程環(huán)宇 李斯明 孟慶奇 王敏
【摘要】 骨性關(guān)節(jié)炎(OA)在以往一直被認為是非炎癥性關(guān)節(jié)疾病,但最近的研究發(fā)現(xiàn)在OA患者的關(guān)節(jié)液和組織中可以觀察到炎癥跡象。此外,炎癥機制被認為是促進OA進展的風險因素。在人類中觀察到的炎癥的特定方面,包括細胞因子和趨化因子的產(chǎn)生、滑膜反應(yīng)、細胞浸潤和炎癥通路激活,也在許多動物模型中觀察到。在動物模型和檢索到的人體組織中進行的研究表明,促炎因子可能由軟骨細胞本身或滑膜和其他周圍組織產(chǎn)生,并激活炎癥通路,導(dǎo)致正常的關(guān)節(jié)軟骨細胞遭到破壞并經(jīng)歷表型轉(zhuǎn)變,導(dǎo)致關(guān)節(jié)內(nèi)平衡的破壞,最終導(dǎo)致炎癥和分解代謝基因的異常表達。本文將側(cè)重講述在OA的產(chǎn)生及進展中出現(xiàn)的炎癥變化以及相關(guān)細胞因子及炎癥因子與OA的發(fā)病機制及進展的聯(lián)系。
【關(guān)鍵詞】 骨性關(guān)節(jié)炎 白細胞 炎癥反應(yīng) 炎癥因子
[Abstract] Osteoarthritis (OA) has previously been considered a non-inflammatory joint disease, but recent studies have found that signs of inflammation can be observed in the joint fluid and tissues of patients with OA. In addition, inflammatory mechanisms are considered to be risk factors promoting OA progression. Specific aspects of inflammation observed in humans, including the production of cytokines and chemokines, synovial response, cell infiltration, and activation of inflammatory pathways, have also been observed in many animal models. In animal models and in the tissues of the retrieved studies have shown that proinflammatory factor may be itself or by cartilage cells synovial membrane and other surrounding tissues, and activation of inflammation, causing damage to normal articular cartilage cells and phenotypic changes, resulting in destruction of intra-articular balance, eventually lead to inflammation and abnormal expression of catabolic gene. This paper will focus on the inflammatory changes in the production and progress of OA and the relationship between related cytokines and inflammatory factors and the pathogenesis and progress of OA.
骨關(guān)節(jié)炎是一種世界范圍內(nèi)發(fā)病率較高的肌肉骨骼疾病,目前正逐漸成為一種世界性的疾病,嚴重的公共衛(wèi)生風險,骨關(guān)節(jié)炎的發(fā)病率在40歲之前較低,在40~60歲迅速增加,60歲以后呈線性增加[1]。骨關(guān)節(jié)炎作為一種不可逆轉(zhuǎn)的慢性疾病,在病理生理學上有兩個主要特點,一是關(guān)節(jié)軟骨的損傷,另一個是軟骨下骨硬化[2]。在OA的發(fā)病機制中,整個關(guān)節(jié)的退化,包括關(guān)節(jié)軟骨、韌帶、軟骨下骨和關(guān)節(jié)周圍肌肉,是由機械力、結(jié)構(gòu)和信號通路的組合引起的[3]。以往將骨性關(guān)節(jié)炎歸類于非炎癥性關(guān)節(jié)疾病,但近來各種研究表明,各種免疫細胞、促炎細胞因子、補體等免疫系統(tǒng)各部分在骨關(guān)節(jié)炎發(fā)病過程中起著至關(guān)重要的作用[4]。在骨關(guān)節(jié)炎的發(fā)展過程中,關(guān)節(jié)組織的炎癥包括細胞因子的產(chǎn)生、細胞的低級別浸潤、滑膜細胞、關(guān)節(jié)軟骨細胞等關(guān)節(jié)細胞的炎癥活化[5]。在這篇綜述中,我們將重點放在最近的一些研究上,這些研究提高了目前關(guān)于炎癥與OA的發(fā)病及進展的聯(lián)系以及炎癥如何影響臨床特征的知識,以及涉及的炎癥機制。這些炎癥機制可能影響臨床試驗患者的分層以及未來骨關(guān)節(jié)炎治療的選擇。參考文獻包括突出共同的主題,跨越臨床和基礎(chǔ)科學。
1 滑膜炎與骨性關(guān)節(jié)炎
炎癥作為OA的一個重要因素,與軟骨損失的進展和OA的臨床癥狀,包括關(guān)節(jié)疼痛、腫脹、僵硬以及炎癥指標密切相關(guān)[6]?;ぱ祝▎魏思毎櫟交ず痛傺捉橘|(zhì)的生產(chǎn),在這些炎癥介質(zhì)中,包括白介素-1β(IL-1β)、腫瘤壞死因子-α(TNF-α)和趨化因子,在早期和晚期疾病很常見[6]。骨關(guān)節(jié)炎滑膜液樣本中可檢測到MMP-1、MMP-3、MMP-13、半胱氨酸組織蛋白酶B、S以及IL-6,雖然水平明顯低于類風濕關(guān)節(jié)炎(RA)患者,但卻高于健康的關(guān)節(jié)滑膜及組織[7]?;しe液可通過磁共振成像(MRI)或超聲在關(guān)節(jié)內(nèi)顯示[8]。MRI顯示半月板損傷與滑膜積液的關(guān)系。在創(chuàng)傷性半月板損傷的患者中,沒有骨關(guān)節(jié)炎的影像學證據(jù),關(guān)節(jié)鏡下半月板切除術(shù)時滑膜經(jīng)常發(fā)炎,炎癥評分的增加與疼痛和功能障礙的增加以及獨特的趨化因子有關(guān)[9]。
流行病學研究也證實,前交叉韌帶(ACL)斷裂與隨后發(fā)生骨關(guān)節(jié)炎的風險之間有很強的關(guān)系。急性ACL損傷后,受影響膝關(guān)節(jié)滑膜液中炎癥和膠原蛋白丟失的生物標志物水平高于血清[10],提示低級別滑膜炎反映的是創(chuàng)傷后早期臨床前疾病,可能會影響遠期療效[11]。與早期關(guān)節(jié)鏡檢查的內(nèi)側(cè)半月板損傷后的骨關(guān)節(jié)炎患者和晚期全關(guān)節(jié)置換術(shù)患者相比,健康個體中含有豐富的滑膜液蛋白組,具有明顯的特征,這也支持了滑膜炎相關(guān)基因在OA中過表達的觀點[12]。
2 關(guān)節(jié)炎中的白細胞浸潤
影像學上定義的滑膜炎可反映多種組織病理學特征,包括白細胞增多或滑膜增厚和纖維化。外周白細胞異常已被報道,可能反映局部或全身炎癥[13]。許多研究人員已經(jīng)開始評估骨關(guān)節(jié)炎中白細胞的性質(zhì)和活性。這一領(lǐng)域的工作剛剛開始,但需要充分了解免疫反應(yīng)對疾病的影響。
在近期一項研究中,與健康對照組相比,114例骨關(guān)節(jié)炎患者外周血白細胞(PBLs)的近期表型顯示,CD8+細胞比例在骨關(guān)節(jié)炎中增加,尤其是在記憶或炎癥亞群中[14]。在這項研究中發(fā)現(xiàn),健康對照組的T淋巴細胞隨年齡增長而減少,但在膝關(guān)節(jié)骨性關(guān)節(jié)炎患者中沒有觀察到這種情況,這表明疾病過程發(fā)生了改變。雖然T淋巴細胞亞群增多在骨關(guān)節(jié)炎中的意義需要進一步評估,但在CD4[15]和CD8缺陷小鼠[16]的外科誘導(dǎo)模型中至少有一組小鼠的發(fā)病率有所降低。另一項最近的研究報告顯示,三組膝關(guān)節(jié)骨性關(guān)節(jié)炎患者的PBL炎癥活動增加[17]。在這項研究中,血漿中花生四烯酸代謝物前列腺素E2(PGE2)和15-羥基二十酸作為炎癥的脂質(zhì)介質(zhì),在鑒別有癥狀的膝關(guān)節(jié)骨性關(guān)節(jié)炎患者和對照組中顯示出了作用。環(huán)氧化酶-2(COX-2)是花生四烯酸代謝的關(guān)鍵酶,其PBL表達與關(guān)節(jié)間隙在2年內(nèi)逐漸縮小有關(guān)。這些結(jié)果很有意義,但需要重復(fù)驗證,特別是在“放射前”疾病中,識別活動性炎癥為關(guān)節(jié)疼痛的原因可能很困難。
骨關(guān)節(jié)炎滑膜液中的細胞計數(shù)被歸為“非炎癥性”,但可以變化超過10倍(<100~2 000個細胞/ml)。一份新報告顯示,膝關(guān)節(jié)滑膜液白細胞計數(shù)與MRI上滑膜體積相關(guān),并可能預(yù)測關(guān)節(jié)內(nèi)皮質(zhì)類固醇注射的癥狀反應(yīng)[18]。如果這些結(jié)果可以在更大的人群中復(fù)制,滑膜液白細胞計數(shù)可以提供一個有效的炎癥指標,指導(dǎo)靶向應(yīng)用抗炎治療。
最近的兩項研究[19-20]采用流式細胞術(shù)研究滑膜浸潤;兩者都發(fā)現(xiàn)CD4+巨噬細胞最為豐富,其次是CD4+T淋巴細胞。在第二項研究中[20],一小部分患者的疼痛評分與滑膜CD4+細胞比例相關(guān),表明T細胞浸潤在骨關(guān)節(jié)炎疼痛中的作用,需要進一步研究。第二項研究[20]報道了髕下脂肪墊(IFP)的類似浸潤。IFP炎癥在關(guān)節(jié)損傷和骨關(guān)節(jié)炎動物模型[21]中有報道,因此對其潛在機制和后果的研究還有待進一步研究。
3 炎癥的機制
軟骨細胞可以通過提高合成活性或增加炎癥細胞因子的產(chǎn)生對直接的生物力學擾動做出反應(yīng),炎癥細胞因子也由其他關(guān)節(jié)組織產(chǎn)生。由于控制關(guān)節(jié)損傷和導(dǎo)致關(guān)節(jié)進行性退變的生物事件之間關(guān)系的機制無法在患者體內(nèi)長期評估,因此,體外和體內(nèi)模型都被用來檢驗假設(shè)?;隗w外力學加載實驗的普遍共識是,損傷性靜態(tài)壓縮刺激蛋白多糖的耗竭和膠原網(wǎng)絡(luò)的損傷,降低軟骨基質(zhì)蛋白的合成,而動態(tài)循環(huán)壓縮增加基質(zhì)合成活性。在創(chuàng)傷性損傷的反應(yīng)中,全球基因表達被激活,導(dǎo)致炎癥介質(zhì)、軟骨降解蛋白酶和應(yīng)激誘導(dǎo)的細胞內(nèi)信號的表達增加。影響傷害刺激的釋放活性氧(ROS),從而誘導(dǎo)軟骨細胞死亡和壓力誘導(dǎo)激酶的活化,包括金屬蛋白酶13(MMP-13),含有血小板凝血酶敏感蛋白結(jié)構(gòu)域的解聚素與金屬蛋白酶5(ADAMTS-5),TNF-α[22-23]。相反,足夠大的非損傷性循環(huán)載荷可以抑制IL -1誘導(dǎo)的軟骨基質(zhì)降解[24]。因此,即使沒有明顯的炎癥,軟骨細胞也可能通過刺激炎癥介質(zhì)的表達和/或活性,或通過誘導(dǎo)作為反饋調(diào)節(jié)因子的抑制劑,對機械應(yīng)激做出反應(yīng)。
4 細胞介質(zhì)與炎癥因子的作用
4.1 NF-κB核轉(zhuǎn)錄因子
NF-κB核轉(zhuǎn)錄因子廣泛存在于真核生物中扮演重要角色的中央控制單元過程包括炎癥、免疫反應(yīng)、分化、增殖、凋亡和腫瘤發(fā)生[25]。在正常情況下NF-κB和抑制劑κB(Iκb)結(jié)合起來,以非活性的形式存在于細胞質(zhì)中。當收到一個激活信號,Iκb磷酸化,NF-κB發(fā)布;此時NF-κB處于激活狀態(tài)[26]。激活后,NF -κB把原子核和誘發(fā)目標基因的轉(zhuǎn)錄,從而調(diào)節(jié)細胞因子和其他炎癥介質(zhì)的合成[27]。研究已經(jīng)證實,NF-κB具有廣泛的生物學效應(yīng),調(diào)節(jié)炎癥中起著重要作用,并且是炎性細胞因子的復(fù)雜網(wǎng)絡(luò)的一個關(guān)鍵環(huán)節(jié)[28-29]。此外,它調(diào)節(jié)炎癥的發(fā)生和發(fā)展。例如,N-κB能夠增加TNF-α和IL-1β的轉(zhuǎn)錄水平和,導(dǎo)致這兩種細胞因子的分泌增加[30],而這兩種因子是參與骨關(guān)節(jié)炎的兩個主要因子。
4.2 PGs
雖然OA被歸類為非炎癥性關(guān)節(jié)疾病,但前列腺素(PGs)被認為在該病的發(fā)病機制和進展中起著關(guān)鍵作用。PGE2和PGD2是軟骨細胞合成的主要PGs,PGE2和PGD2的分泌[及其脫水終產(chǎn)物]在OA軟骨中明顯高于健康軟骨[31]。PGE2與疼痛信號傳導(dǎo)[32]、軟骨侵蝕[33]以及與OA和佐劑誘導(dǎo)的關(guān)節(jié)炎相關(guān)的炎癥有關(guān),然而,PGD2和15d-PGJ2在關(guān)節(jié)軟骨代謝中的作用仍存在爭議。雖然有研究表明,PGD2和15d-PGJ2對抑制白細胞介素(IL)-1介導(dǎo)的MMPs誘導(dǎo)具有軟骨保護作用[34],其他研究表明這些分子有誘導(dǎo)軟骨細胞凋亡的能力[35-36]。與這些早期觀察一致,最近的數(shù)據(jù)表明軟骨細胞中PG的產(chǎn)生隨軟骨細胞的區(qū)域(深度)和OA分級而變化。值得注意的是,PGE2在OA早期檢測到,且剪切應(yīng)力暴露時間較短,而15d-PGJ2在OA晚期檢測到,并在高剪切應(yīng)力長期作用于人軟骨細胞后積累[37]。盡管有報道稱PGs與OA的進展有關(guān),但這一過程的潛在機制尚未闡明。
4.3 PICs
前炎性細胞活素PICs通常產(chǎn)生和釋放到滑膜液。這些PICs中的許多都被嚴格控制并維持在較低的水平,以維持正常的體內(nèi)平衡,而它們的平衡可能會擾亂神經(jīng)系統(tǒng)的正常運作。在OA的PICs中,IL-1、IL-6、LIF、IL-8和IL-18被認為是主要的參與者[38],由于其具有阻斷分解代謝細胞因子的能力,IL-10和IFN-γ被歸為抗炎細胞因子。PICs中IL-1[39]、IL-6[40]、LIF[41]、IL-8[41]表達水平均顯著升高,盡管這些抗炎細胞因子IL-10[42-43]和IFN-γ[43]在人或大鼠OA軟骨中有明顯的抑制作用。PICs與抗炎細胞因子的失衡最終會導(dǎo)致炎癥,導(dǎo)致OA的早期發(fā)生。而IL-18在大鼠OA軟骨中未發(fā)現(xiàn)上調(diào)[43],說明IL-18在OA的發(fā)生發(fā)展過程中可能并不起重要作用。
除了IL失衡,越來越多的證據(jù)表明趨化因子(C-X-C motif)配體2[41]、CCL3[41]、TNFAIP6[41]和Tnfsf9[43]也可能參與OA的發(fā)病機制。在這些細胞因子中,腫瘤壞死因子,例如TNFAIP6以及腫瘤壞死因子(配體)超家族成員9[43], 與CXCL2和CCL3相比,在OA疾病中似乎起著更重要的作用。在OA患者中,TNF-α在滑膜液、滑膜、軟骨下骨和軟骨中升高并且能獨立或與其他細胞因子協(xié)同作用,引發(fā)和傳播炎癥。例如,同時注入IL-1β和TNF-α的兔膝關(guān)節(jié)的軟骨破壞比正常的兔膝關(guān)節(jié)軟骨更嚴重[44]。作為OA與炎癥研究中最重要的中介,IL-1β和TNF-α通過抑制軟骨細胞的合成代謝活性,下調(diào)大鼠骨髓基質(zhì)(ECM)成分的合成,從而發(fā)揮其對OA進展的影響[45]。IL-1β治療不僅降低了Ⅱ型膠原的表達,還下調(diào)了軟骨細胞中聚集蛋白聚糖的表達,從而通過降低ECM的主要成分來干擾軟骨的結(jié)構(gòu)成分[46]。在IL-1β激活的軟骨細胞中也得到了類似的結(jié)果,惡化OA的生理病理。因此,OA的發(fā)病機制中IL-1β和TNF-α的機制可能相當復(fù)雜,許多研究已證明IL-1β和TNF-α同時刺激其他涉及疾病病理的PICs的生成,例如,IL-1β和TNF-α通過誘導(dǎo)產(chǎn)生IL-6[47]、IL-8[48]、巨噬細胞趨化蛋白1(MCP-1)[49],調(diào)解OA進展。誘導(dǎo)一氧化氮(NO)和活性氧(ROS)的生成,加速IL-1β和TNF-α對軟骨損傷的效果。
雖然在過去的十年中,關(guān)于骨關(guān)節(jié)炎炎癥介質(zhì)的知識已經(jīng)有了很多,但是需要進一步的研究來更好地定義這些因子在平衡體內(nèi)平衡和激活之間促進基質(zhì)破壞和細胞死亡的機制。骨關(guān)節(jié)炎軟骨細胞在應(yīng)激和炎癥反應(yīng)中產(chǎn)生多種基質(zhì)降解酶,包括金屬蛋白酶和蛋白聚糖酶。這些降解酶在骨關(guān)節(jié)炎軟骨細胞中表達失調(diào),其表達和活性的增加和異常是骨關(guān)節(jié)炎發(fā)生發(fā)展過程中軟骨降解的主要原因。由于炎癥和生物力學應(yīng)激中涉及的信號通路相似,這些通路也可能誘導(dǎo)和放大細胞因子和趨化因子基因的表達,因此,炎癥介質(zhì)是骨關(guān)節(jié)炎軟骨損傷和修復(fù)機制缺陷的主要或次要調(diào)節(jié)因子仍存在爭議。最近的臨床研究表明滑膜炎是一種重要的疾病特征,與膝關(guān)節(jié)和手部骨關(guān)節(jié)炎的進展和疼痛有關(guān)。而白細胞的局部浸潤、多種炎癥通路的激活以及炎癥因子的分泌也與OA的進展以及臨床癥狀密切相關(guān)。新出現(xiàn)的證據(jù)表明,未來的抗炎治療可能會以這些途徑為目標。未來的抗炎干預(yù)措施可能取決于疾病階段、臨床表型和靶向細胞類型。包括損傷性骨關(guān)節(jié)炎和代謝性骨關(guān)節(jié)炎在內(nèi)的多種模型需要用來改進轉(zhuǎn)化工作。雖然細胞因子及其受體、蛋白酶活性和信號激酶已被認為是OA治療的靶點,但有關(guān)該病癥狀前發(fā)病時早期應(yīng)激性和炎癥性事件的新知識可以為診斷提供有效的生物標志物,以及新的治療策略。
參考文獻
[1] Rol Jakob.The management of early osteoarthritis[J].The Knee,2014,21(4):22-36.
[2] P M van der Kraan.Osteoarthritis year 2012 in review:biology[J].Osteoarthritis and Cartilage,2012,20(12):107-128.
[3] Andrianakos A A,Kontelis L K,Karamitsos D G,et al.Prevalence of symptomatic knee,hand,and hip osteoarthritis in Greece.The ESORDIG study[J].Journal of Rheumatology,2006,33(12):2507-2513.
[4] Kandahari A M,Yang X,Dighe A S,et al.Recognition of Immune Response for the Early Diagnosis and Treatment of Osteoarthritis[J].J Immunol Res,2015,20(15):1-13.
[5] X Wang,D Hunter,J Xu,et al.Metabolic triggered inflammation in osteoarthritis[J].Osteoarthritis and Cartilage,2015,23(1):99-109.
[6] Sellam J.The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis[J].Nature Reviews Rheumatology,2010,6(11):625.
[7] Pozgan U,Caglic D,Rozman B,et al.Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis[J].Biological Chemistry,2010,391(5):571-579.
[8] Daichi Hayashi,F(xiàn)rank W Roemer,Avinash Katur,et al.Imaging of Synovitis in Osteoarthritis: Current Status and Outlook[J].Seminars in Arthritis and Rheumatism,2010,41(2):310.
[9] M K,Goldring S R.Synovial inflammation in patients undergoing arthroscopic meniscectomy:Molecular characterization and relationship to symptoms[J].Arthritis & Rheumatism,2011,63(2):391-400.
[10] Catterall J B,Stabler T V,Carl R Flannery.Changes in serum and synovial fluid biomarkers after acute injury(NCT00332254)[J].Arthritis research & therapy,2010,12(6):229.
[11] Lotz M K,Kraus V B.Posttraumatic osteoarthritis:pathogenesis and pharmacological treatment options[J].Arthritis Research & Therapy,2010,12(3):211.
[12] Gobezie R,Kho A,Bryan Krastins.High abundance synovial fluid proteome:distinct profiles in health and osteoarthritis[J].Arthritis research & therapy,2007,9(2):36.
[13] Scanzello C R,Loeser R F.Editorial:Inflammatory Activity in Symptomatic Knee Osteoarthritis:Not All Inflammation Is Local[J].Arthritis & Rheumatology,2015,67(11):2797-2800.
[14] Ponchel F,Burska A N,Hensor E M,et al.Changes in peripheral blood immune cell composition in osteoarthritis[J].Osteoarthritis Cartilage,2015,23(11):1870-1878.
[15] Shen P C,Wu C L,Jou I M,et al.T helper cells promote disease progression of osteoarthritis by inducing macrophage inflammatory protein-1γ[J].Osteoarthritis & Cartilage,2011,19(6):728-736.
[16] Jeng-Long H,Ai-Li S,Che-Hsin L,et al.CD8+T Cell-Induced Expression of Tissue Inhibitor of Metalloproteinses-1 Exacerbated Osteoarthritis[J].International Journal of Molecular Sciences,2013,14(10):19951-19970.
[17] Attur M,Krasnokutsky S,Statnikov A,et al.Low-Grade Inflammation in Symptomatic Knee Osteoarthritis:Prognostic Value of Inflammatory Plasma Lipids and Peripheral Blood Leukocyte Biomarkers[J].Arthritis & Rheumatology,2015,67(11):2905-2915.
[18] Mccabe P S,Parkes M J,Maricar N,et al.Synovial Fluid White Cell Count in Knee Osteoarthritis:Association with Structural Findings and Treatment Response[J].Arthritis and Rheumatology,2016,69(1):103-107.
[19] Moradi B,Rosshirt N,Tripel E,et al.Unicompartmental and bicompartmental knee osteoarthritis show different patterns of mononuclear cell infiltration and cytokine release in the affected joints[J].Clinical & Experimental Immunology,2015, 180(1):143-154.
[20] Klein-Wieringa I R,De Lange-Brokaar B J E,Yusuf E,et al.Inflammatory Cells in Patients with Endstage Knee Osteoarthritis:A Comparison between the Synovium and the Infrapatellar Fat Pad[J].The Journal of Rheumatology,2016,43(4):771-778.
[21] Heard B J,Solbak N M,Chung M,et al.The infrapatellar fat pad is affected by injury induced inflammation in the rabbit knee:use of dexamethasone to mitigate damage[J].Inflammation Research,2016,65(6):459-470.
[22] Ding L,Heying E,Nicholson N,et al.Mechanical impact induces cartilage degradation via mitogen activated protein kinases[J].Osteoarthritis & Cartilage,2010,18(11):1509-1517.
[23] Goodwin W,McCabe D,Sauter E,et al.Rotenone prevents impact-induced chondrocyte death[J].J Orthop Res,2010,28(2):1057-1063.
[24] Torzilli P A,Bhargava M,Park S,et al.Mechanical load inhibits IL-1 induced matrix degradation in articular cartilage[J].Osteoarthritis & Cartilage,2010,18(1):97-105.
[25] Hilgendorff A,Muth H,Parviz B,et al.Statins differ in their ability to block NF-kappaB activation in human blood monocytes[J].Int J Clin Pharmacol Ther,2003,41(9):397-401.
[26] Kwak S C,Lee C, Kim J Y,et al.Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells c1 expression[J].Biol Pharm Bull,2013,36(2):1779-1786.
[27] Bowles R D,Karikari I O,Vanderwerken D N,et al.In vivo luminescent imaging of NF-κB activity and NF-κB-related serum cytokine levels predict pain sensitivities in a rodent model of peripheral neuropathy[J].European Journal of Pain,2016,20(3):365-376.
[28] Cho H,Lee K,Park J.Erucin Exerts Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin: Possible Mediation through the Inhibition of NFκB Signaling[J].International Journal of Molecular Sciences,2013,14(10):20564-20577.
[29] Toegel S,Weinmann D,André S,et al.Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network[J].J Immunol,196(2-16):1910-1921.
[30] Ni S,Miao K,Zhou X,et al.The involvement of follistatin-like protein 1 in osteoarthritis by elevating NF-κB-mediated inflammatory cytokines and enhancing fibroblast like synoviocyte proliferation[J].Arthritis Res Ther,2015,17(1):91.
[31] Jacques C,Sautet A,Moldovan M,et al.Cyclooxygenase activity in chondrocytes from osteoarthritic and healthy cartilage[J].Revue du rhumatisme(English ed.),2000,66(12):701-704.
[32] Neugebauer V,Schaible H G,Schmidt R F.Sensitization of articular afferents to mechanical stimuli by bradykinin[J].Pflügers Archiv,1989,415(3):330-335.
[33] Wang P,Zhu F,Konstantopoulos K.Prostaglandin E2 induces interleukin-6 expression in human chondrocytes via cAMP/protein kinase A- and phosphatidylinositol 3-kinase-dependent NF-B activation[J].AJP:Cell Physiology,2010,298(6):C1445-C1456.
[34] Portanova J P,Zhang Y,Anderson G D,et al.Selective neutralization of prostaglandin E2 blocks inflammation, hyperalgesia,and interleukin 6 production in vivo[J].Journal of Experimental Medicine,1996,184(3):883-891.
[35] Fahmi H,Di B J,Pelletier J P,et al.Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-1beta-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes[J].Arthritis & Rheumatism,2001,44(3):595.
[36] Zhu F,Wang P,Kontrogiannikonstantopoulos A,et al.Prostaglandin PGD(2) and 15-deoxy-Delta(12,14)-PGJ(2),but not PGE(2),mediate shear-induced chondrocyte apoptosis via protein kinase A-dependent regulation of polo-like kinases[J].Cell Death & Differentiation,2010,17(8):1325-1334.
[37] Wang P,Zhu F,Tong Z,et al.Response of chondrocytes to shear stress:antagonistic effects of the binding partners Toll-like receptor 4 and caveolin-1[J].The FASEB Journal,2011,25(10):3401-3415.
[38] Goldring M B.Osteoarthritis and cartilage:The role of cytokines[J].Curr Rheumol Rep,2000,2(6):459-465.
[39] Towle C.Detection of interleukin-1 in the cartilage of patients with osteoarthritis:a possible autocrine/paracrine role in pathogensis[J].Osteoarthritis & Cartilage,1997,5(5):293-300.
[40] Afzal S,Khanam A.Serum estrogen and interleukin-6 levels in postmenopausal female osteoarthritis patients[J].Pakistan journal of pharmaceutical sciences,2011,24(2):217-219.
[41] Karlsson C,Dehne T,Lindahl A,et al.Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis[J].Osteoarthritis Cartilage,2010,18(4):581-592.
[42] Lems W F,Uyl D D.Exercise-induced changes in interleukin-10 in patients with knee osteoarthritis: new perspectives?[J].Arthritis Research & Therapy,2010,12(4):131.
[43] Zhang R,F(xiàn)ang H,Chen Y,et al.Gene expression analyses of subchondral bone in early experimental osteoarthritis by microarray[J].Plos One,2012,7(2):e32356.
[44] Mohamed-Ali H.A Case of Fulminant Psittacosis Necessitating Mechanical Ventilation Diagnosed by Chlamydial Isolation form BALF[J].Kansenshōgaku Zasshi the Journal of the Japanese Association for Infectious Diseases,1995,69(12):1396.
[45] Saklatvala J.Tumour necrosis factor α stimulates resorption and inhibits synthesis of proteoglycan in cartilage[J].Nature,1986,322(6079):547-549.
[46] Chadjichristos C,Ghayor C,Kypriotou M,et al.Sp1 and Sp3 Transcription Factors Mediate Interleukin-1? Down-regulation of Human Type Ⅱ Collagen Gene Expression in Articular Chondrocytes[J].Journal of Biological Chemistry,2003,278(41):39762-39772.
[47] Guerne P A,Carson D A,Lotz M.IL-6 production by human articular chondrocytes.Modulation of its synthesis by cytokines,growth factors,and hormones in vitro[J].Journal of Immunology,1990,144(2):499.
[48] Lotz M,Terkeltaub R,Villiger P M.Cartilage and joint inflammation.Regulation of IL-8 expression by human articular chondrocytes[J].Journal of Immunology,1992,148(2):466-473.
[49] Villiger P M,Terkeltaub R,Lotz M.Monocyte chemoattractant protein-1 (MCP-1) expression in human articular cartilage.Induction by peptide regulatory factors and differential effects of dexamethasone and retinoic acid[J].Journal of Clinical Investigation,1992,90(2):488-496.
(收稿日期:2019-10-29) (本文編輯:張亮亮)