司燕
摘 ?要:文章探討了當(dāng)前復(fù)習(xí)課教學(xué)的現(xiàn)狀,并針對當(dāng)前復(fù)習(xí)課中的不足,研究者提出了以下教學(xué)策略引導(dǎo)學(xué)生參與復(fù)習(xí)課教學(xué),提升數(shù)學(xué)素養(yǎng):串聯(lián)知識點(diǎn),抓住知識生長點(diǎn);梳理知識網(wǎng),建構(gòu)知識網(wǎng)絡(luò);挖掘“知識源”,拉長思維鏈。
關(guān)鍵詞:小學(xué)數(shù)學(xué);復(fù)習(xí)課;知識網(wǎng)絡(luò)
一、問題提出
數(shù)學(xué)復(fù)習(xí)課的課型眾多,有習(xí)題課、講評課、專題課等,盡管其呈現(xiàn)了多樣化的特征,但其本質(zhì)是一致的,就是為了達(dá)到培養(yǎng)學(xué)生能力的目的。從以上觀點(diǎn)著手來看,廣大教育工作者可以拋開形式的外衣,剝離表面的模式,牢牢把握其本質(zhì),也就是以能力的培養(yǎng)為立意,借助恰當(dāng)?shù)淖ナ郑瑢虒W(xué)內(nèi)容和教學(xué)策略進(jìn)行深加工,實(shí)現(xiàn)有效教學(xué) [1]。就小學(xué)數(shù)學(xué)復(fù)習(xí)課而言,在有效教學(xué)的指導(dǎo)下該如何建設(shè)呢?筆者經(jīng)過多年對小學(xué)復(fù)習(xí)課的追蹤和調(diào)查,認(rèn)為需從課堂教學(xué)立意入手開展教學(xué)。下面筆者對此進(jìn)行了分析與實(shí)踐,現(xiàn)將其整理成文,與同仁分享。
二、復(fù)習(xí)課教學(xué)現(xiàn)狀
復(fù)習(xí)課教學(xué)在小學(xué)數(shù)學(xué)教學(xué)中占據(jù)著極其重要的地位,然長期以來,真正關(guān)注到數(shù)學(xué)復(fù)習(xí)課改革和研究的很少。在各級教學(xué)觀摩交流活動中,也甚少有教師會以復(fù)習(xí)課這一課型作為展點(diǎn),致使可以借鑒的教學(xué)經(jīng)驗(yàn)較少。
理解教學(xué)內(nèi)容是上好一節(jié)課的基礎(chǔ),復(fù)習(xí)課中一個(gè)突出的問題就是不少教師更關(guān)注到知識的重現(xiàn),卻忽視了知識的梳理,從而導(dǎo)致學(xué)生頭腦中的知識是單一的、零散的,缺少了本質(zhì)上的知識聯(lián)系,難以實(shí)現(xiàn)知識間的“串聯(lián)”。當(dāng)然,重溫故而輕知新的現(xiàn)象也不在少數(shù),再多的溫故也只能停留在記憶的層面,僅僅是回憶與練習(xí)的思維層次,缺乏感悟和知新,導(dǎo)致“低空飛行”的現(xiàn)象也就無可厚非了 [2]。另外,還存在著重預(yù)設(shè)卻輕生成的現(xiàn)象,不少教師在復(fù)習(xí)課中關(guān)注不到師生之間的交流,忽略生生互動和學(xué)生與教材的碰撞,學(xué)生在課堂中一直處于被動接受的地位,這樣一來會給剛剛接觸數(shù)學(xué)的小學(xué)生當(dāng)頭一棒,危害的不僅僅是知識的生成,更阻礙了學(xué)生思維的發(fā)展。
三、復(fù)習(xí)課的教學(xué)策略
1. 串聯(lián)知識點(diǎn),抓住知識生長點(diǎn)
在新授課中,所有的知識點(diǎn)都呈現(xiàn)“點(diǎn)狀”,復(fù)習(xí)課的首要任務(wù)就是幫助學(xué)生串聯(lián)知識點(diǎn),從而形成結(jié)構(gòu)化的知識體系。因此,筆者認(rèn)為串聯(lián)知識點(diǎn)是達(dá)成知識建構(gòu)的必要條件,所以高效的復(fù)習(xí)課,首先需從基礎(chǔ)入手,創(chuàng)設(shè)有效情境串聯(lián)知識點(diǎn),在認(rèn)知沖突中激發(fā)學(xué)生的思維節(jié)點(diǎn),回憶舊知并加以鞏固,實(shí)現(xiàn)知識的生長。
案例1:以“長方體與正方體”的整理和復(fù)習(xí)為例。
師:老師最近想養(yǎng)幾條金魚,所以現(xiàn)需要一個(gè)金魚缸,你們覺得我該選哪些材料來制作金魚缸呢?
生1:玻璃、不銹鋼等。
師:從這個(gè)問題中,你們想到了哪些已學(xué)知識呢?
生2:我想到了這個(gè)金魚缸最好是長方體的,長方體一共有6個(gè)面、8個(gè)頂點(diǎn)、12條棱……
師:非常好,經(jīng)測量,老師家的客廳只能放下一個(gè)長2米、寬0.6米、高1米的金魚缸,那材料該如何買呢?
生3:可以買玻璃……不銹鋼……
師:至此,大家又聯(lián)想到了哪些知識呢?
生4:一個(gè)長方體的相對面完全相同,且相對的棱長相等。
生5:我回憶起長方體表面積的計(jì)算公式以及棱長總和的計(jì)算方法。
師:非常好。那我們還可以計(jì)算這個(gè)金魚缸的什么呢?
生6:容積以及水的體積……
本案例中,教師巧妙地通過一個(gè)生活情境,有利于學(xué)生的鞏固。知識點(diǎn)的回憶和整合是在學(xué)生的參與下形成的,使學(xué)生有了充分的體驗(yàn)和感悟,實(shí)現(xiàn)了知識點(diǎn)的有效串聯(lián),整節(jié)課在師生互動和生生交流中達(dá)到了預(yù)期的復(fù)習(xí)效果。教學(xué)實(shí)踐證明,單純的知識學(xué)習(xí)是非??菰锏?,若以適宜的情境輔以教學(xué),則可以讓復(fù)習(xí)課的枯燥無味蕩然無存,引導(dǎo)學(xué)生用數(shù)學(xué)的觀點(diǎn)觀察問題,真正意義上跨入復(fù)習(xí)的情境之中,最終發(fā)現(xiàn)、提出和解決問題,有利于學(xué)生已學(xué)知識的鞏固,也有助于學(xué)生素養(yǎng)的發(fā)展。
2. 梳理知識網(wǎng),建構(gòu)知識網(wǎng)絡(luò)
復(fù)習(xí)課還需注重到知識的梳理和總結(jié),注重統(tǒng)領(lǐng)知識脈絡(luò),打通知識點(diǎn)間的關(guān)聯(lián),讓學(xué)生在舊知的復(fù)習(xí)中找尋到知識的“生長點(diǎn)”和“延伸點(diǎn)”,從而不斷地完善和優(yōu)化已有認(rèn)知結(jié)構(gòu),建構(gòu)知識網(wǎng)絡(luò) [3]。
案例2:以“平面圖形的面積”的整理和復(fù)習(xí)為例。
師:我們一起來回憶一下已學(xué)過的平面圖形的面積計(jì)算公式有哪些。
生1:有三角形、正方形、圓、梯形……
師:誰能回憶起我們最先學(xué)的是什么圖形的面積計(jì)算公式呢?
生2:長方形。
師:這是為什么呢?
生3:因?yàn)樗拿娣e計(jì)算公式最簡單、最好記。
生4:不對,是因?yàn)檎叫巍A、平行四邊形的面積計(jì)算公式都是從它的基礎(chǔ)上進(jìn)行推導(dǎo)而得的,以此為生長,再從平行四邊形的面積計(jì)算公式中進(jìn)一步推導(dǎo)得出三角形和梯形的面積計(jì)算公式。
生5:以上六種平面圖形都是緊密相關(guān)的,都是從長方形面積公式中生長出來的。
師:非常好!既然它們之間有著如此密切的聯(lián)系,那大家是否可以用思維導(dǎo)圖描述出它們之間的關(guān)系呢?下面,請小組合作畫一畫,并基于思維導(dǎo)圖進(jìn)行交流。
生6:圖1為我們小組畫的思維導(dǎo)圖,它清晰地展示了推導(dǎo)過程,如長方形的面積計(jì)算公式是借助數(shù)方格實(shí)現(xiàn)的,其他的圖形正如生4所說的形式推導(dǎo)而形成的。
生7:圖2是我們小組的畫法。事實(shí)上,一些三角形和梯形的面積計(jì)算公式也可以通過長方形推導(dǎo)而形成,所以我們有了這種畫法。
生8:我們小組的思路與生6一樣,不過我們的圖示卻有些不同,我們所畫的圖形是豎起來的。每學(xué)習(xí)一種新圖形的面積計(jì)算,我們都會把它轉(zhuǎn)化為已學(xué)圖形,進(jìn)一步推導(dǎo)得出其面積計(jì)算公式。
師:剛才每組的思路都很精彩!這里用到了一種非常重要的思想方法——轉(zhuǎn)化,它是數(shù)學(xué)知識學(xué)習(xí)時(shí)必不可少的思想方法。我們一起來看,我們整理出來的是一個(gè)什么圖形呢?
生9:是一棵樹。
師:這是一棵多么生動的知識樹,而長方形是所有圖形的根基,圖形間緊密相連……
從生長理念引導(dǎo)學(xué)生去實(shí)例、去歸納,并立足小組合作輔以思維導(dǎo)圖的形式,使知識結(jié)構(gòu)化、網(wǎng)絡(luò)化,同時(shí)讓學(xué)生充分感悟數(shù)學(xué)思想方法,有助于思維由低階向著高階轉(zhuǎn)化。
3. 挖掘“知識源”,拉長思維鏈
數(shù)學(xué)教學(xué)需關(guān)注到知識的來源,即知識的形成過程,從而幫助學(xué)生理清知識本質(zhì),挖掘出數(shù)學(xué)知識的內(nèi)涵和外延,拉長思維鏈,拓展學(xué)生的思維,實(shí)現(xiàn)再發(fā)現(xiàn)和再創(chuàng)造。
案例3:以“百分?jǐn)?shù)”的整理和復(fù)習(xí)為例。
生1:老師,100%=1嗎?
師:是啊。
生1:可廣告中為什么說“百分之百的好?!保瑓s不說“1的好?!薄?/p>
生2:肯定不能這樣說,“百分之百的好?!笔侵傅倪@些牛都是好牛,那“1的好?!本蜎]這個(gè)意思了。
師:那大家認(rèn)為這里100%和1完全相同嗎?
生3:我認(rèn)為二者不完全相同,100%是指一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾,所闡釋的是兩個(gè)數(shù)之間的關(guān)系,而1沒有這個(gè)意思。
生4:生3說得對,其實(shí)不僅僅是100%,任意百分?jǐn)?shù)都是指一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾。
……
開放式的復(fù)習(xí)流暢為學(xué)生提供了一個(gè)有效的思辨說理的過程,一方面,明晰了百分?jǐn)?shù)的意義,由意義延伸為重點(diǎn)的認(rèn)知;另一方面,理清了百分?jǐn)?shù)、整數(shù)和分?jǐn)?shù)之間的區(qū)別,建立了知識間的聯(lián)結(jié),拉長了思維鏈。
總之,要想使復(fù)習(xí)課真正上出實(shí)效,需要廣大數(shù)學(xué)教師努力在自覺的教學(xué)實(shí)踐活動中不斷探究,認(rèn)識學(xué)生的學(xué)習(xí)意義,認(rèn)識教師的價(jià)值,靈活選用教學(xué)策略,才能讓學(xué)生的思維深入且發(fā)散,讓復(fù)習(xí)課自然而有效。
參考文獻(xiàn):
[1] ?張奠宙,張蔭南. 新概念:用問題驅(qū)動的數(shù)學(xué)教學(xué)[J]. 高等數(shù)學(xué)研究,2004(05).
[2] ?蘭衍局. “溫故”而后方能“知新”——小學(xué)數(shù)學(xué)整理復(fù)習(xí)課教學(xué)的實(shí)踐與思考[J]. 小學(xué)數(shù)學(xué)教育,2004(01).
[3] ?鄭良. 夯基固本構(gòu)系統(tǒng) ?溯源納新謀優(yōu)化——例談高三數(shù)學(xué)復(fù)習(xí)中試卷講評的探索與思考[J]. 高中數(shù)學(xué)教與學(xué),2018(03).