文先麗 施會(huì)敏 張愛(ài)青
摘要:長(zhǎng)鏈非編碼RNA(lncRNA)是一類無(wú)編碼功能的RNA,以信號(hào)、誘餌、引導(dǎo)和支架的作用方式執(zhí)行重要的生物學(xué)功能,涉及轉(zhuǎn)錄調(diào)控、細(xì)胞內(nèi)物質(zhì)運(yùn)輸和染色體重塑,通過(guò)染色質(zhì)、基因轉(zhuǎn)錄及轉(zhuǎn)錄后調(diào)控、核結(jié)構(gòu)調(diào)控、信號(hào)轉(zhuǎn)導(dǎo)及酶活性調(diào)節(jié)等機(jī)制廣泛參與細(xì)胞分化、生長(zhǎng)發(fā)育、應(yīng)激反應(yīng)和疾病發(fā)生發(fā)展等多種生物學(xué)進(jìn)程。目前認(rèn)為腎臟纖維化是各類腎臟疾病走向終末期腎功能衰竭狀態(tài)的共同改變,主要病理特征是細(xì)胞外基質(zhì)的過(guò)度沉積。腎臟纖維化發(fā)生機(jī)制十分復(fù)雜,涉及多種細(xì)胞因子和信號(hào)通路,改變或延緩腎臟纖維化可能有效改善慢性腎臟病的進(jìn)展。lncRNA與腎臟纖維化之間的關(guān)系的研究較多,本文就lncRNA相關(guān)的細(xì)胞因子及信號(hào)通路與腎臟纖維化的關(guān)系及研究進(jìn)展作一綜述。
關(guān)鍵詞:長(zhǎng)鏈非編碼 RNA (lncRNA);腎臟纖維化;細(xì)胞因子;信號(hào)通路
中圖分類號(hào):R692 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DOI:10.3969/j.issn.1006-1959.2020.21.009
文章編號(hào):1006-1959(2020)21-0026-06
Abstract:Long non-coding RNA (lncRNA) is a type of RNA with no coding function. It performs important biological functions by means of signal, decoy, guidance and scaffolding, involving transcriptional regulation, intracellular material transport and chromosome remodeling, through staining mechanisms such as qualitative, gene transcription and post-transcriptional regulation, nuclear structure regulation, signal transduction, and enzyme activity regulation are widely involved in various biological processes such as cell differentiation, growth and development, stress response, and disease occurrence and development. At present, it is believed that renal fibrosis is a common change of various kidney diseases to end-stage renal failure. The main pathological feature is the excessive deposition of extracellular matrix. The mechanism of renal fibrosis is very complicated, involving a variety of cytokines and signal pathways. Changing or delaying renal fibrosis may effectively improve the progression of chronic kidney disease. There are many studies on the relationship between lncRNA and kidney fiber. This article reviews the relationship between lncRNA-related cytokines and signaling pathways on renal fibrosis.
Key words:Long non-coding RNA(lncRNA);Renal fibrosis;Cytokine;Signaling pathway
長(zhǎng)鏈非編碼RNA(long non-coding RNA,lncRNA)是一類無(wú)編碼功能的RNA,在很多方面,lncRNA類似于編碼蛋白質(zhì)的 mRNA,但與 mRNA相比,lncRNA 轉(zhuǎn)錄數(shù)量較低,通常存在于細(xì)胞核中,種間序列保守性較差[1]。其功能主要包括轉(zhuǎn)錄調(diào)節(jié)其他基因的表達(dá)[2]、調(diào)節(jié)組蛋白修飾與染色體重 ? 塑[3]、影響其他RNA生成[4]、作為競(jìng)爭(zhēng)性內(nèi)源RNA發(fā)揮作用[5],作為小RNA前體發(fā)揮作用[6]。多年研究發(fā)現(xiàn)lncRNA廣泛參與細(xì)胞的發(fā)育、分化、生長(zhǎng)及凋亡等生物學(xué)過(guò)程。其異常表達(dá)或基因突變引起包括出生缺陷、腫瘤等在內(nèi)的人類多種疾病,成為某些重大疾病治療的潛在靶點(diǎn)。如線粒體lncRNALIPCAR可作為心臟重塑、預(yù)測(cè)未來(lái)心力衰竭預(yù)后的標(biāo)志物[7]等。無(wú)論病因如何,慢性腎病進(jìn)展的終末期改變是腎臟纖維化、疤痕組織形成和腎功能衰竭。腎臟纖維化包括腎小球硬化以及腎間質(zhì)的纖維化,腎小球硬化主要的病變特征是腎小球毛細(xì)血管袢發(fā)生的硬化性改變;腎間質(zhì)纖維化以上皮-間質(zhì)轉(zhuǎn)化(EMT)和過(guò)度的細(xì)胞外基質(zhì)沉積為特征,其主要病理過(guò)程包括腎臟損傷所引發(fā)的組織微環(huán)境改變,肌成纖維細(xì)胞活化與增殖,大量細(xì)胞外基質(zhì)(extracellularmatrix,ECM)產(chǎn)生和沉積,腎小管萎縮和毛細(xì)血管丟失[8]。腎臟纖維化一直是腎臟疾病的研究熱點(diǎn),與之相關(guān)的細(xì)胞因子、信號(hào)通路是更是重點(diǎn)研究對(duì)象,在lncRNA領(lǐng)域也發(fā)現(xiàn)許多l(xiāng)ncRNAs與腎臟纖維化相關(guān),本文就近年來(lái)發(fā)現(xiàn)的lncRNA相關(guān)的細(xì)胞因子及信號(hào)通路與腎臟纖維化的關(guān)系及研究進(jìn)展作一綜述。
1 lncRNA與腎臟纖維化相關(guān)細(xì)胞因子
與腎纖維化的進(jìn)展及其相關(guān)活動(dòng)有關(guān)的分子主要包括AngⅡ、轉(zhuǎn)化生長(zhǎng)因子β1(TGFβ1),結(jié)締組織生長(zhǎng)因子(CTGF)、纖溶酶原激活物抑制劑-1 (PAI1)[9],而目前在lncRNA研究領(lǐng)域,研究者們發(fā)現(xiàn)有些與腎臟纖維化相關(guān)的lncRNA是通過(guò)TGFβ1和CTGF發(fā)揮調(diào)控作用的。
1.1轉(zhuǎn)化生長(zhǎng)因子β1 ? TGF-β1是腎臟纖維化發(fā)生發(fā)展中主要的細(xì)胞因子,其誘導(dǎo)腎臟纖維化發(fā)生的機(jī)制主要包括直接誘導(dǎo)Ⅰ型膠原(COL1),纖維黏連蛋白(FN)等ECM的合成;抑制ECM的降解;對(duì)腎臟不同的固有細(xì)胞起作用,如促進(jìn)系膜細(xì)胞增殖,組細(xì)胞損傷等;促進(jìn)多種來(lái)源的肌纖維化母細(xì)胞轉(zhuǎn)分化以介導(dǎo)纖維化反應(yīng)。lncRNA GAS5是糖尿病腎?。―N)中的“明星分子”。Wang W等[10]研究發(fā)現(xiàn),lncRNA GAS5在糖尿病腎病模型(DKD小鼠模型)小鼠和TGF-β1刺激的HK-2細(xì)胞中表達(dá)均增加,而通過(guò)敲低lncRNA GAS5的表達(dá)可使TGF-β1刺激的HK-2細(xì)胞中纖維化相關(guān)蛋白表達(dá)減少。研究顯示,lncRNA GAS5可作為“海綿”吸附miR-96-5p,使其表達(dá)下調(diào)和功能失活,通過(guò)對(duì)miR-96-5p進(jìn)行功能過(guò)表達(dá)/缺失分析發(fā)現(xiàn),miR-96-5p可通過(guò)減少COL1、FN的表達(dá)從而減輕TGF-β1介導(dǎo)的腎臟纖維化,因此,lncRNA GAS5是通過(guò)競(jìng)爭(zhēng)性結(jié)合miR-96-5p導(dǎo)致纖維化過(guò)程。此外,Ge X等[11]檢測(cè)發(fā)現(xiàn)患有糖尿病腎病的2型糖尿病(T2D)患者lncRNA GAS5的表達(dá)水平較無(wú)DN的患者降低,且lncRNA GAS5表達(dá)水平與DN相關(guān)并發(fā)癥的嚴(yán)重程度呈負(fù)相關(guān);同時(shí),通過(guò)體外實(shí)驗(yàn)發(fā)現(xiàn)過(guò)表達(dá)lncRNA GAS5可減輕系膜細(xì)胞(MCs)中纖維化相關(guān)蛋白的表達(dá),通過(guò)充當(dāng)miR-221海綿上調(diào)miR-221靶基因SIRT1的表達(dá),并減弱增殖和纖維化相關(guān)蛋白的表達(dá),而體內(nèi)研究中l(wèi)ncRNA GAS5也可抑制了DN的發(fā)展。
Peng W等[12]發(fā)現(xiàn)lncRNA NONHSAG053901的表達(dá)在DN小鼠模型中顯著升高。過(guò)表達(dá)lncRNA NONHSAG053901可顯著促進(jìn)MCs的炎癥、纖維化和增殖。進(jìn)一步的實(shí)驗(yàn)表明,lncRNA NONHSAG053901可直接與早期生長(zhǎng)反應(yīng)蛋白1(Egr -1)結(jié)合,Egr-1可促進(jìn)有活性的TGF-β增多,從而促進(jìn)纖維化的進(jìn)程。Wang Z等[13]檢測(cè)到在人腎纖維化組織和UUO模型小鼠組織中長(zhǎng)鏈非編碼RNA心肌梗死相關(guān)轉(zhuǎn)錄物(MIAT)分別上調(diào)。在體外實(shí)驗(yàn)中敲除MIAT可以緩解TGF-β1 刺激HK-2細(xì)胞的所引起的增殖、遷移和EMT。進(jìn)一步實(shí)驗(yàn)證明,MIAT作為miR-145-3p的內(nèi)源性“海綿”,而EIF5A2是miR-145-3p的靶點(diǎn),敲低MIAT時(shí),miR-145表達(dá)量增加而EIF5A2表達(dá)量減少。MIAT通過(guò)調(diào)控miR-145/EIF5A2軸促進(jìn)細(xì)胞活力、增殖、遷移和EMT。Xue R等[14]發(fā)現(xiàn)lncRNA MEG3在TGF-β1刺激HK2細(xì)胞誘導(dǎo)的腎纖維化中表達(dá)下調(diào),過(guò)表達(dá)的MEG3可抑制TGF-β1誘導(dǎo)的上皮間質(zhì)轉(zhuǎn)化、細(xì)胞活力和增殖。進(jìn)一步實(shí)驗(yàn)發(fā)現(xiàn),在TGF-β1誘導(dǎo)的腎纖維化中,DNA甲基化酶1(DNMT1)通過(guò)改變HK2中MEG3啟動(dòng)子的甲基化CpGs狀態(tài)而調(diào)控MEG3。通過(guò)生信分析他們發(fā)現(xiàn)miR-185可以在TGF-β1誘導(dǎo)的腎纖維化中,通過(guò)調(diào)節(jié)DNMT1的表達(dá),從而調(diào)節(jié)MEG3的表達(dá)。以此得出,miR-185/DNMT1/MEG3通路的調(diào)節(jié)作用。在TGF-β1誘導(dǎo)的腎纖維化中的重要作用,為臨床治療腎臟纖維化提供了新的潛在靶點(diǎn)。
LncRNA轉(zhuǎn)移相關(guān)肺腺癌轉(zhuǎn)錄1(MALAT1)是目前研究較全面的lncRNA之一,K?觟lling M等[15],Liu P等[16],Puthanveetil P 等[17]的研究在阻塞性疾病所致纖維化的臨床標(biāo)本中和TGF-β1刺激HK-2細(xì)胞所誘導(dǎo)的體外纖維化模型中MALAT1表達(dá)量均上調(diào)。且MALAT1通過(guò) miR-145 /粘著斑激酶(FAK)途徑在TGF-β1誘導(dǎo)纖維化中發(fā)揮重要作用。在DN模型中MALAT1表達(dá)上調(diào),miR-145表達(dá)下調(diào),miR-145可同時(shí)與MALAT1和ZEB2結(jié)合,敲低MALAT1或ZEB2可抑制高糖誘導(dǎo)的EMT和纖維化,過(guò)表達(dá)miR-145也有相同作用。該結(jié)果為今后DN治療提供新的潛在靶點(diǎn)。
1.2結(jié)締組織生長(zhǎng)因子 ? CTGF CTGF 是由TGF-β誘導(dǎo)產(chǎn)生的一種致纖維化蛋白,是TGF-β的下游產(chǎn)物。CTGF 的作用是調(diào)節(jié)成纖維細(xì)胞的生長(zhǎng)以及調(diào)節(jié)細(xì)胞外基質(zhì)的分泌。Chen W等[18]檢測(cè)到慢性腎功能衰竭組織中l(wèi)nc00667和CTGF表達(dá)上調(diào), miR-19b-3p表達(dá)水平較低,進(jìn)一步細(xì)胞實(shí)驗(yàn)驗(yàn)證了lnc00667、CTGF與miR-19b-3p存在靶向關(guān)系,且miR-19b-3p可以負(fù)調(diào)控lnc00667和CTGF的表達(dá)。在腎小管上皮細(xì)胞中沉默lncC00667后,上調(diào)miR-19b-3p表達(dá)促進(jìn)增殖和遷移增加,凋亡減少,同時(shí)抑制腎纖維化和檢測(cè)到EMT??傊?,lnc00667的降低可通過(guò)miR-19b-3p/LINC00667/CTGF軸改善慢性腎衰中腎纖維化。
2 lncRNA與腎臟纖維化相關(guān)信號(hào)通路
2.1 Wnt/β-catenin信號(hào)通路 ?Wnt/β-catenin信號(hào)通路是Wnt通路的經(jīng)典途徑,調(diào)控多種細(xì)胞的生長(zhǎng)和增殖。已有研究發(fā)現(xiàn)[19],在腎纖維化發(fā)生發(fā)展過(guò)程中, Wnt信號(hào)通路高度激活,且對(duì)該通路特異性抑制下可對(duì)腎臟起到保護(hù)作用,使其纖維化程度降低。Zhu XJ等[20]發(fā)現(xiàn)在DN小鼠和高糖處理小鼠腎臟系膜細(xì)胞(MMCs)中,lncRNA Hottip和Wnt2B表達(dá)上調(diào),而miR-455-3p表達(dá)下調(diào)。沉默lncRNA Hottip則可逆轉(zhuǎn)高糖刺激MMCs所引起的細(xì)胞增殖、炎癥、纖維化改變以及Wnt2B /β-catenin /周期蛋白D1通路的激活,而抑制miR-445-3p又可逆轉(zhuǎn)敲低LncRNA Hottip對(duì)細(xì)胞增殖、炎癥和纖維組織相關(guān)蛋白表達(dá)的影響。由此可知,lncRNA Hottip可競(jìng)爭(zhēng)性抑制miR-455-3p的表達(dá)從而上調(diào)Wnt2B,lncRNA Hottip/miR-455-3p/Wnt2B軸在糖尿病腎病的細(xì)胞增殖、炎癥和細(xì)胞外基質(zhì)(ECM)積累中發(fā)揮重要作用。
2.2 TGF-β/Smad信號(hào)通路 ?TGF-β1在腎纖維化的發(fā)生發(fā)展中起主導(dǎo)作用,Smad3 是公認(rèn)的致纖維化因子,它可直接結(jié)合膠原的啟動(dòng)子區(qū)域,參與 ECM 的生成和降解;同時(shí) Smad3 也是調(diào)控肌纖維母細(xì)胞轉(zhuǎn)分化的關(guān)鍵分子。 Smad2可調(diào)節(jié)Smad3的作用,在一定條件下發(fā)揮抗纖維化的保護(hù)作用。Smad4可促進(jìn)Smad2/3和Smad1/5/8復(fù)合物對(duì)TGF-β的反應(yīng)從而促進(jìn)纖維化的進(jìn)程。而Smad7是TGF-β/Smad典型信號(hào)的負(fù)反饋抑制劑[21]。
LncRNA Erbb4-IR是目前研究較全面的與TGF-β/Smad信號(hào)通路相關(guān)的lncRNA。Sun SF等[22]檢測(cè)到lncRNA Erbb4-IR在db/db小鼠病程進(jìn)展中呈Smad3依賴性增加。沉默Erbb4-IR可延緩T2DN的發(fā)展。lncRNA Erbb4-IR可與 miR-29b結(jié)合從而抑制其表達(dá)。在db/db小鼠中,Erbb4-IR的沉默可增加miR-29b的表達(dá),并保護(hù)腎臟免受進(jìn)行性腎損傷。另一方面,Xu BH等[23]發(fā)現(xiàn)Smad3的缺失使lncRNA Erbb4-IR表達(dá)減少, miR-29b表達(dá)增加,并可保護(hù)db/db小鼠的腎臟,使其免于進(jìn)行性腎損傷。Feng M等[24]經(jīng)過(guò)進(jìn)一步試驗(yàn)證明在體外沉默lncRNA Erbb4-IR通過(guò)阻斷TGF-β/Smad3信號(hào)通路有效減輕UUO腎纖維化。Smad7是Erbb4-IR的靶基因,過(guò)表達(dá)Erbb4-IR在很大程度上抑制了Smad7,增加了膠原蛋白的表達(dá),而Erbb4-IR的腎內(nèi)特異性沉默上調(diào)了腎臟Smad7的表達(dá),從而在體內(nèi)和體外阻斷了TGF-β/ Smad3介導(dǎo)的腎纖維化。因此,Erbb4-IR是一種依賴Smad3的lncRNA,它通過(guò)抑制miR-29b來(lái)促進(jìn)T2DN中的腎纖維化,且Erbb4-IR可通過(guò)下調(diào)Smad7介導(dǎo)TGF-β/Smad3介導(dǎo)的腎纖維化。
Wang P等[25]在TGF-β1刺激的HK2細(xì)胞和纖維化腎臟中發(fā)現(xiàn)了lnc-TSI。在臨床實(shí)驗(yàn)中,lnc-TSI在腎組織中的表達(dá)量與腎纖維化指數(shù)呈負(fù)相關(guān)。而在首次活檢時(shí)腎臟lnc-TSI表達(dá)較低的IgA患者在平均48個(gè)月的隨訪中,腎纖維化指數(shù)較其他實(shí)驗(yàn)者增加更明顯,在重復(fù)活檢時(shí)腎功能下降也更明顯。lncRNA-TSI可特異性抑制TGF誘導(dǎo)的Smad3磷酸化和下游促纖維化基因表達(dá),通過(guò)與Smad3的MH2結(jié)構(gòu)域結(jié)合,阻斷了Smad3與TGF-受體I在Smad7上的相互作用。將lncRNA-TSI注入單側(cè)輸尿管梗阻(UUO)小鼠,可抑制腎臟中Smad3的磷酸化,并減弱腎臟纖維化。這些皆表明,lnc-TSI通過(guò)負(fù)調(diào)控TGF-/Smad通路來(lái)減少腎纖維化的發(fā)生。
綜上所述,lncRNA主要通過(guò)改變TGF-/Smad信號(hào)通路上Smad基因的表達(dá)而發(fā)揮作用,這為可成為治療腎臟纖維化疾病相關(guān)的新靶點(diǎn)。
2.3 NRF2/HO-1信號(hào)通路 ?氧化應(yīng)激發(fā)生時(shí)可誘導(dǎo)的大量細(xì)胞因子和生長(zhǎng)因子的產(chǎn)生,促進(jìn)ECM和EMT的形成。氧化應(yīng)激導(dǎo)致 Nrf2 從 Keap1 解離并導(dǎo)致 Nrf2 易位到細(xì)胞核中,與抗氧化反應(yīng)元件(antioxidant response elements,AREs)結(jié)合并導(dǎo)致含有編碼抗氧化相關(guān)酶的基因的反式激活[26],從而保護(hù)細(xì)胞損傷免受氧化應(yīng)激。HO-1是Nrf2信號(hào)通路調(diào)控的抗氧化蛋白/酶之一,HO-1主要通過(guò)阻止游離血紅素參與氧化反應(yīng)和與其酶解產(chǎn)物CO、膽紅素一起共同發(fā)揮抗氧化、抗炎、擴(kuò)張血管、改善組織微循環(huán)和抑制細(xì)胞調(diào)亡等作用[27]。Xiao X等[28]發(fā)現(xiàn)lncRNA ENST00000453774.1在TGFβ1刺激的HK-2細(xì)胞和臨床腎纖維化標(biāo)本中表達(dá)均明顯下調(diào)。在體內(nèi)實(shí)驗(yàn)中過(guò)表達(dá)lncRNA ENST00000453774.1可明顯減輕單側(cè)輸尿管梗阻引起的腎纖維化。在體外研究中發(fā)現(xiàn),過(guò)表達(dá)lncRNA ENST00000453774.1可激活Nrf2/HO 1信號(hào),通過(guò)激活生存期自噬促進(jìn)活性氧防御,通過(guò)Nrf2 /keap1信號(hào)通路緩解ECM的產(chǎn)生及沉積,明顯減輕腎纖維化。Feng X等[29]檢測(cè)到lncRNABlnc1在DN患者血清、鏈脲霉素(STZ)誘導(dǎo)的DN模型、高糖誘導(dǎo)的HK2細(xì)胞中均有較高的表達(dá)。抑制Blnc1的表達(dá)可顯著降低纖維化相關(guān)蛋白、炎癥因子和ROS的表達(dá)水平,并可通過(guò)激活NRF2 / HO-1通路和抑制NF-κB減輕炎癥和氧化應(yīng)激反應(yīng),提示Blnc1可能是通過(guò)NRF2/HO-1通路和NF-κB對(duì)炎癥、氧化應(yīng)激及腎纖維化有一定的影響。
2.4 Notch/JAG信號(hào)通路 ?既往研究發(fā)現(xiàn) Notch/JAG 信號(hào)通路可以通過(guò)炎癥、凋亡、上皮-間充質(zhì)細(xì)胞轉(zhuǎn)分化等機(jī)制在急性腎衰竭、腎間質(zhì)纖維化、糖尿病腎病、局灶節(jié)段硬化性腎小球腎炎等腎臟疾病中起重要作用[30-32]。有研究發(fā)現(xiàn)[33, 34],UUO大鼠和TGF-β1刺激的HK-2細(xì)胞中,lncRNA ?HOTAIR顯著提高,miR-124顯著降低,并呈現(xiàn)時(shí)間依賴性,同時(shí),Notch信號(hào)通路蛋白[Jagged1(JAG1),Notch1,NICD],α-SMA ,F(xiàn)N顯著增加,而鈣粘蛋白表達(dá)減少。體外研究中TGF-β1刺激的HK-2細(xì)胞中敲低HOTAIR,上述蛋白的表達(dá)則呈現(xiàn)相反趨勢(shì),然而,在敲低HOTAIR 的同時(shí)加入 miR-124抑制劑,HOTAIR敲低的作用則不在顯現(xiàn)。綜上所述,HOTAIR可以通過(guò)負(fù)調(diào)控miR-124上調(diào)Notch1,因此沉默lncRNA HOTAIR可以上調(diào)miR-124,阻斷Notch1通路,從而減輕EMT和RIF,使纖維化得到改善。
2.5 Akt/mTOR信號(hào)通路 ?有研究發(fā)現(xiàn)TGF-β1可以特異性阻斷 PTEN(第 10 染色體同源丟失性憐酸酶-張力蛋白基因)的翻譯,激活A(yù)KT/m TOR 信號(hào)通路,繼而調(diào)控細(xì)胞生長(zhǎng)、增殖、分化、遷移、凋亡等生物學(xué)作用[35]。AKT/m TOR信號(hào)通路的活化,可誘導(dǎo)腎臟纖維化的發(fā)展[36],而特異性抑制mTOR信號(hào)通路可明顯抑制實(shí)驗(yàn)動(dòng)物的腎間質(zhì)纖維化進(jìn)程[37]。Huang S等[38]發(fā)現(xiàn)在DM大鼠和高糖誘導(dǎo)的小鼠系膜細(xì)胞中l(wèi)ncRNA NEAT1顯著上調(diào),Akt/mTOR信號(hào)通路也被高度激活。下調(diào)NETA1可明顯減輕糖尿病大鼠腎臟損傷,同時(shí)也可抑制系膜細(xì)胞的增殖。在高糖誘導(dǎo)HK-2細(xì)胞中沉默NEAT1,則 TGF-β1、FN和膠原IV的表達(dá)顯著減少同時(shí)減少了Akt磷酸化和(mTOR)的表達(dá)。這些結(jié)果表明,NEAT1通過(guò)激活A(yù)kt/mTOR信號(hào)通路促進(jìn)DN的增殖和纖維化。
2.6 MAPK/ERK1/2信號(hào)通路 ?MAPK是由生長(zhǎng)因子受體介導(dǎo)的,多種外因(包括分裂素、細(xì)胞因子和生長(zhǎng)因子)作用下,MAPK/ERK1/2 信號(hào)傳導(dǎo)通路被磷酸化激活,在多種損傷修復(fù)過(guò)程中發(fā)揮著重要作用,磷酸化的ERK轉(zhuǎn)位至細(xì)胞核內(nèi),作用于下游的分子和底物(如NF-κB,p65),引起一系列細(xì)胞內(nèi)蛋白連鎖反應(yīng),促進(jìn)細(xì)胞生長(zhǎng)、增殖、凋亡、分化、粘附、遷移等過(guò)程[39]。Yang YL等[40]在實(shí)驗(yàn)中發(fā)現(xiàn)lncRNA NEAT1在牛血清白蛋白(BSA)刺激的HK2細(xì)胞和STZ誘導(dǎo)的糖尿病小鼠中均表達(dá)上調(diào)。沉默HK2細(xì)胞中NEAT1導(dǎo)致α平滑肌肌動(dòng)蛋白(α-SMA),波形蛋白(VIM),TGF-β1和結(jié)締組織生長(zhǎng)因子(CTGF)表達(dá)減少。進(jìn)一步實(shí)驗(yàn)表明,NEAT1參與HK-2細(xì)胞纖維化和EMT的形成可能是通過(guò)正向調(diào)節(jié)ERK1/2通路實(shí)現(xiàn)的,提示NEAT1是DKD纖維化潛在的治療靶點(diǎn)。Ge Y等[41]研究中發(fā)現(xiàn)高糖刺激HK-2細(xì)胞24~72 h可誘導(dǎo)細(xì)胞表達(dá)lncRNA NR_038323,過(guò)表達(dá)lncRNA NR_038323改善了高糖刺激HK-2細(xì)胞中纖維化相關(guān)蛋白的表達(dá)水平,而敲低lncRNA NR_038323則起到相反的作用。lncRNA NR_038323直接與miR-324-3p相互作用從而下調(diào)DUSP1,由此觸發(fā)了p38MAPK和ERK1/2通路的激活,這表明過(guò)表達(dá)lncRNA NR_038323可能通過(guò)miR-324-3p/DUSP1/p38MAPK和ERK1/2軸抑制高糖誘導(dǎo)的腎纖維化。
2.7 C3a/p38/XBP-1s信號(hào)通路 ?補(bǔ)體活化在慢性腎臟疾病的進(jìn)展中起重要作用,C3a可誘導(dǎo)蛋白尿腎病小管上皮向間充質(zhì)轉(zhuǎn)變[42],而p38 MAPK的激活也參與TGF-β1誘導(dǎo)的腎纖維化過(guò)程中[43]。Han R等[44]在實(shí)驗(yàn)中發(fā)現(xiàn)發(fā)現(xiàn)局灶節(jié)段性腎小球硬化(FSGS)患者腎小管細(xì)胞中LOC105375913水平升高,且在小鼠體內(nèi)實(shí)驗(yàn)中過(guò)表達(dá)LOC105375913可促進(jìn)其腎臟纖維化進(jìn)程。挽救實(shí)驗(yàn)結(jié)果表明C3a刺激小管細(xì)胞后可通過(guò)C3a/p38/XBP-1s通路誘導(dǎo)LOC105375913的表達(dá)升高, LOC105375913通過(guò)競(jìng)爭(zhēng)性結(jié)合miR-27b在FSGS患者腎小管細(xì)胞中升高了鋅指蛋白Snail的水平,Snail可促進(jìn)腎小管細(xì)胞上皮向間充質(zhì)過(guò)渡,從而誘導(dǎo)了腎小管間質(zhì)纖維化。
2.8 Sirt1/HIF-1α信號(hào)通路 ?Sirt1參與了缺氧狀態(tài)下細(xì)胞自吞噬、氧化應(yīng)激、炎癥、腎間質(zhì)纖維化及衰老的過(guò)程[45],HIF-1α是非常敏感的體內(nèi)氧含量調(diào)節(jié)及感受蛋白。臨床研究發(fā)現(xiàn),在糖尿病腎病的早期,組織就處于缺氧狀態(tài),HIF-1α水平升高。除了缺氧狀態(tài)外,應(yīng)激狀態(tài)、炎癥狀態(tài)、激素及生長(zhǎng)因子等因素也可以在不缺氧的狀態(tài)下提高HIF-1α水平,且有研究報(bào)道 Sirt1 在 HIF-1α的蛋白表達(dá)以及靶基因活化中發(fā)揮重要的作用[46]。Li A等[47]通過(guò)RNA序列分析技術(shù),在糖尿病腎病的體內(nèi)和體外模型中發(fā)現(xiàn)5條差異性表達(dá)的lncRNAs,其中1700020I14Rik表達(dá)下調(diào)。進(jìn)一步實(shí)驗(yàn)顯示,在高糖刺激的MCs中過(guò)表達(dá)1700020I14Rik可抑制細(xì)胞增殖和纖維化,而敲低該基因則取得相反結(jié)果。1700020I14Rik與miR-34a-5p之間可通過(guò)直接靶向聯(lián)系和依賴Ago2的方式相互作用。體外模型中證實(shí),過(guò)表達(dá)1700020I14Rik可通過(guò)負(fù)向調(diào)節(jié)miR-34a-5p激活Sirt1/HIF-1α通路從而抑制細(xì)胞增殖和纖維化改變。
近年來(lái)研究中,lncRNA中與腎臟纖維化相關(guān)的信號(hào)通路上的探索主要圍繞著以上幾種主要的信號(hào)通路展開(kāi),其中研究較多的是TGF-β1/Smad信號(hào)通路,而如Akt/mTOR信號(hào)通路、Notch/JAG信號(hào)通路等也是與之相關(guān)的,在其上游或者下游發(fā)揮作用。實(shí)驗(yàn)者運(yùn)用糖尿病腎病和TGF-β1誘導(dǎo)的纖維化模型較多,而lncRNAs發(fā)揮作用的主要方式是作為內(nèi)生性“海綿”與miRNA結(jié)合,調(diào)控下游靶基因的表達(dá),進(jìn)而對(duì)腎臟纖維化的發(fā)生發(fā)展產(chǎn)生影響。而通過(guò)對(duì)其的研究,為腎臟纖維化的發(fā)病機(jī)制提供了新的見(jiàn)解,也為我們治療纖維化提供新的方向。
2.9其他與腎臟纖維化相關(guān)的lncRNA ?除上述lncRNA,還有很多l(xiāng)ncRNA經(jīng)實(shí)驗(yàn)證明與腎臟纖維化相關(guān),其中促進(jìn)纖維化過(guò)程的有l(wèi)ncRNA-ATB[48]、lncRNA TCONS_00088786[49]、lncRNA-XIST[50]等;而具有抗纖維化的保護(hù)作用的有GAS5[51]、lncRNA TUG1[52]、lncRNAZEB1- AS1[53]、lncRNA ARAP1-AS2[54]等。這些lncRNAs相關(guān)的具體機(jī)制目前尚不清楚,這也為今后研究提供了新的方向。
3總結(jié)
近年來(lái),不同腎臟疾病模型中對(duì)LncRNA的研究廣泛,常見(jiàn)的幾種經(jīng)典lncRNA相關(guān)性研究也越來(lái)越深入,而對(duì)腎臟纖維化的機(jī)制研究一直都是科研界的熱點(diǎn),纖維化的機(jī)制錯(cuò)綜復(fù)雜,目前已被廣泛接受的幾條信號(hào)通路的研究也仍不完全清晰。仍需不斷改善實(shí)驗(yàn)方法,拓展科研思維,精進(jìn)對(duì)lncRNA與腎臟纖維化相關(guān)領(lǐng)域的研究,以期從中獲取治療腎臟纖維化的關(guān)鍵靶點(diǎn),使對(duì)慢性腎臟病的發(fā)生發(fā)展以及治療有新的進(jìn)步。
參考文獻(xiàn):
[1]Kour S,Rath PC.Long noncoding RNAs in aging and age-related diseases[J].Ageing Res Rev,2016(26):1-21.
[2]Jiang W,Liu Y,Liu R,et al.The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression[J].Cell Rep,2015,11(1):137-148.
[17]Puthanveetil P,Gutschner T,Lorenzen J.MALAT1:a therapeutic candidate for a broad spectrum of vascular and cardiorenal complications[J].Hypertens Res,2020,43(5):372-379.
[18]Chen W,Zhou ZQ,Ren YQ,et al.Effects of long non-coding RNA LINC00667 on renal tubular epithelial cell proliferatio, apoptosis and renal fibrosis via the miR-19b-3p/LINC00667/CTGF signaling pathway in chronic renal failure[J].Cell Signal,2019(54):102-114.
[19]Madan B,Patel MB,Zhang J,et al.Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis[J].Kidney Int,2016,89(5):1062-1074.
[20]Zhu XJ,Gong Z,Li SJ,et al.Long non-coding RNA Hottip modulates high-glucose-induced inflammation and ECM accumulation through miR-455-3p/WNT2B in mouse mesangial cells[J].Int J Clin Exp Pathol,2019,12(7):2435-2445.
[21]Meng XM,Nikolic-Paterson DJ,Lan HY.TGF-β:the master regulator of fibrosis[J].Nat Rev Nephrol,2016,12(6):325-338.
[22]Sun SF,Tang PMK,F(xiàn)eng M,et al.Novel lncRNA Erbb4-IR Promotes Diabetic Kidney Injury in db/db Mice by Targeting miR-29b[J].Diabetes,2018,67(4):731-744.
[23]Xu BH,Sheng J,You YK,et al.Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy[J].Metabolism,2020(103):154013.
[24]Feng M,Tang PM,Huang XR,et al.TGF-β Mediates Renal Fibrosis via the Smad3-Erbb4-IR Long Noncoding RNA Axis[J].Mol Ther,2018,26(1):148-161.
[25]Wang P,Luo ML,Song E,et al.Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway[J].Sci Transl Med,2018,10(462):eaat2039.
[26]Kongpetch S,Kukongviriyapan V,Prawan A,et al.Crucial Role of Heme Oxygenase-1 on the Sensitivity of Cholangiocarcinoma Cells to Chemotherapeutic Agents[J].PLoS One,2012,7(4):e34994.
[27]Dudas PL,Argentieri RL,F(xiàn)arrell FX.BMP-7 fails to attenuate TGF-beta1-induced epithelial-to-mesenchymal transition in human proximal tubule epithelial cells[J].Nephrol Dial Transplant,2009,24(5):1406-1416.
[28]Xiao X,Yuan Q,Chen Y,et al.LncRNA ENST00000453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis[J].J Cell Physiol,2019,234(6):9130-9143.
[29]Feng X,Zhao J,Ding J,et al.LncRNA Blnc1 expression and its effect on renal fibrosis in diabetic nephropathy[J].Am J Transl Res,2019,11(9):5664-5672.
[30]Zavadil J,Cermak L,SotoNieves N,et al.Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition[J].Embo Journal,2004,23(5):1155-1165.
[31]Niranjan T,Bielesz B,Gruenwald A,et al.The Notch pathway in podocytes plays a role in the development of glomerular disease[J].Nat Med,2008,14(3):290-298.
[32]Walsh DW,Roxburgh SA,McGettigan P,et al.Co-regulation of Gremlin and Notch signalling in diabetic nephropathy[J].Biochim Biophys Acta,2008,1782(1):10-21.
[33]Zhou H,Gao L,Yu ZH,et al.LncRNA HOTAIR promotes renal interstitial fibrosis by regulating Notch1 pathway via the modulation of miR-124[J].Nephrology(Carlton),2019,24(4):472-480.
[34]Zhou H,Qiu ZZ,Yu ZH,et al.Paeonol reverses promoting effect of the HOTAIR/miR-124/Notch1 axis on renal interstitial fibrosis in a rat model[J].J Cell Physiol,2019,234(8):14351-14363.
[35]Kato M,Putta S,Wang M,et al.TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN[J].Nat Cell Biol,2009,11(7):881-889.
[36]Wang S,Wilkes MC,Leof EB,et al.Noncanonical TGF-pathways,mTORC1 and Abl,in renal interstitial fibrogenesis[J].Ajp Renal Physiology,2009,298(1):F142-F149.
[37]Wu MJ,Wen MC,Chiu YT,et al.Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis[J].Kidney International,2006,69(11):2029-2036.
[38]Huang S,Xu Y,Ge X,et al.Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabetic nephropathy through activating Akt/mTOR signaling pathway[J].J Cell Physiol,2019,234(7):11200-11207.
[39]Lee MS,Chao J,Yen JC,et al.Schizandrin Protects Primary Rat Cortical Cell Cultures from Glutamate-Induced Apoptosis by Inhibiting Activation of the MAPK Family and the Mitochondria Dependent Pathway[J].Molecules,2012,18(1):354-372.
[40]Yang YL,Xue M,Jia YJ,et al.Long noncoding RNA NEAT1 is involved in the protective effect of Klotho on renal tubular epithelial cells in diabetic kidney disease through the ERK1/2 signaling pathway[J].Exp Mol Med,2020,52(2):266-280.
[41]Ge Y,Wang J,Wu D,et al.lncRNA NR_038323 Suppresses Renal Fibrosis in Diabetic Nephropathy by Targeting the miR-324-3p/DUSP1 Axis[J].Mol Ther Nucleic Acids,2019(17):741-753.
[42]Tang Z,Lu B,Hatch E,et al.C3a Mediates Epithelial-to-Mesenchymal Transition in Proteinuric Nephropathy[J].Journal of the American Society of Nephrology,2009,20(3):593-603.
[43]Sebe A,Leivonen SK,F(xiàn)intha A,et al.Transforming growth factor-beta-induced alpha-smooth muscle cell actin expression in renal proximal tubular cells is regulated by p38beta mitogen-activated protein kinase,extracellular signal-regulated protein kinase1,2 and the Smad signalling during epithelial-myofibroblast transdifferentiation[J].Nephrol Dial Transplant,2008,23(5):1537.
[44]Han R,Hu S,Qin W,et al.Upregulated long noncoding RNA LOC105375913 induces tubulointerstitial fibrosis in focal segmental glomerulosclerosis[J].Sci Rep,2019,9(1):716.
[45]杜月光,柴可夫,錢(qián)俊文,等.SIRT1通過(guò)降低NF-κBp65乙?;瘻p輕高糖應(yīng)激引起的大鼠腎小球系膜細(xì)胞損傷[J].中國(guó)病理生理雜志,2014,30(4):664-669
[46]Sun B,Yang M,Li M,et al.The microRNA-217 functions as a tumor suppressor and is frequently downregulated in human osteosarcoma[J].Biomedicine&Pharmacotherapy,2015(71):58-63.
[47]Li A,Peng R,Sun Y,et al.LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling[J].Cell Death Dis,2018,9(5):461.
[48]Zhou J,Jiang H.Livin is involved in TGF-β1-induced renal tubular epithelial-mesenchymal transition through lncRNA-ATB[J].Ann Transl Med,2019,7(18):463.
[49]Zhou SG,Zhang W,Ma HJ,et al.Silencing of LncRNA TCONS_00088786 reduces renal fibrosis through miR-132[J].Eur Rev Med Pharmacol Sci,2018,22(1):166-173.
[50]Yang J,Shen Y,Yang X,et al.Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A[J].Am J Physiol Renal Physiol,2019,317(5):F1350-F1358.
[51]Zhang L,Zhao S,Zhu Y.Long noncoding RNA growth arrest-specific transcript 5 alleviates renal fibrosis in diabetic nephropathy by downregulating matrix metalloproteinase 9 through recruitment of enhancer of zeste homolog 2[J].Faseb J,2020,34(2):2703-2714.
[52]Wang F,Gao X,Zhang R,et al.LncRNA TUG1 ameliorates diabetic nephropathy by inhibiting miR-21 to promote TIMP3-expression[J].Int J Clin Exp Pathol,2019,12(3):717-729.
[53]Wang J,Pan J,Li H,et al.lncRNA ZEB1-AS1 Was Suppressed by p53 for Renal Fibrosis in Diabetic Nephropathy[J].Mol Ther Nucleic Acids,2018(12):741-750.
[54]Li L,Xu L,Wen S,et al.The effect of lncRNA-ARAP1-AS2/ARAP1 on high glucose-induced cytoskeleton rearrangement and epithelial-mesenchymal transition in human renal tubular epithelial cells[J].J Cell Physiol,2020,235(7-8):5787-5795.
收稿日期:2020-07-01;修回日期:2020-07-21
編輯/肖婷婷