceptible to multiply factors,and improving the robustness of RPA is thus urgently needed.Third,optimization of reaction conditions or engineering relative proteins may be also important for improving the performance of RPA.For example,RecO and RecR can greatly enhance the recombination of RecA bothin vivoandin vitro[32,94],but not applicable in typical RPA assays[15].Therefore,the current working conditions may be far from optimal for RecA in PRA.Besides,regulating the activity of related proteins by protein engineering has already been reported[15,21,32],but not yet in PRA.Last,the introduction of microfluidics or other portable devices will make RPA easily accessible to POCT.However,the robustness of these devices and potential cross contamination in amplification should be considered.Thus,portable devices with stable and enclosed environment for RPA reaction and proper signal readout are preferred and recommended.

    Overall,RPA may not replace PCR or other isothermal amplification techniques in recent years.However,the potential of RPA in diagnosis are already been demonstrated[95].With continuously development and improvement,we believe that RPA will ultimately mature as a benchmark technology in near future.

    This paper is supported by the National Natural Science Foundation of China(No.21874093)and the Fundamental Research Funds for the Central China Universities(No.2018SCUH0075).

    猜你喜歡
    分析測試四川大學(xué)原理
    四川大學(xué)西航港實驗小學(xué)
    了解咳嗽祛痰原理,有效維護(hù)健康
    《分析測試技術(shù)與儀器》簡介
    平均場正倒向隨機(jī)控制系統(tǒng)的最大值原理
    鐵路通信網(wǎng)絡(luò)安全的分析測試與可信防御研究
    關(guān)于分析測試中心在高校實驗教學(xué)中的思考
    化學(xué)反應(yīng)原理全解讀
    百年精誠 譽從信來——走進(jìn)四川大學(xué)華西眼視光之一
    通信原理教學(xué)改革探索
    四川大學(xué)華西醫(yī)院
    亚洲欧美一区二区三区国产| 欧美亚洲 丝袜 人妻 在线| 国产一级毛片在线| 啦啦啦中文免费视频观看日本| 免费观看a级毛片全部| 国产毛片在线视频| 欧美成人午夜免费资源| 亚洲精品国产av成人精品| 久久综合国产亚洲精品| 久久99蜜桃精品久久| 大香蕉久久网| 精品久久久噜噜| 十八禁高潮呻吟视频| 久久精品国产a三级三级三级| 国精品久久久久久国模美| 最近最新中文字幕免费大全7| 久久久亚洲精品成人影院| 欧美变态另类bdsm刘玥| 亚洲av在线观看美女高潮| 中文字幕精品免费在线观看视频 | 观看av在线不卡| 夜夜看夜夜爽夜夜摸| 国产午夜精品一二区理论片| 亚洲av不卡在线观看| 精品卡一卡二卡四卡免费| 大片电影免费在线观看免费| 美女主播在线视频| 久久人妻熟女aⅴ| 久久亚洲国产成人精品v| 乱人伦中国视频| 亚洲精品第二区| 色婷婷久久久亚洲欧美| 久久99热这里只频精品6学生| 在线观看三级黄色| 日本与韩国留学比较| 肉色欧美久久久久久久蜜桃| 免费看不卡的av| 日日啪夜夜爽| 国产乱来视频区| 国语对白做爰xxxⅹ性视频网站| 天美传媒精品一区二区| 欧美精品国产亚洲| 国产一区二区在线观看日韩| 在线看a的网站| 精品少妇黑人巨大在线播放| 一个人免费看片子| 欧美3d第一页| 精品一区二区三区视频在线| 黄色怎么调成土黄色| 99视频精品全部免费 在线| 99热这里只有是精品在线观看| videossex国产| 制服人妻中文乱码| 少妇人妻久久综合中文| 在线天堂最新版资源| 国产亚洲精品第一综合不卡 | 欧美另类一区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲伊人久久精品综合| 国产黄频视频在线观看| 久久人妻熟女aⅴ| 日韩在线高清观看一区二区三区| 另类亚洲欧美激情| 久久久久久久国产电影| 精品人妻熟女av久视频| 大片免费播放器 马上看| 91久久精品国产一区二区三区| 大码成人一级视频| av免费观看日本| 满18在线观看网站| 精品酒店卫生间| 91精品一卡2卡3卡4卡| 免费少妇av软件| 内地一区二区视频在线| 少妇 在线观看| 一本大道久久a久久精品| 国产成人a∨麻豆精品| 国产片内射在线| 日韩中文字幕视频在线看片| 少妇被粗大猛烈的视频| 成人毛片60女人毛片免费| 三级国产精品欧美在线观看| 国产欧美亚洲国产| 久热这里只有精品99| 极品少妇高潮喷水抽搐| 99热全是精品| 99久国产av精品国产电影| 日韩成人av中文字幕在线观看| 国产成人精品婷婷| 99热网站在线观看| 国产国拍精品亚洲av在线观看| 久久久久久伊人网av| av在线观看视频网站免费| 中文精品一卡2卡3卡4更新| 久久99热这里只频精品6学生| 简卡轻食公司| 乱人伦中国视频| 99国产精品免费福利视频| www.av在线官网国产| 久久这里有精品视频免费| 国产高清三级在线| 免费看不卡的av| 黑丝袜美女国产一区| 成年人免费黄色播放视频| 18+在线观看网站| 丝袜喷水一区| 九九爱精品视频在线观看| 韩国高清视频一区二区三区| 韩国高清视频一区二区三区| 国模一区二区三区四区视频| 久久 成人 亚洲| 校园人妻丝袜中文字幕| 亚洲精品久久午夜乱码| 激情五月婷婷亚洲| xxx大片免费视频| 成人国语在线视频| 成人国产麻豆网| 精品国产乱码久久久久久小说| 亚洲精品亚洲一区二区| 99国产综合亚洲精品| 欧美激情极品国产一区二区三区 | tube8黄色片| 蜜桃在线观看..| 成年美女黄网站色视频大全免费 | 国产日韩欧美视频二区| 亚洲av在线观看美女高潮| 九草在线视频观看| 久久免费观看电影| 亚洲色图 男人天堂 中文字幕 | 精品亚洲成国产av| 老女人水多毛片| 国产日韩欧美视频二区| 最近的中文字幕免费完整| 曰老女人黄片| 五月天丁香电影| 人妻少妇偷人精品九色| 高清欧美精品videossex| 精品久久久精品久久久| 午夜福利视频精品| 91精品国产国语对白视频| xxxhd国产人妻xxx| 人人澡人人妻人| 91精品一卡2卡3卡4卡| 男女无遮挡免费网站观看| 蜜桃久久精品国产亚洲av| 亚洲av综合色区一区| 另类精品久久| 国产一级毛片在线| 亚洲精品一区蜜桃| 午夜精品国产一区二区电影| 性色av一级| 一级黄片播放器| 51国产日韩欧美| 一边摸一边做爽爽视频免费| 日韩一区二区三区影片| 国产乱来视频区| 婷婷成人精品国产| 久久久久久久大尺度免费视频| 国产一级毛片在线| 国产深夜福利视频在线观看| 亚洲人成网站在线播| 自线自在国产av| 一个人免费看片子| 日本欧美视频一区| 国产成人精品一,二区| 免费人成在线观看视频色| 成人综合一区亚洲| 国产毛片在线视频| 日韩,欧美,国产一区二区三区| 久久久久久久久久久免费av| 久久精品人人爽人人爽视色| 国产男女超爽视频在线观看| 日本免费在线观看一区| 国产熟女欧美一区二区| 永久网站在线| 国产免费福利视频在线观看| 寂寞人妻少妇视频99o| 寂寞人妻少妇视频99o| 母亲3免费完整高清在线观看 | 在线观看三级黄色| 国产精品国产三级国产av玫瑰| 午夜激情久久久久久久| 精品午夜福利在线看| 有码 亚洲区| 国产日韩一区二区三区精品不卡 | 欧美丝袜亚洲另类| 婷婷色av中文字幕| 飞空精品影院首页| 黑人巨大精品欧美一区二区蜜桃 | 精品人妻一区二区三区麻豆| 九九爱精品视频在线观看| 丁香六月天网| 免费少妇av软件| 久久这里有精品视频免费| 国产不卡av网站在线观看| 成年人免费黄色播放视频| 欧美三级亚洲精品| 欧美亚洲 丝袜 人妻 在线| 亚洲av国产av综合av卡| 欧美最新免费一区二区三区| 最近中文字幕2019免费版| 亚洲精品日韩在线中文字幕| 久久久久久久久久久久大奶| 18在线观看网站| 黑丝袜美女国产一区| 精品熟女少妇av免费看| 这个男人来自地球电影免费观看 | 日韩av不卡免费在线播放| 国产亚洲午夜精品一区二区久久| 一本久久精品| 亚洲国产欧美在线一区| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 免费人成在线观看视频色| 夫妻性生交免费视频一级片| 天堂中文最新版在线下载| 午夜日本视频在线| 五月伊人婷婷丁香| 最近最新中文字幕免费大全7| 人人妻人人添人人爽欧美一区卜| 天美传媒精品一区二区| 久久韩国三级中文字幕| 国产精品嫩草影院av在线观看| 午夜激情福利司机影院| videos熟女内射| 两个人免费观看高清视频| 国产成人一区二区在线| 国产精品一区二区在线观看99| 国产成人精品无人区| 一级毛片 在线播放| 黄片播放在线免费| 日本欧美国产在线视频| 乱人伦中国视频| 久久女婷五月综合色啪小说| 最近最新中文字幕免费大全7| 日韩欧美精品免费久久| 亚洲成人手机| 欧美日韩av久久| 久久久久久久国产电影| 青春草视频在线免费观看| 女性生殖器流出的白浆| 国产一区二区在线观看日韩| 伊人久久国产一区二区| 丝袜喷水一区| 成人午夜精彩视频在线观看| 欧美日韩综合久久久久久| 日韩av在线免费看完整版不卡| 成人黄色视频免费在线看| 亚洲精品乱久久久久久| 久久ye,这里只有精品| 中文字幕精品免费在线观看视频 | 人妻人人澡人人爽人人| 韩国av在线不卡| 亚洲精品一区蜜桃| 国产精品人妻久久久久久| 伦理电影大哥的女人| 中文天堂在线官网| xxx大片免费视频| 国国产精品蜜臀av免费| 国产成人免费无遮挡视频| 久久久久精品性色| 国产精品久久久久久精品古装| 国产色爽女视频免费观看| 99re6热这里在线精品视频| 全区人妻精品视频| 国产精品成人在线| av又黄又爽大尺度在线免费看| 在线观看美女被高潮喷水网站| 一本大道久久a久久精品| 亚洲成人一二三区av| 免费少妇av软件| 国产探花极品一区二区| 亚洲av欧美aⅴ国产| 一区在线观看完整版| 亚州av有码| 国产黄片视频在线免费观看| 免费黄色在线免费观看| 老女人水多毛片| 国产在线视频一区二区| 美女大奶头黄色视频| 国产极品粉嫩免费观看在线 | 能在线免费看毛片的网站| a级毛色黄片| 大又大粗又爽又黄少妇毛片口| 性高湖久久久久久久久免费观看| 天天躁夜夜躁狠狠久久av| 色婷婷av一区二区三区视频| 久久午夜综合久久蜜桃| 国产亚洲精品久久久com| 涩涩av久久男人的天堂| 日本黄色日本黄色录像| 日韩av不卡免费在线播放| 亚洲av男天堂| 精品少妇久久久久久888优播| 最近的中文字幕免费完整| 午夜福利视频在线观看免费| 亚洲久久久国产精品| 日韩av不卡免费在线播放| 日韩三级伦理在线观看| 亚洲精品av麻豆狂野| 国产黄色视频一区二区在线观看| 国产日韩欧美亚洲二区| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区黑人 | 亚洲精品国产av蜜桃| 久久精品熟女亚洲av麻豆精品| 久久女婷五月综合色啪小说| 亚洲美女黄色视频免费看| a级毛片免费高清观看在线播放| av国产久精品久网站免费入址| 婷婷色av中文字幕| 欧美变态另类bdsm刘玥| av.在线天堂| 99热国产这里只有精品6| 国产片内射在线| 热99国产精品久久久久久7| 精品亚洲乱码少妇综合久久| 交换朋友夫妻互换小说| 九色成人免费人妻av| 一边摸一边做爽爽视频免费| 色5月婷婷丁香| 精品国产乱码久久久久久小说| 色视频在线一区二区三区| av线在线观看网站| 考比视频在线观看| 国产成人精品无人区| av又黄又爽大尺度在线免费看| 热re99久久国产66热| 国产无遮挡羞羞视频在线观看| 赤兔流量卡办理| 午夜福利网站1000一区二区三区| 777米奇影视久久| 最近手机中文字幕大全| 亚洲精品乱码久久久v下载方式| 不卡视频在线观看欧美| 国产精品成人在线| 国产高清国产精品国产三级| 精品人妻熟女av久视频| 欧美变态另类bdsm刘玥| 三级国产精品欧美在线观看| 亚洲伊人久久精品综合| 国产精品久久久久久av不卡| 久久久久久久大尺度免费视频| 欧美老熟妇乱子伦牲交| 久久久亚洲精品成人影院| 五月玫瑰六月丁香| 美女cb高潮喷水在线观看| 亚洲美女搞黄在线观看| 成年人免费黄色播放视频| 日本av免费视频播放| 9色porny在线观看| 99热全是精品| kizo精华| 亚洲一区二区三区欧美精品| 多毛熟女@视频| a 毛片基地| 久久久久久久久久久免费av| 日韩不卡一区二区三区视频在线| 国语对白做爰xxxⅹ性视频网站| 国产亚洲av片在线观看秒播厂| xxx大片免费视频| 国产片特级美女逼逼视频| 国产不卡av网站在线观看| 岛国毛片在线播放| 久久精品国产自在天天线| 国产日韩一区二区三区精品不卡 | 女的被弄到高潮叫床怎么办| 亚洲在久久综合| 久久久久精品久久久久真实原创| 久久青草综合色| 婷婷成人精品国产| 中国美白少妇内射xxxbb| 免费人妻精品一区二区三区视频| 97在线视频观看| 秋霞在线观看毛片| 两个人免费观看高清视频| 91久久精品电影网| 国产欧美另类精品又又久久亚洲欧美| 少妇猛男粗大的猛烈进出视频| 另类精品久久| 尾随美女入室| 亚洲精品日韩在线中文字幕| 伦理电影免费视频| 亚洲国产精品成人久久小说| 国产精品麻豆人妻色哟哟久久| 欧美三级亚洲精品| 激情五月婷婷亚洲| 秋霞在线观看毛片| 欧美+日韩+精品| 亚洲天堂av无毛| 青春草亚洲视频在线观看| 人妻系列 视频| 亚洲无线观看免费| 亚洲精品,欧美精品| 伦理电影免费视频| 少妇 在线观看| 国产毛片在线视频| 亚洲天堂av无毛| 99久久综合免费| 涩涩av久久男人的天堂| 欧美三级亚洲精品| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 国产精品不卡视频一区二区| 国产一区二区三区av在线| 中文字幕精品免费在线观看视频 | 两个人免费观看高清视频| 国产永久视频网站| 美女国产视频在线观看| 久久久久网色| 亚洲无线观看免费| 日本wwww免费看| av不卡在线播放| 欧美激情 高清一区二区三区| 26uuu在线亚洲综合色| videossex国产| 日韩视频在线欧美| av播播在线观看一区| 久久精品久久精品一区二区三区| 夜夜骑夜夜射夜夜干| 日本欧美视频一区| 亚洲色图 男人天堂 中文字幕 | 街头女战士在线观看网站| 在线观看免费高清a一片| 亚洲三级黄色毛片| 免费人妻精品一区二区三区视频| 亚洲,一卡二卡三卡| 午夜影院在线不卡| 婷婷色麻豆天堂久久| 高清不卡的av网站| 欧美精品高潮呻吟av久久| 久久99精品国语久久久| 国产av国产精品国产| 日韩欧美一区视频在线观看| 精品国产一区二区久久| 狂野欧美激情性bbbbbb| 九草在线视频观看| 日韩成人av中文字幕在线观看| 久久99热6这里只有精品| 亚洲精品aⅴ在线观看| 黄色怎么调成土黄色| 黄色欧美视频在线观看| 我的女老师完整版在线观看| 久久久久网色| kizo精华| 久久久久久久久大av| 国产精品嫩草影院av在线观看| 人妻一区二区av| 国产成人91sexporn| 丝袜脚勾引网站| 欧美最新免费一区二区三区| 99久久中文字幕三级久久日本| 欧美日韩av久久| 伊人久久精品亚洲午夜| 爱豆传媒免费全集在线观看| 久久99热6这里只有精品| 国产有黄有色有爽视频| 精品一区在线观看国产| 亚洲精品乱码久久久v下载方式| 免费av不卡在线播放| 99久国产av精品国产电影| 纯流量卡能插随身wifi吗| 美女大奶头黄色视频| 久久韩国三级中文字幕| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| a级毛片黄视频| 久久久欧美国产精品| 男人操女人黄网站| 男男h啪啪无遮挡| 一个人看视频在线观看www免费| 各种免费的搞黄视频| 青春草国产在线视频| 国产av精品麻豆| 伦理电影免费视频| 欧美老熟妇乱子伦牲交| 欧美精品国产亚洲| 国产深夜福利视频在线观看| 少妇精品久久久久久久| 欧美日韩成人在线一区二区| 午夜老司机福利剧场| 亚洲国产精品999| 国产一区亚洲一区在线观看| 中文字幕免费在线视频6| 2022亚洲国产成人精品| 女性被躁到高潮视频| 国产免费现黄频在线看| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品999| 大片电影免费在线观看免费| 中文字幕免费在线视频6| 亚洲精品亚洲一区二区| 欧美 亚洲 国产 日韩一| 又黄又爽又刺激的免费视频.| 成人黄色视频免费在线看| 欧美日韩av久久| av.在线天堂| 黄色毛片三级朝国网站| 午夜免费男女啪啪视频观看| 成人国产av品久久久| 日本av免费视频播放| 精品一区二区三区视频在线| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 男女无遮挡免费网站观看| 成人国语在线视频| 亚洲av在线观看美女高潮| 国产精品一国产av| 久久精品夜色国产| 亚洲国产精品一区二区三区在线| 日韩免费高清中文字幕av| 大香蕉久久网| 亚洲精品久久午夜乱码| 另类亚洲欧美激情| 国产男女内射视频| 国产日韩欧美在线精品| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三区在线 | 狂野欧美激情性bbbbbb| 肉色欧美久久久久久久蜜桃| 国精品久久久久久国模美| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 久久精品国产a三级三级三级| 男人操女人黄网站| 妹子高潮喷水视频| 这个男人来自地球电影免费观看 | 国产一级毛片在线| 日韩av不卡免费在线播放| 美女国产高潮福利片在线看| 亚洲第一区二区三区不卡| 精品少妇内射三级| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜| av视频免费观看在线观看| 亚州av有码| 国产成人精品一,二区| 国产精品国产三级国产av玫瑰| 中文字幕制服av| 欧美日韩成人在线一区二区| 国产 精品1| 亚洲欧美一区二区三区黑人 | 午夜福利,免费看| 久久午夜综合久久蜜桃| 亚洲三级黄色毛片| 一级毛片 在线播放| 九九爱精品视频在线观看| 日本午夜av视频| 久久99热6这里只有精品| 久久久午夜欧美精品| 九色亚洲精品在线播放| 我的老师免费观看完整版| 亚洲欧美清纯卡通| 成人亚洲精品一区在线观看| 天美传媒精品一区二区| 中国美白少妇内射xxxbb| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| 18禁裸乳无遮挡动漫免费视频| videos熟女内射| 少妇人妻久久综合中文| 国产亚洲av片在线观看秒播厂| 中国三级夫妇交换| 精品一区二区三卡| 久久久久视频综合| 久久精品熟女亚洲av麻豆精品| 久久久久久伊人网av| 国产在线一区二区三区精| 我的女老师完整版在线观看| 国产色爽女视频免费观看| 自拍欧美九色日韩亚洲蝌蚪91| h视频一区二区三区| 国产国拍精品亚洲av在线观看| 日韩一区二区视频免费看| 9色porny在线观看| 亚洲精品一二三| 黑人欧美特级aaaaaa片| 国产精品人妻久久久久久| 九色成人免费人妻av| 久热这里只有精品99| 亚洲精品色激情综合| 日日啪夜夜爽| 美女国产视频在线观看| av线在线观看网站| 国产伦精品一区二区三区视频9| 免费黄网站久久成人精品| 又大又黄又爽视频免费| 18禁观看日本| 亚洲伊人久久精品综合| 高清在线视频一区二区三区| 国产男人的电影天堂91| 久久久a久久爽久久v久久| 亚洲精品色激情综合| av专区在线播放| 久久久久久久精品精品| 国产毛片在线视频| 91精品国产国语对白视频| 国产精品一区二区在线观看99| 国内精品宾馆在线| 久久免费观看电影| 一边摸一边做爽爽视频免费| 一区在线观看完整版| 国产乱来视频区| 五月伊人婷婷丁香| 国产亚洲av片在线观看秒播厂| a级毛片免费高清观看在线播放| 色5月婷婷丁香| 国产免费一区二区三区四区乱码| 日韩成人伦理影院| av国产精品久久久久影院| 国产免费又黄又爽又色| 欧美性感艳星| 人人妻人人澡人人爽人人夜夜| 婷婷色综合www| 超色免费av|