• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study

    2017-09-03 07:53:55LiyaLuYingjieZhangJiejieChenZhonghuaTong
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Li-ya Lu,Ying-jie Zhang,Jie-jie Chen,Zhong-hua Tong

    CAS Key Laboratory of Urban Pollutant Conversion,Department of Chemistry,University of Science and Technology of China,Hefei 230026,China

    Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study

    Li-ya Lu,Ying-jie Zhang,Jie-jie Chen,Zhong-hua Tong?

    CAS Key Laboratory of Urban Pollutant Conversion,Department of Chemistry,University of Science and Technology of China,Hefei 230026,China

    Due to the large number of ionic liquids(ILs)and their potential environmental risk,assessing the toxicity of ILs by ecotoxicological experiment only is insufficient.Quantitative structureactivity relationship(QSAR)has been proven to be a quick and effective method to estimate the viscosity,melting points,and even toxicity of ILs.In this work,the LC50values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal.Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R2value of 0.938.The predicted lgLC50in this work are in agreement with the experimental values,indicating that the model has good stability and predictive ability.Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.

    Imidazolium-based ionic liquids,Caenorhabditis elegans,Toxicity,Quantitative structure-activity relationship

    I.INTRODUCTION

    Ionic liquids(ILs)are a class of compounds consisting of two oppositely charged ions[1].To date,ILs are considered as promising alternatives to traditional organic solvents due to their bene ficial and tunable physicochemical properties such as weak volatility,low melting points(<100?C),broad solvation capacity,wide range of fluidity,thermal and electrochemical stabilities and the designability of ionic liquids[2?4].Owing to the superiority that ILs can combine various cations and anions to freely manipulate their characteristics,there are well over one million ILs that can be synthesized to meet speci fic requirements for different applications, such as gas compression,sensors,lithium-ion batteries, dye-sensitized solar cells or potential pharmaceutical ingredients[5,6].However,the poor biodegradability and high water solubility imply the potential environmental risks of ILs,especially to aquatic ecosystem[7,8].At present,there have been numerous reports on the toxicity of ILs to bacteria,cells,enzyme systems,plants and aquatic organisms,like Vibrio fischeri,Daphnia magna and algae,etc.[9?12].Furthermore,the huge quantity and variety of ILs make it a great signi ficance to estimate their environmental effects by building a rapid and effective method instead of the time-and materialconsuming ecotoxicological assays[13].

    Quantitative structure-activity relationship(QSAR) has been used to establish a correlation between the biological activities and structural properties of given molecules[14].In recent years,there have been a few QSAR models based on the acute toxicity data.A review article regarding different QSAR studies performed on the toxicity of ILs was published recently[1]. Luis et al.[13]established a QSAR model(R2=0.925) by using a novel group contribution method and Vibrio fischeri as a model organism to evaluate ecotoxicity of 43 ionic liquids,and toxicity contributions of anion, cation and alkyl substitutions were calculated.In another study,Alvarez-Guerra and Irabien[15]developed a QSAR model using partial least squares-discriminant analysis(PLS-DA)to assess toxicity of 148 ionic liquids comprising a varying combination of different cation and anion species.A QSAR model(R2pred=0.739)was developed by Das and Roy[16]to evaluate toxicity of ionic liquids on bacteria by using several approaches, such as multiple linear regression(MLR)and partial least squares(PLS).The developed model underwent extensive validation and was acceptable in terms of robustness and predictivity.

    Other test organisms such as green algae and Daphnia magna were also used for toxicity studies[6,17, 18].Due to its small size,rapid life cycle and ease of cultivation,Caenorhabditis elegans(C.elegans)as a multicellular animal has been widely used as a model organism in the field of developmental biology,genetics, biomedical and environmental toxicology[19,20].With at least 40%of the genes in C.elegans have orthologs in the human genome[21],it is of great signi ficance thatC.elegansis applied in the risk assessment of ILs integrated with QSAR analysis.

    In this study,the 50%effective concentration of selected imidazolium-based ionic liquids on C.elegans was determined using 24-h acute toxicity bioassays.Then these experimental data were used to build a predictive toxicity model based upon quantitative structure-activity relationship modeling(QSAR)methods with genetic function approximation(GFA)used for feature selection and MLR for model construction. Valuable information can be obtained from this model to help designing ILs with minimal toxicity to the environment and human health.

    II.EXPERIMENTS

    A.Ionic liquids

    The 30 imidazolium-based ionic liquids used in the experimental study are presented in Table I.The cations of these ionic liquids were imidazole rings with different alkyl side chain length.The anions were common anions,such as bromide,chloride,acetate,nitrate, and some uncommon anions like tetra fluoroborateion and thiocyanate.These ILs(more than 99%purity) were purchased from Lanzhou Zhong Ke Kai Te Co., China.Stock solutions were prepared by dissolving the ILs in sterile water at appropriate concentrations followed by passing through 0.22μm pore-size filters for sterilization.

    B.Toxicity tests

    Wild-type N2worms were cultured according to Brenner[22]at 20?C.Age-synchronized L4 larvae worms were prepared and(20±1)L4 larvae were transferred to a well in 24-well costar plates.Each ionic liquid was diluted with K medium(containing 52 mmol/L NaCl and 32 mmol/L KCl)at a proper concentration range and 1 mL of the solution was added into a well. One mL of K medium was used as a negative control. After 24 h exposure,dead worms were scored under a dissecting microscope(Olympus SZX7,Japan).The mortality data of each ionic liquid were subjected to probit analysis to estimate the median of lethal concentration(LC50).Two independent trails were tested for each ionic liquid.In each trail,at least three replicates were tested for each dilution.

    C.QSAR studies

    FIG.1 Experimental LC50values of the ILs composed of halide anions and the imidazolium cation with different linear alkyl chain length.

    The LC50values of ILs on C.elegans were logtansformed(lgLC50)and used for the following QSAR modelling(Table I)which contains several steps,including alignment of molecular structure,the calculation of descriptors,initial data analysis,and generation and validation of structure-activity relationship or model.The geometry structures of ILs were constructed and optimized based on density functional theory(DFT).The DFT calculations were performed with the Perdew,Burke,and Ernzerhof(PBE)functional [23]of generalized gradient approximation(GGA)[24] for the exchange-correlation term implemented in the DMol3code[25,26].Double precision numerical basis sets combined with p polarization(DNP)were adopted. The training set contains 26 ILs as shown in Table I.As all the cations of ILs in the dataset have the same imidazolium core,this core is aligned to a speci fic axis,and then all the cations are superposed over the core.Molecular descriptors,including conformational,electrotopological,electronic,information-content,quantum mechanical,spatial,structural,thermodynamic,and topological information,were calculated after the optimization.Four molecular descriptors that most closely related to the LC50values were screened by using GFA [27].Another 4 ILs tested in this work and 5 data from our previous work[28]were used to validate the QSAR model of IL toxicity.

    III.RESULTS AND DISCUSSION

    This study investigated the acute lethal toxicity of selected imidazolium based ILs with different alkyl chain length and anion type.The LC50values are shown in Table I,and differences of more than four orders of magnitude were observed.The LC50data ranged from 2.35×10?5mol/L to 2.89×10?1mol/L.As shown in FIG.1,the LC50values,for both ionic liquids with chloride and bromide anions,decreased with the increase of linear alkyl chain length,indicating that ILs with longer alkyl side chains exhibit higher toxicity,which is consistent with the results reported previously[29].ILs with longer alkyl chain are generally more lipophilic and can be easily incorporated into and ultimately disrupt the cell membranes.Some studies have demonstrated that enhanced membrane permeability may lead to increasedtoxicity of longer ILs[30,31].

    TABLE I Experimental and predicted toxicity results for selected imidazolium ionic liquids.

    FIG.1 also shows that the bromide moiety was more active than the chloride moiety in acute lethal toxicity for the ILs with shorter alkyl chain.The in fluence of the anion moiety gets weaker as the alkyl chain length increases,suggesting the dominant intrinsic effect of the imidazolium cation moiety[32].Cho et al.[33]have also shown that the halide anions have only a little effect.The lgLC50was used as the dependent variable and molecular descriptor of IL structure as independent variables to construct the QSAR equation.Four molecular descriptors,including Chi-1,IC,Q,and Dipole-Y,that most closely related to the LC50values were screened by using GFA.The multiple linear equation is as follows:

    Ntraining=26,Ntest=9,R2=0.938,adjusted R2=0.926,F-value=79.381.

    Comparing these validation parameters with those of the QSAR study on IL toxicity to other organisms[34, 35],the values of R2,adjustedand F-value for external validation are high indicating that Eq.(1) fits the training set data very well and contains additional molecular characteristics and their physicochemical properties which can help to elucidate the important features responsible for toxicity.Q2Loois the leave-oneout(LOO)cross-validation squared correlation coefficient and was used to internally validate the developed model.The Q2LOOvalue was close to 1,indicating that the model had very good stability and predictive ability. The p values(<0.05)of the descriptors in the multiple linear equation including Chi-1,IC,Q,and Dipole-Y are 0.000,0.004,0.006,and 0.000,respectively,which indicate that the selected molecular descriptors play important roles in predicting the IL toxicity to C.elegans.

    One of the molecular descriptor,Chi-1,is an atomic connectivity index(order 1)[36].This is a topological descriptor which helps to differentiate molecules according to their overall shape,degree of branching,size,and flexibility.

    The property δ is the number of its electrons in sigma bonds to skeletal neighbors.The property of σ is the number of electrons in σ bonds to all neighbors and h is the number of H atoms bonded to atom i.In this case, the value of Chi-1 depends on the length of the alkyl chain substituted on the imidazolium in the cation of ILs.The Chi-1 becomes larger with the longer alkyl chain for more carbon atoms connected.This descriptor is preceded by a negative coefficient,indicating that the ILs with larger Chi-1 values lead to higher toxicity.

    To determine IC,the information-content descriptors, molecules are viewed as structures that can be partitioned into subsets of equivalent elements.The modifications of IC are shown as bonding information content(BIC),structural information content(SIC)and information content(CIC)[37].This indicates that IC is related to the number of bonds and vertices,which also depends on the alkyl chain length in the cation. The longer alkyl chain contains more bonds and vertices.The coefficient of IC with the largest absolute value has the greatest impact on the toxicity,suggesting that the cation is a major factor determining the toxicity of ILs,which is consistent with the results of other reports[38,39].

    Q is the heat of formation descriptor(kcal/mol)calculated from the VAMP electrostatics model,indicating conformational stability or the energy required to ionize the valence electrons of the atoms in the cation and anion of ILs.The positive coefficient of Q indicates that the stable ILs will have high toxicity,which is reasonable.This indicates that the model based on Eq.(1)is suitable to describe the toxicity of ILs to C.elegans.

    FIG.2 Chemical structures of cations and anions of imidazolium-based ionic liquids.

    Dipole is the dipole moment descriptor,a 3D electronic descriptor related to the strength and orientation behavior of cation and anion in an electrostatic field. The magnitudes of dipole along x,y,and z axes are calculated,and the toxicity of IL is related to Dipole-Y.The attraction between cations and anions is predicted by utilizing partial atomic charges and atomic coordinates.The descriptor uses Debyes units.

    The LC50of the ILs with the same cation and different anion were also investigated,and the structures of anions are shown in FIG.2.For the same cation of 1-butyl-3-methylimidazolium,the ILs with tetra fluoroborate(BF4?)and dibutyl-phosphate have much smaller lgLC50than others from the experimental measurements(FIG.3).This indicates that the Dipole for these two ILs are smaller than the other ILs when the cation is 1-butyl-3-methyl-imidazolium,and the toxicity of these two ILs is higher than the other 1-butyl-3-methylimidazolium ILs. The lower Dipole reveals the lower interaction strength between cation and anion. For the anion of BF4?,the lower Dipole may result from the hydrolyzation,which causes less number of LC50than cation.And the hydrolysis products may also increase the toxicity[40].For the anion ofdibutyl-phosphate,the lower interaction with cation is owing to the steric effect of the dibutyl chain(FIG.2). The dipole-dipole attraction as one of the nondispersive forces among cation and anion might be responsible for the surface tension of liquids[40].ILs with low surface tension will easily penetrate through the cell membrane, which might result in the high toxicity to C.elegans. Thus,the Dipole descriptor is related to the ability of membrane penetration of ILs,and the positive coefficient indicates that low Dipole causes high toxicity.

    FIG.3 Experimental lgLC50values of the ILs with the same cation(1-butyl-3-methylimidazolium)but different anions, IL with the anion of BF4?and dibutyl-phosphate presents the lower lgLC50.

    External validation was performed by using the data of the test set.The predicted lgLC50could be obtained from the above QSAR model(Eq.(1)).As shown in FIG.4,both the values of the training and test sets are located around the diagonal of the chart,indicating that the calculated values obtained from the QSAR model are very close to the experimental data.This model has appropriate reliability and good predictive capability.

    Application of predictive toxicology model permits us to estimate the potential toxicity of ILs with different sub-structures.In recent years,considerable models have been developed based on the toxicity data of different test organisms and have provided valuable information on the structural features that are important for the toxicity of ILs[15,17,18,35].Toxicity assays in C.elegans are fast and inexpensive,and previous studies have shown that assay results in C.elegans could be successfully used in predicting chemical activities in mammals[41,42].This study used the nematode C.elegans as an in vivo animal model for toxicity assay and a QSAR model was constructed based on four molecular descriptors selected by GFA algorithm.The results in our work suggest that rigorous control of different assembling from various cation and anion species is demanded to maintain the IL products classi fied as green solvents.For instance,the adoption of the anions with the characteristics of facile hydrolysis and steric effect should be minimized in the practical applications.The possible reason is that ILs with weak interionic attraction between cation and anion might result in higher toxicity.It is also important to pay attention to the possible ripple effect from the toxicological interactions of ILs with other environmental pollutants[43].Precautions should be taken in all the fields of applications during handling the ILs for their potential health threat over flora and fauna,especially for modulating effect at a genetic level[44].Our results may provide useful information for predicting environmental and human health toxicity of existing and potential ILs.

    FIG.4 Comparison of the experimental data of C.elegans and the predicted ones from the QSAR model based on Eq.(1).

    IV.CONCLUSION

    In this work,a QSAR model was successfully developed to predict the toxicity of ILs on C.elegans.On the basis of the toxicity data of ILs covering different cation alkyl chain length and diverse anions,four molecular descriptors were selected by GFA method.The descriptors in this model re flect the alkyl chain of the cation,heat of formation,and the strength and orientation behavior of cation and anion(or the surface tension of ILs).The external and internal validations for this model by the test set demonstrate that the predicted toxicity is consistent with the experimental data.The results prove that this QSAR model has the reliable ability to predict the toxicity of ILs on C.elegans.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21477121),and the Fundamental Research Funds for the Central Universities for the support of this work.The numerical calculations were performed on the super computing system in the Supercomputing Center at the University of Science and Technology of China.

    [1]R.N.Das and K.Roy,Mol.Divers.17,151(2013).

    [2]M.Armand,F.Endres,D.R.MacFarlane,H.Ohno, and B.Scrosati,Nat.Mater.8,621(2009).

    [3]S.P.M.Ventura,A.M.M.Goncalves,T.Sintra,J.L. Pereira,F.Goncalves,and J.A.P.Coutinho,Ecotoxicology 22,1(2013).

    [4]C.Wang,Z.B.Wei,L.S.Wang,P.Sun,and Z.Y. Wang,Ecotox.Environ.Safe.115,112(2015).

    [5]S.Stolte,S.Steudte,O.Areitioaurtena,F.Pagano,J. Th¨oming,P.Stepnowski,and A.Igartua,Chemosphere 89,1135(2012).

    [6]K.Roy,R.N.Das,and P.L.A.Popelier,Chemosphere 112,120(2014).

    [7]C.Samori`?,G.Sciutto,L.Pezzolesi,P.Galletti,F. Guerrini,R.Mazzeo,R.Pistocchi,S.Prati,and E. Tagliavini,Chem.Res.Toxicol.24,392(2011).

    [8]F.Y.Yan,Q.Shang,S.Q.Xia,Q.Wang,and P.S. Ma,J.Hazard.Mater.286,410(2015).

    [9]T.P.Pham,C.W.Cho,and Y.S.Yun,Water Res.44, 352(2010).

    [10]M.McLaughlin,M.J.Earle,M.A.Gilea,B.F. Gilmore,S.P.Gorman,and K.R.Seddon,Green Chem.13,2794(2011).

    [11]S.P.M.Ventura,C.S.Marques,A.A.Rosatella,C. A.M.Afonso,F.Goncalves,and J.A.P.Coutinho, Ecotox.Environ.Safe.76,162(2012).

    [12]T.Liu,L.S.Zhu,J.H.Wang,J.Wang,J.Zhang,X. Sun,and C.Zhang,Sci.Rep.5,18444(2015).

    [13]P.Luis,I.Ortiz,R.Aldaco,and A.Irabien,Ecotox. Environ.Safe.67,423(2007).

    [14]S.Bruzzone,C.Chiappe,S.E.Focardi,C.Pretti,and M.Renzi,Chem.Eng.J.175,17(2011).

    [15]M.Alvarez-Guerra and A.Irabien,Green Chem.13, 1507(2011).

    [16]R.N.Das and K.Roy,Toxicol.Res.1,186(2012).

    [17]R.N.Das and K.Roy,Chemosphere 104,170(2014).

    [18]K.Roy,R.N.Das,and P.L.A.Popelier,Environ.Sci. Pollut.Res.22,6634(2015).

    [19]M.C.K.Leung,P.L.Williams,A.Benedetto,C.Au, K.J.Helmcke,M.Aschner,and J.N.Meyer,Toxicol. Sci.106,5(2008).

    [20]S.Hoss,K.Schlottmann,and W.Traunspurger,Environ.Sci.Technol.45,10219(2011).

    [21]P.W.Sternberg,Cell 105,173(2001).

    [22]S.Brenner,Genetics 77,71(1974).

    [23]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [24]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson, M.R.Pederson,D.J.Singh,and C.Fiolhais,Phys. Rev.B 46,6671(1992).

    [25]B.Delley,J.Chem.Phys.92,508(1990).

    [26]B.Delley,J.Chem.Phys.113,7756(2000).

    [27]D.Rogers and A.J.Hop finger,J.Chem.Inf.Comp. Sci.34,854(1994).

    [28]X.Wu,Z.H.Tong,L.L.Li,and H.Q.Yu,Chemosphere 93,2399(2013).

    [29]J.M.Ma,L.L.Cai,B.J.Zhang,L.W.Hu,X.Y. Li,and J.J.Wang,Ecotoxicol.Environ.Saf.73,1465 (2010).

    [30]J.Ranke,K.Molter,F.Stock,U.Bottin-Weber,J.Poczobutt,J.Hoffmann,B.Ondruschka,J.Filser,and B. Jastor ff,Ecotoxicol.Environ.Saf.58,396(2004).

    [31]A.Latala,P.Stepnowski,M.Nedzi,and W.Mrozik, Aquat.Toxicol.73,91(2005).

    [32]S.Stolte,J.Arning,U.Bottin-Weber,M.Matzke,F. Stock,K.Thiele,M.Uerdingen,U.Welz-Biermann,B. Jastor ff,and J.Ranke,Green Chem.8,621(2006).

    [33]C.W.Cho,T.P.T.Pham,Y.C.Jeon,and Y.S.Yun, Green Chem.10,67(2008).

    [34]D.J.Couling,R.J.Bernot,K.M.Docherty,J.K. Dixona,and E.J.Maginn,Green Chem.8,82(2006). [35]R.N.Das,T.E.Sintra,J.A.P.Coutinho,S.P.M. Ventura,K.Roy,and P.L.A.Popelier,Toxicol.Res. 5,1388(2016).

    [36]A.K.Ghose and G.M.Crippen,J.Comput.Chem.7, 565(1986).

    [37]A.R.Katritzky and E.V.Gordeeva,J.Chem.Inf. Comput.Sci.33,835(1993).

    [38]A.Latala,M.Nedzi,and P.Stepnowski,Green Chem. 11,580(2009).

    [39]C.Pretti,C.Chiappe,I.Baldetti,S.Brunini,G.Monni, and L.Intorre,Ecotoxicol.Environ.Safe.72,1170 (2009).

    [40]M.Fakhraee and M.R.Gholami,Ind.Eng.Chem.Res. 54,11678(2015).

    [41]Y.Li,S.Gao,H.Jing,L.Qi,J.Ning,Z.Tan,K.Yang, C.Zhao,L.Ma,and G.Li,Toxicol.Res.2,403(2013).

    [42]P.H.Harlow,S.J.Perry,S.Widdison,S.Daniels,E. Bondo,C.Lamberth,R.A.Currie,and A.J.Flemming, Sci.Rep.6,22965(2016).

    [43]L.Feng,S.S.Liu,K.Li,H.X.Tang,and H.L.Liu,J. Hazard.Mater.327,11(2017).

    [44]T.Kaletta and M.O.Hengartner,Nat.Rev.Drug Discov.5,387(2006).

    ceived on March 29,2017;Accepted on May 22,2017)

    ?Author to whom correspondence should be addressed.E-mail: zhtong@ustc.edu.cn

    久久久久久免费高清国产稀缺| 91av网站免费观看| 最近最新免费中文字幕在线| 亚洲第一欧美日韩一区二区三区| 亚洲av片天天在线观看| 欧美日本亚洲视频在线播放| 女生性感内裤真人,穿戴方法视频| 一级片免费观看大全| 国产亚洲欧美98| 波多野结衣巨乳人妻| 亚洲国产高清在线一区二区三 | 亚洲激情在线av| 高清黄色对白视频在线免费看| 久99久视频精品免费| 最新美女视频免费是黄的| 欧美绝顶高潮抽搐喷水| 神马国产精品三级电影在线观看 | 精品一区二区三区四区五区乱码| 午夜免费激情av| 久久午夜亚洲精品久久| 最近最新中文字幕大全免费视频| 国语自产精品视频在线第100页| 免费高清视频大片| 欧美激情高清一区二区三区| 国产熟女午夜一区二区三区| 国产精品电影一区二区三区| 激情视频va一区二区三区| 久久精品aⅴ一区二区三区四区| 免费女性裸体啪啪无遮挡网站| 最新在线观看一区二区三区| 一本综合久久免费| 精品久久久久久,| 国产av精品麻豆| 非洲黑人性xxxx精品又粗又长| 人妻丰满熟妇av一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲精品美女久久av网站| 91国产中文字幕| 亚洲精品国产色婷婷电影| 97人妻天天添夜夜摸| 欧美在线黄色| 久久天躁狠狠躁夜夜2o2o| 国产成人啪精品午夜网站| 国产精品国产高清国产av| 啦啦啦免费观看视频1| 国产伦人伦偷精品视频| 午夜成年电影在线免费观看| 精品国产超薄肉色丝袜足j| 欧美激情 高清一区二区三区| a在线观看视频网站| 国产av一区在线观看免费| 国产精品一区二区精品视频观看| 一区二区日韩欧美中文字幕| 大香蕉久久成人网| 日日夜夜操网爽| 12—13女人毛片做爰片一| 欧美黑人欧美精品刺激| 女警被强在线播放| 亚洲国产日韩欧美精品在线观看 | 亚洲久久久国产精品| a级毛片在线看网站| 欧美中文综合在线视频| 国产主播在线观看一区二区| 国内毛片毛片毛片毛片毛片| 精品一区二区三区四区五区乱码| 久久久国产精品麻豆| 亚洲人成电影观看| 9色porny在线观看| 亚洲精品在线美女| 久久久国产精品麻豆| x7x7x7水蜜桃| 久久精品国产综合久久久| 婷婷精品国产亚洲av在线| 日韩视频一区二区在线观看| 两人在一起打扑克的视频| 91九色精品人成在线观看| 男女午夜视频在线观看| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 国产午夜福利久久久久久| 天堂动漫精品| 中国美女看黄片| av天堂久久9| 动漫黄色视频在线观看| 色综合站精品国产| 久久草成人影院| 无限看片的www在线观看| 国产野战对白在线观看| 国产精品精品国产色婷婷| 最新在线观看一区二区三区| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 亚洲色图 男人天堂 中文字幕| 国产aⅴ精品一区二区三区波| 日韩中文字幕欧美一区二区| 亚洲av日韩精品久久久久久密| 很黄的视频免费| 99久久99久久久精品蜜桃| av天堂在线播放| 91av网站免费观看| 久久久久精品国产欧美久久久| 久久香蕉精品热| 国产欧美日韩一区二区三| 电影成人av| 性欧美人与动物交配| 韩国av一区二区三区四区| 亚洲国产毛片av蜜桃av| 国产高清有码在线观看视频 | 51午夜福利影视在线观看| 国产亚洲欧美98| 岛国在线观看网站| 亚洲熟妇中文字幕五十中出| 操美女的视频在线观看| 少妇 在线观看| 国产精品,欧美在线| 好男人在线观看高清免费视频 | 日本免费一区二区三区高清不卡 | 9热在线视频观看99| 丰满的人妻完整版| 亚洲成av人片免费观看| 国产熟女xx| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 国内精品久久久久精免费| 亚洲全国av大片| 叶爱在线成人免费视频播放| 午夜久久久在线观看| 一边摸一边做爽爽视频免费| 女性生殖器流出的白浆| www.精华液| 成人特级黄色片久久久久久久| 啦啦啦 在线观看视频| 免费在线观看亚洲国产| 色老头精品视频在线观看| 国产精品久久久久久精品电影 | 高潮久久久久久久久久久不卡| 999久久久国产精品视频| 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 亚洲精品中文字幕在线视频| 搡老妇女老女人老熟妇| 淫妇啪啪啪对白视频| 久久人人97超碰香蕉20202| 久久人妻熟女aⅴ| svipshipincom国产片| 妹子高潮喷水视频| 日本免费a在线| 国产精品永久免费网站| 97碰自拍视频| 亚洲精品久久国产高清桃花| 91在线观看av| 日韩欧美三级三区| 女人被狂操c到高潮| 黄色成人免费大全| 色综合站精品国产| 亚洲精品国产色婷婷电影| 午夜视频精品福利| 丝袜美腿诱惑在线| 50天的宝宝边吃奶边哭怎么回事| 国产男靠女视频免费网站| 国产亚洲精品久久久久5区| 国产av一区在线观看免费| 久久久久久人人人人人| av超薄肉色丝袜交足视频| 高潮久久久久久久久久久不卡| 99国产极品粉嫩在线观看| 狠狠狠狠99中文字幕| 国产aⅴ精品一区二区三区波| 日本免费一区二区三区高清不卡 | 亚洲三区欧美一区| 久久精品人人爽人人爽视色| 国产精品一区二区在线不卡| 99国产极品粉嫩在线观看| 一个人观看的视频www高清免费观看 | 国产激情久久老熟女| 国产午夜福利久久久久久| 国产精品自产拍在线观看55亚洲| 在线播放国产精品三级| 日韩成人在线观看一区二区三区| 久久久久九九精品影院| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 国产成人一区二区三区免费视频网站| 免费在线观看日本一区| 激情在线观看视频在线高清| 曰老女人黄片| 久久久久久人人人人人| 人人妻人人澡欧美一区二区 | 免费高清视频大片| 日韩高清综合在线| 中出人妻视频一区二区| 久久国产亚洲av麻豆专区| 一区二区三区激情视频| 精品国产美女av久久久久小说| 51午夜福利影视在线观看| 国产精品亚洲av一区麻豆| 久久午夜综合久久蜜桃| 久久午夜亚洲精品久久| 91大片在线观看| 中文亚洲av片在线观看爽| 婷婷六月久久综合丁香| 亚洲精品国产精品久久久不卡| 一边摸一边抽搐一进一小说| 成人亚洲精品av一区二区| 一本综合久久免费| 国产亚洲精品第一综合不卡| 精品国产乱码久久久久久男人| av片东京热男人的天堂| 热re99久久国产66热| ponron亚洲| 久久香蕉国产精品| 女警被强在线播放| 亚洲av成人一区二区三| 免费看a级黄色片| 国产精品自产拍在线观看55亚洲| 两人在一起打扑克的视频| 国产成+人综合+亚洲专区| 午夜影院日韩av| 一夜夜www| 色av中文字幕| 国产精品98久久久久久宅男小说| 一区二区日韩欧美中文字幕| 这个男人来自地球电影免费观看| 人妻久久中文字幕网| 最近最新中文字幕大全电影3 | 亚洲国产精品成人综合色| 狂野欧美激情性xxxx| 免费一级毛片在线播放高清视频 | 麻豆国产av国片精品| 中文字幕av电影在线播放| 12—13女人毛片做爰片一| 19禁男女啪啪无遮挡网站| 国产麻豆成人av免费视频| 亚洲午夜理论影院| 成人三级黄色视频| 51午夜福利影视在线观看| 亚洲欧美精品综合久久99| 美国免费a级毛片| 人人妻,人人澡人人爽秒播| 国产精品av久久久久免费| 日本撒尿小便嘘嘘汇集6| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区蜜桃| 国产成人影院久久av| 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| 狂野欧美激情性xxxx| 国产一区二区三区视频了| а√天堂www在线а√下载| 日韩大尺度精品在线看网址 | 亚洲在线自拍视频| 丁香欧美五月| 亚洲欧美激情综合另类| 丝袜在线中文字幕| 中国美女看黄片| 欧美乱色亚洲激情| 国产午夜精品久久久久久| 亚洲国产精品久久男人天堂| 精品人妻1区二区| 亚洲成av人片免费观看| 女同久久另类99精品国产91| 啪啪无遮挡十八禁网站| 免费在线观看视频国产中文字幕亚洲| 啦啦啦 在线观看视频| 欧美中文综合在线视频| 精品国产一区二区三区四区第35| 久久精品国产99精品国产亚洲性色 | 久久精品国产亚洲av香蕉五月| 日本vs欧美在线观看视频| 色哟哟哟哟哟哟| 一级片免费观看大全| av电影中文网址| 久久久水蜜桃国产精品网| www.精华液| 久久人人精品亚洲av| 在线观看日韩欧美| 亚洲成人久久性| 男女下面插进去视频免费观看| 在线国产一区二区在线| 国产精品九九99| 91大片在线观看| 亚洲国产看品久久| 亚洲成国产人片在线观看| 纯流量卡能插随身wifi吗| 日韩大码丰满熟妇| 一级a爱视频在线免费观看| 久久中文字幕一级| 色综合婷婷激情| 免费高清视频大片| 50天的宝宝边吃奶边哭怎么回事| 亚洲男人天堂网一区| 法律面前人人平等表现在哪些方面| 亚洲美女黄片视频| 18禁黄网站禁片午夜丰满| 亚洲中文字幕日韩| 午夜免费激情av| 女性被躁到高潮视频| 俄罗斯特黄特色一大片| 91在线观看av| 成在线人永久免费视频| 男男h啪啪无遮挡| 岛国视频午夜一区免费看| 欧美国产日韩亚洲一区| 久久亚洲精品不卡| 国产亚洲欧美精品永久| 国产三级在线视频| 69精品国产乱码久久久| 午夜视频精品福利| 精品欧美国产一区二区三| 在线十欧美十亚洲十日本专区| 成人免费观看视频高清| 久久 成人 亚洲| 亚洲av成人av| 久久久久久久久免费视频了| 99热只有精品国产| 欧美久久黑人一区二区| 99精品欧美一区二区三区四区| 婷婷丁香在线五月| 久久人人精品亚洲av| 国产成人一区二区三区免费视频网站| 亚洲全国av大片| 国产熟女午夜一区二区三区| 亚洲成人久久性| 欧美成狂野欧美在线观看| 国产亚洲av高清不卡| 国产精品 国内视频| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 亚洲专区字幕在线| 香蕉丝袜av| 亚洲午夜理论影院| 久久中文字幕一级| 久久精品国产综合久久久| 久久久久久国产a免费观看| 欧美一级a爱片免费观看看 | 亚洲激情在线av| 色尼玛亚洲综合影院| 精品一品国产午夜福利视频| 亚洲一区高清亚洲精品| 搡老岳熟女国产| 十分钟在线观看高清视频www| 久久欧美精品欧美久久欧美| 精品国产一区二区久久| 一进一出抽搐gif免费好疼| 十八禁人妻一区二区| 变态另类成人亚洲欧美熟女 | 国产精品亚洲一级av第二区| 久久久久国内视频| 黄网站色视频无遮挡免费观看| 99国产精品一区二区蜜桃av| 成年版毛片免费区| 久久精品成人免费网站| 成人特级黄色片久久久久久久| 此物有八面人人有两片| 久久香蕉激情| 嫩草影视91久久| 无人区码免费观看不卡| 男女午夜视频在线观看| 首页视频小说图片口味搜索| 国产xxxxx性猛交| 婷婷丁香在线五月| 男女做爰动态图高潮gif福利片 | 涩涩av久久男人的天堂| 十分钟在线观看高清视频www| 国产亚洲精品第一综合不卡| 精品欧美一区二区三区在线| 日本 av在线| 午夜成年电影在线免费观看| 国产私拍福利视频在线观看| 午夜免费鲁丝| 久久精品影院6| 黄片播放在线免费| 在线天堂中文资源库| 成人欧美大片| 久久香蕉国产精品| 国产亚洲精品综合一区在线观看 | 国产精品,欧美在线| 正在播放国产对白刺激| 国产精品久久久人人做人人爽| 黄色丝袜av网址大全| 一区二区日韩欧美中文字幕| 久久国产精品人妻蜜桃| 长腿黑丝高跟| 亚洲av成人一区二区三| 一夜夜www| 国产精品国产高清国产av| av网站免费在线观看视频| 手机成人av网站| 大型av网站在线播放| 色婷婷久久久亚洲欧美| 高清黄色对白视频在线免费看| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av高清一级| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久人妻精品电影| 欧美不卡视频在线免费观看 | 久久人妻熟女aⅴ| 欧美国产精品va在线观看不卡| 久久久久久久精品吃奶| 麻豆成人av在线观看| www.www免费av| 夜夜看夜夜爽夜夜摸| 香蕉国产在线看| 99久久久亚洲精品蜜臀av| bbb黄色大片| www.自偷自拍.com| 久久久国产成人精品二区| 国产xxxxx性猛交| 法律面前人人平等表现在哪些方面| 色综合亚洲欧美另类图片| 9色porny在线观看| 琪琪午夜伦伦电影理论片6080| 99久久99久久久精品蜜桃| 国内毛片毛片毛片毛片毛片| 亚洲色图av天堂| 丝袜人妻中文字幕| 久久久久久人人人人人| 久久久久久亚洲精品国产蜜桃av| 亚洲精品久久成人aⅴ小说| 色尼玛亚洲综合影院| 在线免费观看的www视频| 久久青草综合色| 久久久国产精品麻豆| 美国免费a级毛片| av视频在线观看入口| 亚洲av五月六月丁香网| 国产色视频综合| 亚洲全国av大片| 国产区一区二久久| 婷婷六月久久综合丁香| 欧美一级a爱片免费观看看 | 19禁男女啪啪无遮挡网站| 99久久99久久久精品蜜桃| 国产伦人伦偷精品视频| 侵犯人妻中文字幕一二三四区| 成年人黄色毛片网站| 国产欧美日韩一区二区三区在线| 国产亚洲欧美98| 午夜a级毛片| 久久国产精品人妻蜜桃| 视频区欧美日本亚洲| 美国免费a级毛片| 人成视频在线观看免费观看| 国产午夜福利久久久久久| 国产成人av教育| 人人妻人人澡欧美一区二区 | 国产欧美日韩精品亚洲av| 久久久久久久久中文| 男女之事视频高清在线观看| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 成人欧美大片| 搡老妇女老女人老熟妇| 亚洲五月色婷婷综合| 国产成人影院久久av| 999精品在线视频| 亚洲欧美激情综合另类| 久久亚洲精品不卡| 精品国内亚洲2022精品成人| 久久中文字幕一级| 又紧又爽又黄一区二区| 一进一出抽搐动态| 巨乳人妻的诱惑在线观看| av天堂久久9| 久久久久久国产a免费观看| av电影中文网址| 国产精品 国内视频| 妹子高潮喷水视频| x7x7x7水蜜桃| 在线观看一区二区三区| 人人澡人人妻人| 天天添夜夜摸| 亚洲av五月六月丁香网| 国产熟女午夜一区二区三区| 色在线成人网| 亚洲精品国产色婷婷电影| 久久久水蜜桃国产精品网| av电影中文网址| 国产精品久久久久久人妻精品电影| 亚洲精品在线美女| 国产区一区二久久| 亚洲激情在线av| 看片在线看免费视频| 日日干狠狠操夜夜爽| 亚洲 欧美 日韩 在线 免费| 操美女的视频在线观看| 他把我摸到了高潮在线观看| 中文字幕高清在线视频| 大型av网站在线播放| 国产一级毛片七仙女欲春2 | 中文字幕精品免费在线观看视频| 十八禁人妻一区二区| 午夜福利高清视频| 校园春色视频在线观看| 亚洲熟妇熟女久久| 欧美日韩瑟瑟在线播放| 波多野结衣一区麻豆| 国产男靠女视频免费网站| www.熟女人妻精品国产| 成人免费观看视频高清| 国产精品一区二区精品视频观看| 中文字幕人妻熟女乱码| 啦啦啦免费观看视频1| 精品一区二区三区av网在线观看| 久久人妻福利社区极品人妻图片| 亚洲成人免费电影在线观看| 国产精品秋霞免费鲁丝片| 国产主播在线观看一区二区| 高潮久久久久久久久久久不卡| 大陆偷拍与自拍| 黑人巨大精品欧美一区二区mp4| 女警被强在线播放| 久久精品aⅴ一区二区三区四区| 亚洲在线自拍视频| 一夜夜www| 欧美日韩黄片免| 国产单亲对白刺激| 在线免费观看的www视频| 国产亚洲精品av在线| 最近最新免费中文字幕在线| 亚洲av成人不卡在线观看播放网| √禁漫天堂资源中文www| АⅤ资源中文在线天堂| 在线十欧美十亚洲十日本专区| 久久午夜亚洲精品久久| 巨乳人妻的诱惑在线观看| 高潮久久久久久久久久久不卡| 欧美激情高清一区二区三区| 精品一区二区三区视频在线观看免费| 久久精品国产99精品国产亚洲性色 | 亚洲精华国产精华精| 午夜精品国产一区二区电影| 国产成人啪精品午夜网站| 美女高潮到喷水免费观看| 亚洲一区中文字幕在线| 操出白浆在线播放| 久热这里只有精品99| 一级毛片高清免费大全| 亚洲五月天丁香| www.自偷自拍.com| 久久久久精品国产欧美久久久| 午夜久久久在线观看| 久热这里只有精品99| 国产日韩一区二区三区精品不卡| 在线观看一区二区三区| 宅男免费午夜| 免费观看人在逋| 亚洲欧美精品综合一区二区三区| 日韩高清综合在线| 精品电影一区二区在线| 欧美中文日本在线观看视频| 午夜福利一区二区在线看| 国产成人av激情在线播放| 亚洲中文av在线| 欧美 亚洲 国产 日韩一| 国产精品久久久久久人妻精品电影| 精品国产超薄肉色丝袜足j| 亚洲色图 男人天堂 中文字幕| 少妇粗大呻吟视频| 99久久精品国产亚洲精品| 国产又色又爽无遮挡免费看| 国产高清videossex| 天堂动漫精品| 丝袜美足系列| 大陆偷拍与自拍| 欧美不卡视频在线免费观看 | 精品少妇一区二区三区视频日本电影| 香蕉国产在线看| 一进一出抽搐gif免费好疼| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲| 正在播放国产对白刺激| 亚洲精品国产精品久久久不卡| 色综合婷婷激情| 亚洲av熟女| 午夜激情av网站| 午夜精品在线福利| www.自偷自拍.com| 欧美中文日本在线观看视频| 天堂√8在线中文| 亚洲色图av天堂| 欧美色欧美亚洲另类二区 | 韩国av一区二区三区四区| 午夜福利视频1000在线观看 | 亚洲精品国产一区二区精华液| 女性生殖器流出的白浆| 国产精品亚洲一级av第二区| 少妇的丰满在线观看| 久久香蕉国产精品| 精品少妇一区二区三区视频日本电影| 首页视频小说图片口味搜索| 日韩三级视频一区二区三区| 国产精品99久久99久久久不卡| 日本vs欧美在线观看视频| 99国产精品免费福利视频| 成年版毛片免费区| e午夜精品久久久久久久| 国产欧美日韩精品亚洲av| 777久久人妻少妇嫩草av网站| 操美女的视频在线观看| 免费高清视频大片| 国产精品98久久久久久宅男小说| av片东京热男人的天堂| 欧美日本中文国产一区发布| 欧美日韩精品网址| 十分钟在线观看高清视频www| 变态另类丝袜制服| 又紧又爽又黄一区二区| 精品欧美一区二区三区在线| 久久久久久大精品| 999久久久精品免费观看国产| 美女扒开内裤让男人捅视频| 黑丝袜美女国产一区| 免费在线观看影片大全网站| www.熟女人妻精品国产|