周鵬
【摘要】培養(yǎng)高中生的數(shù)學(xué)核心素養(yǎng)成為當(dāng)下高中數(shù)學(xué)教學(xué)改革、創(chuàng)新的主要方向,也是新課改發(fā)展的關(guān)鍵.若要實現(xiàn)教學(xué)任務(wù),科學(xué)、有效地導(dǎo)入非常重要.本文中,筆者結(jié)合自身的教學(xué)實踐,對本課題研究起源進行了分析,并闡述了高中數(shù)學(xué)核心素養(yǎng)的基本內(nèi)涵及影響學(xué)生核心素養(yǎng)發(fā)展的因素,說明了課堂導(dǎo)入在教學(xué)中的重要性,并深入探究了巧設(shè)課堂導(dǎo)入、落實高中數(shù)學(xué)核心素養(yǎng)的基本策略,推動學(xué)生的數(shù)學(xué)綜合能力的提升,并推動學(xué)生的全面發(fā)展與提升,從而提高高中數(shù)學(xué)教學(xué)效率.【關(guān)鍵詞】高中數(shù)學(xué);核心素養(yǎng);課堂導(dǎo)入
【基金項目】 本文系湖南省教育科學(xué)“十三五”規(guī)劃課題
《基于學(xué)科核心素養(yǎng)的高中數(shù)學(xué)課堂教學(xué)的導(dǎo)入研究與實踐》
(課題批準號:XJK20CJC085)的階段性成果
教育和樹人必須要談學(xué)生的核心素養(yǎng),除了理想、信念和道德情操之外,高中生的發(fā)展還有一些其他方面的要求.學(xué)生在成長過程中,在不同的學(xué)段,需要設(shè)計各種不同類型的教育,在這個過程中逐步形成了適應(yīng)個人終身發(fā)展和社會發(fā)展所需要的必備品格和關(guān)鍵能力,這就是我們講的核心素養(yǎng).高中數(shù)學(xué)課堂標(biāo)準明確了數(shù)學(xué)的六大核心素養(yǎng),而發(fā)展學(xué)生核心素養(yǎng)必須依靠教師的精心設(shè)計和指導(dǎo).本文立足高中數(shù)學(xué)課堂導(dǎo)入,著眼于數(shù)學(xué)核心素養(yǎng)對高中數(shù)學(xué)課堂導(dǎo)入研究與實踐進行深入說明.
一、本課題的研究起源
要想提升高中數(shù)學(xué)教學(xué)質(zhì)量,必須發(fā)揮好導(dǎo)入的作用,并抓住一切機會滲透核心素養(yǎng).高中數(shù)學(xué)的教學(xué)不僅是為了成績和升學(xué),更要幫助學(xué)生理解數(shù)學(xué)對于人們生活的意義.導(dǎo)入是課堂的開端,它對后續(xù)教學(xué)的開展起著關(guān)鍵性作用;導(dǎo)入并非簡單引出新知識,科學(xué)有效地導(dǎo)入將會帶領(lǐng)學(xué)生進入到探究數(shù)學(xué)的世界,能夠喚醒學(xué)生的學(xué)習(xí)動力.但是,通過對教師的調(diào)查和研究發(fā)現(xiàn):很多教師忽略了導(dǎo)入的藝術(shù),并未深入挖掘?qū)敕椒?,以至于無法順利完成教學(xué)任務(wù).在這樣的教學(xué)中,根本激發(fā)不起學(xué)生的熱情,同時阻礙著教學(xué)的前行.所以,導(dǎo)入作為一節(jié)課的開始,它的價值并未在教師手中得到有效的發(fā)揮,導(dǎo)致學(xué)生學(xué)習(xí)效率低下.當(dāng)前基于核心素養(yǎng)探究數(shù)學(xué)課堂導(dǎo)入的還很少,為此,探究數(shù)學(xué)課堂導(dǎo)入和數(shù)學(xué)核心素養(yǎng)的結(jié)合有著深遠的意義,可以為教師的教學(xué)起到一定的參考作用.
二、課堂導(dǎo)入的重要性
課堂導(dǎo)入是教師采取有效的策略和方法,讓學(xué)生在短時間內(nèi)融入課堂教學(xué)中.課堂導(dǎo)入的質(zhì)量決定著課堂質(zhì)量.導(dǎo)入是課堂開展的關(guān)鍵,它對能否激發(fā)學(xué)生數(shù)學(xué)熱情有著積極的影響.高中數(shù)學(xué)知識自身的抽象性、思維性對學(xué)生提出了很高的要求,而枯燥的內(nèi)容、單一的教學(xué)方法讓學(xué)生對數(shù)學(xué)失去了興趣和耐心,以至于學(xué)生的數(shù)學(xué)成績不斷下降.而有效地導(dǎo)入不僅可以喚醒學(xué)生內(nèi)在動力,還能活躍課堂氣氛,提高學(xué)生的課堂參與度,為后續(xù)教學(xué)的順利開展打下堅實的基礎(chǔ).核心素養(yǎng)在高中數(shù)學(xué)教學(xué)中的融入、發(fā)展對導(dǎo)入提出了新要求,教師在備課中必須要從數(shù)學(xué)任務(wù)、高中生年齡特點及數(shù)學(xué)學(xué)情出發(fā),采取有效的導(dǎo)入方法,將發(fā)展學(xué)生數(shù)學(xué)核心素養(yǎng)的目標(biāo)落實到教學(xué)中去,并從根本上提升學(xué)生的數(shù)學(xué)能力.
三、核心素養(yǎng)的基本內(nèi)涵
早在2014年,教育部便頒發(fā)了教學(xué)課程改革文件,并且明確了核心素養(yǎng)的基本內(nèi)涵,號召廣大教師從傳統(tǒng)學(xué)科知識中解脫出來,注重對學(xué)生數(shù)學(xué)品質(zhì)和能力的發(fā)展.為此,高中數(shù)學(xué)教學(xué)必須落實到思考、體驗、表達教育三大方面.思考教育即通過數(shù)學(xué)教師的有效教學(xué)推動學(xué)生的深入分析和思考,促使學(xué)生形成良好的學(xué)習(xí)習(xí)慣;體驗教育即引導(dǎo)學(xué)生經(jīng)歷和體驗數(shù)學(xué)知識的形成過程,學(xué)生只有真正經(jīng)歷數(shù)學(xué)知識的產(chǎn)生過程,才能體會正確學(xué)習(xí)方法,從而在解題中獲得思維的發(fā)散和提升;表達教育就是為學(xué)生預(yù)留時間和空間,引導(dǎo)學(xué)生以小組方式開展交流、合作,并對解題思路進行闡述,其他同學(xué)和教師做好補充.總之,學(xué)生數(shù)學(xué)核心素養(yǎng)的形成始于學(xué)生的思考和體驗,終于學(xué)生的自我表達.
四、影響學(xué)生核心素養(yǎng)發(fā)展的因素
(一)教師教的視角
教師視角下影響學(xué)生核心素養(yǎng)發(fā)展的因素有三個:教學(xué)思想,即尊重班級的每一名學(xué)生,公平對待每一名同學(xué),為他們提供展示自己的平臺.教學(xué)目標(biāo),用過硬的專業(yè)知識、調(diào)控數(shù)學(xué)課堂的能力,推動教學(xué)的有序開展.教學(xué)能力,活躍課堂氛圍,促使學(xué)生積極主動參與到課堂中,以實現(xiàn)教學(xué)各個環(huán)節(jié)的有限銜接.
(二)學(xué)生學(xué)的視角
學(xué)生在學(xué)習(xí)中表現(xiàn)出來的一系列行為是影響他們核心素養(yǎng)發(fā)展的根本因素.在高中數(shù)學(xué)課堂中,要關(guān)注學(xué)生如下幾個方面:(1)學(xué)生的學(xué)習(xí)興趣.學(xué)生對數(shù)學(xué)知識的喜歡程度,對課堂提問的思考力和創(chuàng)新力.(2)學(xué)習(xí)方法.學(xué)生是否能夠積極主動參與到課堂交流中,是否會保質(zhì)保量地完成課前預(yù)習(xí)和課后復(fù)習(xí),是否可以真正參與到小組合作中.(3)學(xué)習(xí)素養(yǎng).學(xué)生是否明確了自身的學(xué)習(xí)目標(biāo),是否針對疑惑問題主動和教師交流,是否做好了課后反思.
(三)數(shù)學(xué)學(xué)科視角
高中數(shù)學(xué)是一門集抽象性、邏輯性于一體的學(xué)科,數(shù)學(xué)課程結(jié)構(gòu)安排合理,教學(xué)體系完整.教師要從教材出發(fā),采取多樣化的教學(xué)方法.
五、巧妙設(shè)計課堂導(dǎo)入,落實高中數(shù)學(xué)核心素養(yǎng)的基本策略
(一)數(shù)學(xué)史學(xué)導(dǎo)入,激發(fā)學(xué)生愛國情感
數(shù)學(xué)史學(xué)導(dǎo)入是基于數(shù)學(xué)概念、定理導(dǎo)入的一種方法,即在教學(xué)課堂為學(xué)生闡述數(shù)學(xué)知識背景,通過對史學(xué)回顧導(dǎo)入本節(jié)內(nèi)容.數(shù)學(xué)史學(xué)導(dǎo)入不僅可以喚醒學(xué)生熱情,還能增強學(xué)生愛國情感.數(shù)學(xué)史學(xué)就是一部發(fā)展的數(shù)學(xué)史,它涵蓋了數(shù)學(xué)家的思想、故事,對學(xué)生數(shù)學(xué)觀念的形成有著極大作用.
比如,在講解平面向量的時候,教師可以為學(xué)生介紹《孫子算經(jīng)》這部中國古代數(shù)學(xué)巨著,并為學(xué)生展示古代人民用算籌計算的方法,體現(xiàn)古人的智慧.通過數(shù)學(xué)史學(xué)的導(dǎo)入,教師可以趁此機會融入愛國主義教育:我國是有著悠久歷史的國家,歷史上,我國數(shù)學(xué)家都是我們學(xué)習(xí)和奮斗的榜樣.再如:大約公元前350年,古希臘著名學(xué)者亞里士多德就知道了力可以表示成向量,兩個力的組合作用可用著名的平行四邊形法則來得到,而最先使用向量表示線段的來自英國科學(xué)家牛頓.平面向量是什么?有什么意義?今天老師就和大家一起學(xué)習(xí).利用數(shù)學(xué)史實導(dǎo)入知識的方法可以讓學(xué)生在好奇心的指引下,進入到知識的學(xué)習(xí)中.在數(shù)學(xué)新課的講授中,教師不必立刻出示文章主題,可以先引入一個和文本相關(guān)的數(shù)學(xué)歷史或故事,讓學(xué)生在好奇心的帶動下進入到新知識的學(xué)習(xí)中,進而自主探究答案.
(二)生活實例導(dǎo)入,激發(fā)學(xué)生求知欲望
生活實例導(dǎo)入指的是用學(xué)生熟知的生活例子引出數(shù)學(xué)知識,在教學(xué)情境的構(gòu)建下、在教師的提問中勾起學(xué)生回憶.生動、形象的生活實例可以幫助學(xué)生理解抽象的數(shù)學(xué)知識.利用生活實例導(dǎo)入數(shù)學(xué)內(nèi)容是一種從感性材料到理性思維上升的教學(xué)方法,它立足實踐,可以激發(fā)起學(xué)生內(nèi)心的求知欲望.數(shù)學(xué)是一門生活學(xué)科,用學(xué)生熟知甚至自身經(jīng)歷過的例子導(dǎo)入課堂知識,可以讓學(xué)生的思維在數(shù)學(xué)情境中得以發(fā)散,從而提高學(xué)生的課堂參與度.
比如,在引出“集合概念”的時候,教師可以設(shè)置如下問題:同學(xué)們,大家好,很開心今天我們可以聚集在這里.緣分讓我們聚集到了一起,成了一個大的集合體,這個集合體就是集合,那么它的特征是什么?有哪些性質(zhì)呢?由此引入集合的概念.
(三)類比導(dǎo)入,實現(xiàn)學(xué)生知識的真正遷移
類比是一種強化新舊知識聯(lián)系的教學(xué)方法,它立足兩個數(shù)學(xué)知識點,引導(dǎo)學(xué)生尋求異同點,并在分析、判斷中掌握這部分知識.由此,類比也是被廣泛應(yīng)用于科學(xué)研究中的方法,而數(shù)學(xué)的概念、定理多是在類比中得到的.為此,在導(dǎo)入新課的時候,教師可以結(jié)合教學(xué)內(nèi)容有選擇地應(yīng)用類比方法.
比如,在教學(xué)“三元一次方程組”這節(jié)內(nèi)容的時候,教師可以設(shè)置如下導(dǎo)入內(nèi)容:經(jīng)過前面的學(xué)習(xí),大家對二元一次方程組以及求解方法有了深入的了解,三元一次方程組和求解方法與二元一次方程組是同理的情況.教師指導(dǎo)學(xué)生親身求解三元一次方程組的解,讓學(xué)生對“消元”“代入法”獲得更深的感悟,并在課堂總結(jié)中深層次地闡述三元一次方程組的概念,幫助學(xué)生真正掌握這部分知識.
(四)轉(zhuǎn)化導(dǎo)入,掌握新知
轉(zhuǎn)化導(dǎo)入就是將學(xué)生陌生的知識轉(zhuǎn)化為他們熟悉的知識,實現(xiàn)兩者的深度融合,如此,新問題便可以輕松解決.比如,在學(xué)習(xí)“直線與平面平行的判定”這節(jié)內(nèi)容的時候,教師出示教學(xué)例題:請同學(xué)們將一本書放置于桌面上,翻動書的封面,觀察封面邊緣所在直線l與桌面所在平面具有怎樣的位置關(guān)系,桌面內(nèi)有與l平行的直線嗎?教師解析例題:前面已經(jīng)學(xué)過直線與平面位置的關(guān)系,今天我們要探討的內(nèi)容便是——直線與平面平行的判定.
(五)趣味導(dǎo)入,提高學(xué)生課堂參與度
數(shù)學(xué)小實驗、小故事都是有效課堂導(dǎo)入的方法,可以讓學(xué)生在輕松、愉悅的氛圍中完成學(xué)習(xí),對激發(fā)學(xué)生興趣、提高學(xué)生課堂參與度有著積極的意義.要想提高學(xué)生的課堂參與度,就要摒棄直接拋出答案給學(xué)生的方法,讓他們經(jīng)歷知識的形成,嘗試思維從量變到質(zhì)變的飛躍.動手操作是學(xué)生非常喜歡的一項數(shù)學(xué)活動,在實際操作中可以激發(fā)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣.正所謂“紙上得來終覺淺,絕知此事要躬行”,讓學(xué)生親自動手操作,不僅可以深化學(xué)生對知識的理解,而且能深深印刻在學(xué)生的腦海中.所以,在數(shù)學(xué)課堂導(dǎo)入環(huán)節(jié),教師要鼓勵學(xué)生動手操作,在動手操作中提高自身的實踐能力.
比如,在教學(xué)“隨機事件的概率”這節(jié)數(shù)學(xué)內(nèi)容的時候,教師可以事先準備好硬幣,在課堂上讓學(xué)生親自測驗隨機事件的概率,由于經(jīng)過反復(fù)的投擲、記錄,學(xué)生發(fā)現(xiàn):隨著投擲次數(shù)的增多,正反面出現(xiàn)的概率越來越接近.由此,激發(fā)起學(xué)生強烈的求知欲望,隨后教師引出本節(jié)課題.
(六)懸念導(dǎo)入,喚醒學(xué)生探究數(shù)學(xué)知識的欲望
所謂懸念導(dǎo)入指的是教師在出示教學(xué)新知識之前,從高中生好奇心出發(fā),設(shè)置一系列數(shù)學(xué)問題,以喚醒學(xué)生探究欲望.懸念導(dǎo)入也可以稱為認知矛盾方法.大量的教學(xué)實踐表明:學(xué)生思維的發(fā)展源于疑問,從問題出發(fā),引發(fā)學(xué)生的分析和思考,在對問題的思考中提出新的問題,由此往復(fù),幫助學(xué)生理解知識.高中階段的學(xué)生具有強烈的探究欲望,在認知矛盾中他們會想盡一切辦法探究奧秘,得到滿足.
在導(dǎo)入環(huán)節(jié),好的問題就如同投石問路,可以激發(fā)學(xué)生思維,可以促使學(xué)生調(diào)用所學(xué)知識對新問題展開思考,在得到正確答案之后,他們會獲得心理上的滿足,進而產(chǎn)生繼續(xù)探索的欲望.懸念導(dǎo)入就是將數(shù)學(xué)課堂以問題的方式來開展,通過一系列問題實現(xiàn)傳授學(xué)生新知的目的.教師如果能夠從學(xué)生身心特征、教學(xué)內(nèi)容出發(fā),設(shè)置出具有啟發(fā)性、思考性的問題,那么便可以激起學(xué)生思維的浪花.
結(jié)束語
綜上所述,導(dǎo)入方法并不固定,教學(xué)對象、內(nèi)容不同,選擇導(dǎo)入的方法也存在很大差異.高中數(shù)學(xué)課堂導(dǎo)入方法的根本在于達到溫故知新的目的,即在復(fù)習(xí)舊知識的基礎(chǔ)上引入新知識,以幫助學(xué)生深入理解和掌握.基于核心素養(yǎng)的課堂導(dǎo)入,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且培養(yǎng)了學(xué)生愛國情感,提高了學(xué)生探究知識的欲望,推動了學(xué)生的深入學(xué)習(xí)和發(fā)展.所以,在日后教學(xué)中,教師要深入了解學(xué)生、深入理解數(shù)學(xué)內(nèi)容,由此確定導(dǎo)入方法,推動教學(xué)的有序開展.
【參考文獻】
[1]唐林茂.高中數(shù)學(xué)教學(xué)中落實學(xué)科核心素養(yǎng)的研究與實踐[J].讀天下:綜合,2020(11):6.
[2]岳峻,羅建宇.例談數(shù)學(xué)核心素養(yǎng)如何落實在課堂[J].中學(xué)數(shù)學(xué)(高中版),2017(13):43-46.
[3]朱文澤.例談數(shù)學(xué)核心素養(yǎng)如何落實在課堂:以“一元二次方程的解法”為例[J].文理導(dǎo)航,2019(03):20-21.
[4]施響勇.基于核心素養(yǎng),深化課堂導(dǎo)入[J].數(shù)學(xué)教學(xué)通訊:高中版,2019(21):76-77.
[5]周艷陽,戴雯虹,李佳玲,等.基于數(shù)學(xué)核心素養(yǎng)的初中數(shù)學(xué)課堂導(dǎo)入方法的研究[J].考試周刊,2019(76).
[6]趙陽.基于核心素養(yǎng)的初中數(shù)學(xué)課堂教學(xué)導(dǎo)入途徑研究[J].
上海中學(xué)數(shù)學(xué),2018(05):29-31.
[7]楊海波.基于核心素養(yǎng)高中數(shù)學(xué)課堂導(dǎo)入的案例分析與思考[J].師道·教研,2019(06):132-133.
[8]蔣春麗.核心素養(yǎng)背景下的小學(xué)數(shù)學(xué)課堂導(dǎo)入教學(xué)思考:以“用計算器探索商不變的規(guī)律”教學(xué)導(dǎo)入為例[J].數(shù)學(xué)教學(xué)通訊,2019(28):28-29.
[9]郭利娟.淺談初中數(shù)學(xué)課堂教學(xué)中如何落實數(shù)學(xué)核心素養(yǎng)[J].新一代:理論版,2019(09):52.