• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    γ-Ray Irradiation-Derived MnO/rGO Composites for High Performance Lithium Ion Batteries

    2017-09-03 07:54:09liGuoHongchngJinZhenzhenDuXuewuGeHengxingJi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Y-li Guo,Hong-chng Jin,Zhen-zhen Du,Xue-wu Ge,Heng-xing Ji?

    a.Department of Materials Science and Engineering,CAS Key Laboratory of Materials for Energy Conversion,iChEM(Collaborative Innovation Center of Chemistry for Energy Materials),University of Science and Technology of China,Hefei 230026,China

    b.Department of Polymer Science and Engineering,CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China,Hefei 230026,China

    γ-Ray Irradiation-Derived MnO/rGO Composites for High Performance Lithium Ion Batteries

    Ya-li Guoa,Hong-chang Jina,Zhen-zhen Dua,Xue-wu Geb,Heng-xing Jia?

    a.Department of Materials Science and Engineering,CAS Key Laboratory of Materials for Energy Conversion,iChEM(Collaborative Innovation Center of Chemistry for Energy Materials),University of Science and Technology of China,Hefei 230026,China

    b.Department of Polymer Science and Engineering,CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China,Hefei 230026,China

    We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rGO)nanocomposite for the anode of lithium ion batteries.γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant.The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible speci fic capacity of 546(mA·h)/g which is 45%higher than the theoretical value of commercial graphite anode.

    γ-Ray irradiation reduction,MnO anode,Reduced graphene oxide,Nanocomposites,Lithium ion batteries

    I.INTRODUCTION

    Portable electronics and electrical vehicles require advanced lithium ion batteries(LIBs)that can deliver an energy density of>250 Wh/kg at a high rate of>10 C for>1000 cycles[1],therefore,electrode materials with both high speci fic capacity and rate capability are greatly demanded to meet these goals.However, the existent commercial graphite anode has a limited speci fic capacity(372(mA·h)/g),while anode materials like transition metal oxides and silicon,which possesses high theoretical speci fic capacities,suffer from poor rate capability and cycling life due to their low electrical conductivity and volume expansion during charge/discharge[2].For instance,MnO is an attractive anode material for LIBs because of its low conversion potential and voltage hysteresis of<0.8 V,high theoretical capacity of 756(mA·h)/g,and high mass density of 5.43 g/cm3coupled with low cost,environmental friendliness,and high nature abundance of Mn element [3],however,its high electrical resistivity of 106?·cm [4]and volume change[5]result in an inferior speci fic capacity,rate capability and cycling life.

    To date,different strategies have been proposed to address these issues and conclude that an optimized MnO-based anode material(also valid for other transion metal oxides or silicon)should possess nanometersize MnO particles uniformly dispersed on conductive frameworks to facilitate Li+diffusion and electron conduction.The conductive framework also serves as a stable support to prevent the loss of pulverized MnO upon Li+insertion/extraction to extend the cycling life[6].Recently,reduced graphene oxide(rGO), a two-dimensional material with excellent conductivity,large surface area,structural and chemical stability[7],has been demonstrated as an optimal choice to address the above mentioned issues[3a,8],and a variety of methods have been reported to prepare MnO/rGO composites.The most popular synthesis methods include hydrothermal and wet chemical reduction which can yield ultra fine MnO nanocrystals on rGO microsheets with promising electrochemical properties for LIBs[3a,8a],whereas,high pressure conditions and poor scalability of hydrotheromal process or toxic reduction agent used in wet chemical method hinder their practical applications.Especially,surfactant is required in these synthesis methods to prevent the aggregation of MnO nanoparticles and restacking of rGO sheets which is sandwiched between the MnO and rGO,ultimately hinders the charge transfer during charge/discharge.To the best of our knowledge,MnO-based anode materials for LIBs with high reversible capacity(e.g.~2000(mA·h)/g,with respect to the mass of the MnO/rGO composite,both here and below)and rate capability(e.g.~800(mA·h)/g at 8 A/g,corresponding to a fully charge/discharge in 6 min)combined with long cycle life(e.g.>500 cycles)has rarely been reported.

    γ-Ray is high energy electromagnetic radiation usually produced by the decay of high energy states of atomic nuclei(γ-decay),which can decompose water molecules to form both reductive(hydrogen radical andhydrated electron,·H and e?aq)and oxidative(hydroxyl radical·OH)species.These species concentrations are dependent on the radiation intensity and will be deactivated when radiation is shut down,thereby,providing well controlled and clean sources of oxidants or reductants for chemical reactions.When water is mixed with oxidant sacri fice agents(e.g.ethanol),·OH can be eliminated and transformed into reductive radicals(·OH+CH3CH2OH→·CH(CH3)OH+H2O)which can reduce GO.Radiolysis-induced reduction reaction can generate homogeneously distributed condense products of nanometer sizes because of the negative standard potential of e?aq(~2.77 V vs.standard hydrogen electrode). The shape and size of the nanoparticles can be readily controlled by adjusting the irradiation time and intensity[9].Especially,e?aqreduced rGO can be well dispersed in water without the assistance of surfactants[9d].

    Here we report a γ-ray irradiation reduction method to prepare MnO/rGO composites carried out at room temperature and ambient pressure.The as prepared composite shows excellent dispersity in aqueous solution,and the MnO nanoparticles are well dispersed on rGO surface with a narrow particle-size dispersion of (20±3)nm without the assistance of any surfactant. Therefore,the MnO/rGO composite shows high speci fic capacities retention of 2175,775 and 546(mA·h)/g (with respect to the mass of the composite)at high charge/discharge current densities of 0.2,8,and 15 A/g, corresponding to a fully charge/discharge in 2 min yet with speci fic capacity 45%higher than the theoretical value of graphite.

    II.RESULTS AND DISCUSSION

    As the photographs in FIG.1(a)show,manganese oxide/rGO reduced by hydroiodic acid(HI)precipitates gradually after keeping for 2 h in the solvent,while the sample produced by γ-ray still disperses evenly in the solvent,indicating a more homogeneous dispersion of the γ-ray reduced product.We studied the effect of irradiation time on the chemical composition of the manganese oxide/rGO composite. As shown in the X-ray diffraction(XRD)patterns(FIG.1(b)),crystal structure is non-detectable after the KMnO4/GO mixture was exposed to γ-ray for 4 h,and Mn3O4crystals are found with extended exposure time of more than 8 h.The X-ray photoelectron spectroscopy(XPS)of C 1s(FIG.S1 in supplementary materials)shows strong peak at 284.8 eV that can be assigned to graphitic carbon(C=C)in graphene,while the satellite peaks at higher binder energies arise from the oxygenated carbon atoms(C?O at 286.2 eV,C=O at 287 eV,O?C=O at 288.5 eV).The analysis of C 1s spectra indicates that with the increase of γ-ray irradiation time from 4 h to 32 h,the ratio of carbon-carbon bonds increases from~54%to~71%,and the contents of oxygenatedcarbon(O?C=O,O?C,and O=C)decrease to~29% (FIG.1(c)),indicating an increased reduction level of GO with extended γ-ray irradiation.

    FIG.1(a)Photographs of the manganese oxide/rGO reduced by γ-ray and HI.(b)XRD patterns and(c)the contents of carbon species acquired by XPS spectra of C 1s for the manganese oxide/rGO composites prepared by γ-ray irradiation.

    FIG.2(a)SEM and(b,c)TEM images of the MnO/rGO composites.The inset in panel(b)is the indexed selected area electron diffraction pattern.

    The Mn3O4/rGO composites were subject to thermal annealing.The XRD pattern(FIG.S2 in supplementary materials,PDF#07-0230),Raman spectrum(FIG.S3 in supplementary materials),and XPS (FIG.S4 in supplementary materials)of the annealed composite indicate that the Mn3O4was further reduced to MnO.The scanning electron microscope(SEM)image(FIG.2(a))and electron dispersion X-ray(EDX, FIG.S5 in supplementary materials)mapping show a uniform dispersion of MnO particles on graphene sheets. These MnO nanoparticles present crystal nature with size in the range of tens of nanometers(FIG.2(b)and (c)).We studied the MnO particle size distribution by measuring and counting the particles in the SEM images of MnO/rGO composites reduced by γ-ray irradiation for different times(FIG.S6 in supplementary materials),and the statistic values are summarized in FIG.3(a).The MnO nanoparticles on rGO sheets have an average size of(27±6)nm when the γ-ray irradiation time was 8 h,which drops to(20±3)nm and subsequently increased to(28±5)and(33±6)nm when the γ-ray irradiation time was increased to 16,24,and 32 h. The larger MnO particle size for the composites irradiated for 8 h than that of 16 h may be due to the insufficient reduction of KMnO4(FIG.1(b)and(c)).And the further increase of the MnO particle size with the irradiation time indicates the γ-ray irradiation induced MnO growth,which shows as a slow rate of~0.8 nm/h. Therefore,the size of MnO nanoparticles can be finely tuned by γ-ray irradiation without the assistant of surfactant,which is very important for high-rate electrode materials as smaller MnO nanoparticles and direct attachment on rGO is crucial for charge transfer during the charge/discharge.Moreover,the mass ratio of MnO in composite that was studied by thermal gravimetric analysis(FIG.S7 in supplementary materials)can be readily tuned by varying the content of the KMnO4/GO mixture.The highest MnO mass ratio of 73.5 wt%was achieved when a GO/KMnO4mass ratio of 0.05 was applied(FIG.3(b)).

    FIG.3(a)MnO particle size distribution for the MnO/rGO prepared with a KMnO4/GO mass ratio of 2 and γ-ray irradiation time of 8,16,24,and 32 h.(b)The content of MnO in composite prepared with KMnO4/GO mixture of different mass ratios.(c)Nitrogen adsorption-desporption isotherms of MnO/rGO composites.(d)Pore size distribution calculated by density functional theory.

    For the further studies,we focus on the MnO/rGO composite prepared by γ-ray irradiation on KMnO4/GO(weight ratio of 2)for 16 h because of the smallest MnO particle size and moderate MnO mass loading of 58.5 wt%,which are favored for the LIBs. The pore structures of the MnO/rGO was detected by N2isotherms(FIG.3(c)).The calculated speci fic surface area of the MnO/rGO is 160 m2/g with average pore size of 41.5 nm.The porous structure of the MnO/rGO could be ascribed to the stacking of 20 nm-large MnO decorated rGO microsheets.

    The electrochemical performance of MnO/rGO composites was investigated with R2032 coin type cell with Li metal as the counter/reference electrode.The galvanic charge/discharge(GCD)curves of MnO/rGO composite at different current densities are plotted in FIG.4(a).The discharge curve shows a plateau at 0.5 V vs.Li/Li+and a speci fic capacity of 2175(mA·h)/g at a low current density of 0.2 A/g.Note that the speci fic capacity value was calculated with respect to the mass of MnO/rGO composite.The subsequent charge curves show two plateaus at around 2.1 and 1.3 V vs.Li/Li+. These plateaus match well with the faradaic peaks in cyclic voltammograms curves(FIG.S8 in supplementary materials).These revisable cathodic and anodic peaks can be assigned to the revisable electrochemical reaction[10]:

    The discharge speci fic capacity gradually decreases to 546(mA·h)/g at the current density of 15 A/g with the discharge plateau at around 0.25 V clearly visible, indicative of excellent kinetics of the MnO lithiation [11].The rate capability of the MnO/rGO composite is shown in FIG.4(b).The speci fic capacities measuredat current densities of 0.2,0.5,1.0,2.0,4.0,6.0,8.0, 10,12 and 15 A/g are 1937,1684,1605,1301,1124, 971,775,714,634 and 546(mA·h)/g,respectively,with respect to the mass of composite.After changing the current density back to 0.2 A/g,the reversible capacity recovers to 2175(mA·h)/g,indicating an excellent electrochemical reversibility.The high reversible speci fic capacity of 546(mA·h)/g at a current density of 15 A/g corresponds to a fully charge/discharge in 2 min to gain energy that is 45%higher than the commercial graphite anode.This result is superior to previous MnO based anode materials(FIG.4(c))[3a,8b,12],which can be ascribed to the γ-ray irradiation induced wellcontrolled MnO particle size and direct attachment of MnO on rGO sheet without surfactant in between.

    FIG.4(a)GCD curves,(b)rate capability at different current densities,(c)comparison of the speci fic capacity with other high-performance LIBs shown in references.(Refs.[12e-g]correspond to N-doped graphene,Refs.[12b?d]correspond to Fe3O4/graphene,SnO2/N-doped graphene and ZnO/graphene composites,respectively;Refs.[3a,8b,12a]correspond to MnO/graphene composites),(d)cycling performance at the current density of 2 A/g.

    The cycling performance of MnO/rGO composites under 2 A/g is displayed in FIG.4(d). It is interesting to see that the speci fic capacity and coulombic efficiency increase at the initial cycles which has also been observed in previously reported Mn-based materials[3a,11,13]for LIBs.This phenomenon is owing to the activation process of MnO particles. At the initial cycles,only the top surface of the MnO can take into lithiation/delithiation reaction because of the low electrical conductivity of MnO.Whereas,the lithiation/delithiation process gradually penetrates into the core of the MnO particles and generates smaller MnO particles,thereby,improves the speci fic capacity of the composite[14].This result is in accordance with the decreased charge transfer resistance measured by electrochemical impedance spectroscopy(FIG.S9 in supplementary materials),down shift of the anodic peak at 2.1 V with cycling(FIG.S10 in supplementary materials),and 2?5 nm MnO nanocrystals after 500 cycles charge/discharge that are signi ficantly smaller than the MnO at the initial state(FIG.S11 in supplementary materials).For comparison,the electrochemical properties of MnO/rGO composites reduced by HI are displayed in FIG.S12 in supplementary materials,which indicates a lower speci fic capacity and rate capability than the γ-ray reduced MnO/rGO composite.

    CV tests with a scan rate from 0.1 mV/s to 20 mV/s are employed to study the charge storage mechanism of the MnO/rGO composite.The cathodic peaks at~0.3 V and anodic peaks at~1.3 V are chosen to study the relationship between the current density(i) and scan rate(v)according to the power law equation:i=avb[15],where a and b are adjustable val-ues. A b-value of 0.5 indicates the lithium storage is totally solid-state diffusion-controlled whereas a bvalue of 1.0 represents a totally capacitive-dominated process.FIG.5(a)plots lgi of both the cathodic and anodic peak current density with respect to lgv.The b-values calculated by linear fitting of v in the range of 0.1 mV/s to 3 mV/s are 0.75 and 0.71,respectively,for the cathodic and anodic peaks,indicating a capacitive-dominated lithium storage.The b-value decreases to 0.37 and 0.5 for the cathodic and anodic currents,respectively,when v>3 mV/s,indicating solidstate diffusion-controlled lithium storage.

    FIG.5(a)Linear relationship between logarithm current (lgi)and logarithm sweep rate(lgv)at the cathodic and anodic potentials.(b)Normalized charge versus v?1/2allows for the separation of diffusion-limited from capacitivelimited charge storage.

    The total charge(Q)stored in MnO/rGO composite can be expressed as Q=Qd+Qc,where Qdand Qcare charges contributed by faradaic reaction and capacitive process,respectively.In the case of semi-in finite linear diffusion,Qdis dependent on v where Qd=cv?1/2[16].FIG.5(b)shows the plot of normalized charge versus v?1/2for MnO/rGO measured with scan rates from 0.1 mV/s to 20 mV/s.In the region I,where v≤3 mV/s,the Q is nonlinear with v?1/2,indicating that Q is mostly irrelevant with scan rate.In this scan rate region,the charge storage is mainly attributed to surface capacitive contribution.In region II,where the v>3 mV/s,the Q increases linearly with v?1/2,indicating that the charge storage is limited by diffusion process at high rates.

    Based on the above analysis,the excellent rate capability of MnO/rGO can be attributed to the structure features yielded by the γ-ray irradiation synthesis.The e?aqinduces a homogeneous reduction of KMnO4and growth of Mn3O4on rGO surface,thereby,the particle size of MnO can be controlled in the rate of 0.8 nm/h with size variation of a few nanometers.The nanometer size MnO facilitate lithiation/delithiation reaction when charge/discharge. The γ-irradiation generates a stable suspension of Mn3O4/rGO without the assistance of surfactant,allowing for the direct condensing of manganese oxide on rGO surface.Such contact is favored for charge transfer between the MnO and rGO during charge/discharge.

    III.CONCLUSION

    We have demonstrated a γ-ray irradiation reduction method to synthesize MnO/rGO composites.The γray irradiation generated e?aqproduces homogeneously distributed MnO with finely tuned particle size on rGO without the assistance of surfactant.The MnO/rGO composites outputs a reversible gravimetric capacities of 2175 and 546(mA·h)/g with respect to the mass of the whole composite at current densities of 0.2 and 15 A/g,respectively,demonstrating a remarkable rate capability for the anode of LIBs.

    IV.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21373197),the 100 Talents Program of the Chinese Academy of Sciences, USTC Startup and the Fundamental Research Funds for the Central Universities(WK2060140018).

    [1]L.Lu,X.Han,J.Li,J.Hua,and M.Ouyang,J.Power Sources 226,272(2013).

    [2](a)X.Zheng,H.Wang,C.Wang,Z.Deng,L.Chen, Y.Li,T.Hasan,B.and L.Su,Nano Energy 22,269 (2016). (b)C.Chen,Y.Huang,H.Zhang,X.Wang,Y.Wang, L.Jiao,and H.Yuan,J.Power Sources 314,66(2016). (c)J.Hu,C.F.Sun,E.Gillette,Z.Gui,Y.Wang,and S.B.Lee,Nanoscale 8,12958(2016). (d)D.Y.Park,Y.K.Sun,and S.T.Myung,J.Power Sources 280,1(2015). (e)J.Wu,H.Chen,I.Byrd,S.Lovelace,and C.Jin, ACS Appl.Mat.Interfaces 8,13946(2016).

    [3](a)Y.Sun,X.Hu,W.Luo,F.Xia,and Y.Huang,Adv. Funct.Mater.23,2436(2013). (b)X.Fang,X.Lu,X.Guo,Y.Mao,Y.S.Hu,J.Wang, Z.Wang,F.Wu,H.Liu,and L.Chen,Electrochem. Commun.12,1520(2010).

    [4]M.Ali,M.Fridman,M.Denayer,and P.Nagels,Phys. Status Solidi B 28,193(1968).

    [5](a)Y.Xia,Z.Xiao,X.Dou,H.Huang,X.Lu,R.Yan, Y.Gan,W.Zhu,J.Tu,and W.Zhang,ACS Nano 7, 7083(2013). (b)W.M.Chen,L.Qie,Y.Shen,Y.M.Sun,L.X. Yuan,X.L.Hu,W.X.Zhang,and Y.H.Huang,Nano Energy 2,412(2013). (c)H.Jiang,Y.Hu,S.Guo,C.Yan,P.S.Lee,and C. Li,ACS Nano 8,6038(2014).

    [6]X.Liu,C.Chen,Y.Zhao,and B.Jia,J.Nanomater. 2013,1(2013).

    [7]A.K.Geim and K.S.Novoselov,Nat.Mater.6,183 (2007).

    [8](a)K.Zhang,P.Han,L.Gu,L.Zhang,Z.Liu,Q.Kong, C.Zhang,S.Dong,Z.Zhang,J.Yao,H.Xu,G.Cui, and L.Chen,ACS Appl.Mat.Interfaces 4,658(2012). (b)S.Zhang,L.Zhu,H.Song,X.Chen,and J.Zhou, Nano Energy 10,172(2014).

    [9](a)L.M.Alrehaily,J.M.Joseph,A.Y.Musa,D.A. Guzonas,and J.C.Wren,Phys.Chem.Chem.Phys. 15,98(2013). (b)L.M.Alrehaily,J.M.Joseph,J.C.Wren,J.Phys. Chem.C 119,16321(2015). (c)A.Ans′on-Casaos,J.A.Pu′ertolas,F.J.Pascual, J.Hern′andez-Ferrer,P.Castell,A.M.Benito,W.K. Maser,and M.T.Martnez,Appl.Surf.Sci.301,264 (2014). (d)B.Zhang,L.Li,Z.Wang,S.Xie,Y.Zhang,Y. Shen,M.Yu,B.Deng,Q.Huang,C.Fan,and J.Li,J. Mater.Chem.A 22,7775(2012).

    [10]Y.Xiao,X.Wang,W.Wang,D.Zhao,and M.Cao, ACS Appl.Mat.Interfaces 6,2051(2014).

    [11]D.Kang,Q.Liu,R.Si,J.Gu,W.Zhang,and D.Zhang, Carbon 99,138(2016).

    [12](a)Q.Sun,Z.Wang,Z.Zhang,Q.Yu,Y.Qu,J.Zhang, Y.Yu,and B.Xiang,ACS Appl.Mat.Interfaces 8,6303 (2016). (b)L.Li,A.Kovalchuk,H.Fei,Z.Peng,Y.Li,N.D. Kim,C.Xiang,Y.Yang,G.Ruan,and J.M.Tour, Adv.Energy Mater.5,1500171(2015). (c)R.Wang,C.Xu,J.Sun,L.Gao,and H.Yao,ACS Appl.Mat.Interfaces 6,3427(2014). (d)M.Yu,A.Wang,Y.Wang,C.Li,and G.Shi, Nanoscale 6,11419(2014). (e)T.Hu,X.Sun,H.Sun,G.Xin,D.Shao,C.Liu,and J.Lian,Phys.Chem.Chem.Phys.16,1060(2014). (f)Z.Y.Sui,C.Wang,Q.S.Yang,K.Shu,Y.W.Liu, B.H.Han,and G.G.Wallace,J.Mater.Chem.A 3, 18229(2015). (g)Z.S.Wu,W.Ren,L.Xu,F.Li,and H.M.Cheng, ACS Nano 5,5463(2011).

    [13]H.Wang,Z.Xu,Z.Li,K.Cui,J.Ding,A.Kohandehghan,X.Tan,B.Zahiri,B.C.Olsen,C.M.Holt,and D.Mitlin,Nano Lett.14,1987(2014).

    [14]Y.Xiao and M.Cao,ACS Appl.Mat.Interfaces 7, 12840(2015).

    [15](a)H.Xiong,M.D.Slater,M.Balasubramanian,C.S. Johnson,and T.Rajh,J.Phys.Chem.Lett.2,2560 (2011). (b)J.Zhang,W.Zhang,T.He,I.S.Amiinu,Z.Kou, J.Li,and S.Mu,Carbon 115,95(2017).

    [16]S.Ardizzone,G.Fregonara,and S.Trasatti,Electrochim.Acta 35,263(1990).

    ceived on March 30,2017;Accepted on April 22,2017)

    ?Author to whom correspondence should be addressed.E-mail: jihengx@ustc.edu.cn,Tel./FAX:+86-551-63607290

    成人特级av手机在线观看| av在线播放精品| 国产欧美日韩一区二区三区在线 | 性色av一级| 欧美国产精品一级二级三级 | 一个人看视频在线观看www免费| 亚洲欧洲国产日韩| 久久亚洲国产成人精品v| 少妇 在线观看| 黄色怎么调成土黄色| 欧美区成人在线视频| 国产 精品1| 我的老师免费观看完整版| 欧美潮喷喷水| 天堂俺去俺来也www色官网| 久久久精品94久久精品| 国产真实伦视频高清在线观看| 成年免费大片在线观看| 草草在线视频免费看| 免费黄频网站在线观看国产| 少妇丰满av| 交换朋友夫妻互换小说| 在线看a的网站| 内射极品少妇av片p| 久久精品国产亚洲av天美| 欧美激情在线99| 国产女主播在线喷水免费视频网站| 久久久久久久大尺度免费视频| 精品久久国产蜜桃| 亚洲真实伦在线观看| 日本-黄色视频高清免费观看| 欧美高清性xxxxhd video| 51国产日韩欧美| 免费观看的影片在线观看| 亚洲精品自拍成人| 18禁动态无遮挡网站| 亚洲精品久久午夜乱码| 99热国产这里只有精品6| 寂寞人妻少妇视频99o| 欧美成人午夜免费资源| 一区二区三区四区激情视频| 99精国产麻豆久久婷婷| 青春草视频在线免费观看| 国产伦精品一区二区三区四那| 91精品国产九色| 秋霞在线观看毛片| 丰满少妇做爰视频| 美女xxoo啪啪120秒动态图| 97超视频在线观看视频| 国产精品久久久久久精品电影| 国产午夜精品久久久久久一区二区三区| av福利片在线观看| 成人免费观看视频高清| 国产色婷婷99| 国产精品麻豆人妻色哟哟久久| 精品99又大又爽又粗少妇毛片| 国产精品99久久99久久久不卡 | 精品国产露脸久久av麻豆| 亚洲在线观看片| 99久久精品一区二区三区| 日韩电影二区| 国产高清三级在线| 久久精品国产a三级三级三级| 如何舔出高潮| 免费看av在线观看网站| 欧美日韩亚洲高清精品| 亚洲图色成人| 韩国高清视频一区二区三区| 最近手机中文字幕大全| 午夜福利视频1000在线观看| 插阴视频在线观看视频| 亚洲欧美清纯卡通| 亚洲精品国产av成人精品| 精品久久久久久久末码| 久久人人爽av亚洲精品天堂 | 日韩中字成人| 亚洲欧洲国产日韩| 又粗又硬又长又爽又黄的视频| 深爱激情五月婷婷| 欧美少妇被猛烈插入视频| 成人漫画全彩无遮挡| 日韩大片免费观看网站| 国产精品一区二区性色av| 在线看a的网站| 另类亚洲欧美激情| 国产日韩欧美亚洲二区| 欧美高清性xxxxhd video| 热re99久久精品国产66热6| 国产爽快片一区二区三区| 极品教师在线视频| 日韩视频在线欧美| 岛国毛片在线播放| 国产毛片在线视频| 日日摸夜夜添夜夜添av毛片| 国产 一区 欧美 日韩| 国产在线一区二区三区精| 国产v大片淫在线免费观看| 亚洲欧美日韩另类电影网站 | 亚洲欧美成人综合另类久久久| 中文欧美无线码| 精品国产乱码久久久久久小说| 99热网站在线观看| 久久久久久伊人网av| 我的女老师完整版在线观看| 亚洲激情五月婷婷啪啪| 美女脱内裤让男人舔精品视频| 老司机影院毛片| 欧美最新免费一区二区三区| 亚洲国产高清在线一区二区三| 日本免费在线观看一区| av.在线天堂| 日产精品乱码卡一卡2卡三| 少妇人妻一区二区三区视频| 精品久久久久久久久亚洲| 在线观看一区二区三区| 久久99热这里只有精品18| 2018国产大陆天天弄谢| a级毛片免费高清观看在线播放| 美女xxoo啪啪120秒动态图| 久久人人爽av亚洲精品天堂 | 一本色道久久久久久精品综合| 精品久久久久久电影网| 亚洲av男天堂| 国产精品国产三级国产av玫瑰| 国产精品一及| 国产国拍精品亚洲av在线观看| 九色成人免费人妻av| 午夜激情久久久久久久| av又黄又爽大尺度在线免费看| 亚洲美女视频黄频| 日韩制服骚丝袜av| 免费电影在线观看免费观看| 国产成人精品婷婷| 97在线视频观看| 舔av片在线| 一级毛片久久久久久久久女| 亚洲色图综合在线观看| 校园人妻丝袜中文字幕| 国产免费一区二区三区四区乱码| 一区二区三区免费毛片| 亚洲最大成人手机在线| 99热6这里只有精品| 久久精品久久久久久久性| 高清毛片免费看| 老女人水多毛片| 国产伦精品一区二区三区四那| 日本熟妇午夜| 精品酒店卫生间| 亚洲电影在线观看av| 成人毛片a级毛片在线播放| 91午夜精品亚洲一区二区三区| 亚洲av国产av综合av卡| freevideosex欧美| 国产 一区精品| 少妇被粗大猛烈的视频| 99久久中文字幕三级久久日本| 777米奇影视久久| 91久久精品国产一区二区三区| 免费观看性生交大片5| 美女内射精品一级片tv| 成年人午夜在线观看视频| 少妇人妻精品综合一区二区| 99热这里只有精品一区| 亚洲av在线观看美女高潮| 乱码一卡2卡4卡精品| 99热这里只有是精品50| 18+在线观看网站| 国产精品.久久久| 国产高潮美女av| 黄片wwwwww| 高清av免费在线| 亚洲av一区综合| 日韩免费高清中文字幕av| 秋霞在线观看毛片| 日本三级黄在线观看| 精品视频人人做人人爽| 特级一级黄色大片| 欧美xxⅹ黑人| 国产乱人视频| 神马国产精品三级电影在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品色激情综合| 在线观看国产h片| 最后的刺客免费高清国语| 天堂俺去俺来也www色官网| 精品亚洲乱码少妇综合久久| a级一级毛片免费在线观看| 夫妻性生交免费视频一级片| 国产亚洲5aaaaa淫片| 丰满人妻一区二区三区视频av| 欧美性猛交╳xxx乱大交人| 一级毛片我不卡| 嘟嘟电影网在线观看| 日韩电影二区| 三级男女做爰猛烈吃奶摸视频| 免费高清在线观看视频在线观看| 国产精品秋霞免费鲁丝片| 欧美少妇被猛烈插入视频| 亚洲国产最新在线播放| 久久99热6这里只有精品| 高清在线视频一区二区三区| 亚洲国产精品999| 成人亚洲欧美一区二区av| 亚洲av中文av极速乱| 国产精品av视频在线免费观看| 夫妻午夜视频| 一本久久精品| 99久国产av精品国产电影| 国产中年淑女户外野战色| 97在线人人人人妻| 熟女av电影| 肉色欧美久久久久久久蜜桃 | 日本av手机在线免费观看| 2021少妇久久久久久久久久久| 男人狂女人下面高潮的视频| 丝袜喷水一区| 国产探花极品一区二区| 男人舔奶头视频| 亚洲国产精品专区欧美| 亚洲av免费在线观看| 国产精品精品国产色婷婷| 热99国产精品久久久久久7| 蜜桃亚洲精品一区二区三区| 高清视频免费观看一区二区| 国产熟女欧美一区二区| av天堂中文字幕网| 国产永久视频网站| 草草在线视频免费看| 国产国拍精品亚洲av在线观看| 亚洲国产精品成人综合色| 免费看av在线观看网站| 精品少妇黑人巨大在线播放| 国产极品天堂在线| 一区二区av电影网| 偷拍熟女少妇极品色| 一本一本综合久久| 久久久久久久国产电影| kizo精华| 国产成人精品久久久久久| 久久99热这里只有精品18| 18禁在线播放成人免费| 亚洲欧美清纯卡通| 亚洲精品456在线播放app| 国产探花在线观看一区二区| 精品少妇黑人巨大在线播放| 日本黄大片高清| 亚洲av.av天堂| 性插视频无遮挡在线免费观看| 国产精品国产三级国产专区5o| 新久久久久国产一级毛片| 黄色配什么色好看| 日产精品乱码卡一卡2卡三| 少妇的逼好多水| 18禁在线无遮挡免费观看视频| 免费在线观看成人毛片| 精品人妻一区二区三区麻豆| 日韩,欧美,国产一区二区三区| 两个人的视频大全免费| 街头女战士在线观看网站| 久久久成人免费电影| 一二三四中文在线观看免费高清| 丝袜脚勾引网站| 亚洲精品乱码久久久v下载方式| 国产毛片在线视频| 久久99蜜桃精品久久| 在线观看三级黄色| 丰满少妇做爰视频| 欧美丝袜亚洲另类| 80岁老熟妇乱子伦牲交| 成人亚洲欧美一区二区av| 2021天堂中文幕一二区在线观| 精品久久久久久电影网| 国产视频首页在线观看| 精品久久久久久久末码| 午夜爱爱视频在线播放| 新久久久久国产一级毛片| 99视频精品全部免费 在线| 国产黄频视频在线观看| 大片电影免费在线观看免费| 一区二区三区四区激情视频| 欧美3d第一页| 精品久久久久久久人妻蜜臀av| 老司机影院毛片| 婷婷色综合大香蕉| 激情五月婷婷亚洲| 最后的刺客免费高清国语| 欧美 日韩 精品 国产| 91精品一卡2卡3卡4卡| 国产爱豆传媒在线观看| 97超视频在线观看视频| 天天躁日日操中文字幕| 免费黄网站久久成人精品| 伊人久久精品亚洲午夜| 久久精品人妻少妇| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久亚洲中文字幕| 高清视频免费观看一区二区| 3wmmmm亚洲av在线观看| 日本爱情动作片www.在线观看| 国产久久久一区二区三区| 免费大片黄手机在线观看| 国产黄频视频在线观看| 久久久精品94久久精品| 日本欧美国产在线视频| 丝袜喷水一区| 天堂中文最新版在线下载 | 国产精品三级大全| 欧美成人一区二区免费高清观看| 久久99热6这里只有精品| 秋霞伦理黄片| 日本-黄色视频高清免费观看| 久久久久久伊人网av| 91久久精品国产一区二区成人| 韩国高清视频一区二区三区| 亚洲丝袜综合中文字幕| 午夜福利在线观看免费完整高清在| 亚洲美女视频黄频| 色播亚洲综合网| 中文字幕亚洲精品专区| 特级一级黄色大片| 汤姆久久久久久久影院中文字幕| 精品久久久久久久久av| 人妻系列 视频| 国产又色又爽无遮挡免| 国产一区二区三区av在线| 永久免费av网站大全| 日本午夜av视频| 免费观看性生交大片5| 美女高潮的动态| 十八禁网站网址无遮挡 | 五月天丁香电影| 直男gayav资源| 亚洲国产日韩一区二区| 日本色播在线视频| 校园人妻丝袜中文字幕| 亚洲成人一二三区av| 国产精品.久久久| 亚洲国产欧美在线一区| 国产美女午夜福利| 80岁老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| 午夜免费鲁丝| 特大巨黑吊av在线直播| 麻豆成人av视频| 黄片wwwwww| 久久韩国三级中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产av码专区亚洲av| 免费电影在线观看免费观看| 国产亚洲精品久久久com| 国产色婷婷99| 欧美精品一区二区大全| 国产精品爽爽va在线观看网站| 简卡轻食公司| av专区在线播放| 亚洲激情五月婷婷啪啪| 亚洲aⅴ乱码一区二区在线播放| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 成人特级av手机在线观看| 久久久久国产精品人妻一区二区| 国产成人freesex在线| 国产亚洲5aaaaa淫片| 69人妻影院| 晚上一个人看的免费电影| 黄色配什么色好看| 18禁裸乳无遮挡动漫免费视频 | 在线观看一区二区三区激情| 欧美三级亚洲精品| 久久久国产一区二区| 国产人妻一区二区三区在| 在线播放无遮挡| 最新中文字幕久久久久| 成年人午夜在线观看视频| 日韩在线高清观看一区二区三区| 国产极品天堂在线| 搡老乐熟女国产| 成人鲁丝片一二三区免费| 国产有黄有色有爽视频| 精品午夜福利在线看| 在线免费十八禁| 少妇的逼水好多| 日本与韩国留学比较| 国产高清有码在线观看视频| 亚洲久久久久久中文字幕| 欧美最新免费一区二区三区| 一级毛片 在线播放| 在现免费观看毛片| 午夜免费观看性视频| 只有这里有精品99| 69人妻影院| 免费黄网站久久成人精品| 黄色日韩在线| 国产精品一及| 亚洲国产色片| 人人妻人人看人人澡| 亚洲精品久久久久久婷婷小说| 免费大片18禁| av在线老鸭窝| 亚洲精品,欧美精品| 日韩欧美精品免费久久| 少妇的逼水好多| av免费观看日本| 一区二区三区乱码不卡18| 一级毛片aaaaaa免费看小| 一区二区三区精品91| 能在线免费看毛片的网站| 日韩欧美一区视频在线观看 | 国产人妻一区二区三区在| 亚洲欧美成人精品一区二区| eeuss影院久久| 亚洲欧美清纯卡通| 一级毛片aaaaaa免费看小| 亚洲熟女精品中文字幕| 日日摸夜夜添夜夜爱| 成人美女网站在线观看视频| 91aial.com中文字幕在线观看| 校园人妻丝袜中文字幕| 国产一区有黄有色的免费视频| 少妇人妻一区二区三区视频| 国产精品99久久99久久久不卡 | 欧美激情在线99| 丝袜喷水一区| 免费高清在线观看视频在线观看| 亚洲高清免费不卡视频| 波多野结衣巨乳人妻| 久久久久精品久久久久真实原创| 老司机影院成人| 欧美激情国产日韩精品一区| 免费电影在线观看免费观看| a级毛色黄片| 全区人妻精品视频| av在线天堂中文字幕| 在线观看人妻少妇| 日本与韩国留学比较| 一级毛片我不卡| 91精品一卡2卡3卡4卡| 成人国产麻豆网| 51国产日韩欧美| 国产精品一区二区在线观看99| 中文精品一卡2卡3卡4更新| 热re99久久精品国产66热6| 国产熟女欧美一区二区| 男女边吃奶边做爰视频| 国产欧美日韩一区二区三区在线 | 中文字幕av成人在线电影| 一本久久精品| 国产毛片a区久久久久| 高清av免费在线| 国产精品久久久久久精品古装| 高清午夜精品一区二区三区| 中国国产av一级| av在线app专区| 汤姆久久久久久久影院中文字幕| 成人无遮挡网站| 80岁老熟妇乱子伦牲交| 男女下面进入的视频免费午夜| 国产免费福利视频在线观看| 中国三级夫妇交换| 久久99热6这里只有精品| 精品熟女少妇av免费看| 日本爱情动作片www.在线观看| 99热这里只有是精品50| 国产午夜精品久久久久久一区二区三区| 国产在视频线精品| 特级一级黄色大片| 亚州av有码| av线在线观看网站| 蜜臀久久99精品久久宅男| 免费观看的影片在线观看| 日本熟妇午夜| 欧美国产精品一级二级三级 | 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| 人人妻人人澡人人爽人人夜夜| 激情 狠狠 欧美| tube8黄色片| 国产一区二区三区av在线| 2021少妇久久久久久久久久久| 尾随美女入室| 爱豆传媒免费全集在线观看| 九九爱精品视频在线观看| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 久久久久久九九精品二区国产| 久久精品久久精品一区二区三区| 国产成人精品一,二区| 精品人妻视频免费看| 在线免费十八禁| 白带黄色成豆腐渣| 国国产精品蜜臀av免费| 高清在线视频一区二区三区| freevideosex欧美| 18禁裸乳无遮挡免费网站照片| 免费看不卡的av| 色吧在线观看| 国产精品蜜桃在线观看| 男的添女的下面高潮视频| 性插视频无遮挡在线免费观看| 在线播放无遮挡| 国产欧美另类精品又又久久亚洲欧美| 美女视频免费永久观看网站| 亚洲精品aⅴ在线观看| 日日摸夜夜添夜夜爱| 亚洲人成网站在线观看播放| 久久久久久伊人网av| 亚洲成人一二三区av| 成人毛片60女人毛片免费| 国产精品久久久久久av不卡| 国产精品国产av在线观看| 在线观看三级黄色| 国产爽快片一区二区三区| 亚洲精品视频女| 午夜福利视频1000在线观看| 在线精品无人区一区二区三 | 国产精品秋霞免费鲁丝片| 麻豆精品久久久久久蜜桃| 亚洲欧美精品自产自拍| 国产av国产精品国产| 少妇的逼水好多| 亚洲精品乱久久久久久| 成人亚洲精品av一区二区| 免费看a级黄色片| 精品一区二区三区视频在线| 国产精品一区二区在线观看99| 观看美女的网站| 成人欧美大片| 99久久中文字幕三级久久日本| 欧美 日韩 精品 国产| freevideosex欧美| 五月天丁香电影| 精品国产一区二区三区久久久樱花 | 久热久热在线精品观看| 在线观看av片永久免费下载| 男插女下体视频免费在线播放| 大香蕉久久网| 欧美日韩视频高清一区二区三区二| 国产欧美日韩精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 丝瓜视频免费看黄片| 少妇被粗大猛烈的视频| 性色av一级| 亚洲激情五月婷婷啪啪| 在现免费观看毛片| 精品国产一区二区三区久久久樱花 | 国产淫语在线视频| 成人国产av品久久久| 久久精品久久久久久久性| 波野结衣二区三区在线| 国产成人a∨麻豆精品| 伊人久久精品亚洲午夜| 午夜亚洲福利在线播放| av国产精品久久久久影院| 国产色婷婷99| 亚洲av免费在线观看| 亚洲国产精品国产精品| 久久久久精品久久久久真实原创| 国产精品久久久久久久久免| av在线观看视频网站免费| 秋霞在线观看毛片| 国产黄色免费在线视频| 日韩 亚洲 欧美在线| 永久免费av网站大全| 亚洲国产精品成人久久小说| 三级国产精品欧美在线观看| 丰满少妇做爰视频| 永久网站在线| 久久精品夜色国产| 汤姆久久久久久久影院中文字幕| 久久久久久久午夜电影| 国产精品麻豆人妻色哟哟久久| 少妇人妻久久综合中文| 欧美成人午夜免费资源| 3wmmmm亚洲av在线观看| 久热久热在线精品观看| 婷婷色综合大香蕉| 亚洲精品国产av蜜桃| 3wmmmm亚洲av在线观看| 亚洲精品国产av蜜桃| 亚洲精品成人久久久久久| 热re99久久精品国产66热6| 国产精品国产三级专区第一集| 秋霞在线观看毛片| av在线观看视频网站免费| 99热全是精品| 2021天堂中文幕一二区在线观| 99热全是精品| 亚洲av国产av综合av卡| 久久久久性生活片| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 亚洲精品久久久久久婷婷小说| 国产 精品1| 免费看a级黄色片| 女人被狂操c到高潮| 免费看a级黄色片| 国产精品伦人一区二区| 少妇被粗大猛烈的视频| 在线观看人妻少妇| 午夜激情久久久久久久| 国产精品不卡视频一区二区| 亚洲av电影在线观看一区二区三区 | 又黄又爽又刺激的免费视频.| 99久久精品热视频| 免费黄频网站在线观看国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人综合一区亚洲| a级毛片免费高清观看在线播放| 在线播放无遮挡| 精品少妇久久久久久888优播| 欧美激情久久久久久爽电影| 亚洲欧美日韩卡通动漫| 人人妻人人澡人人爽人人夜夜| 欧美日韩国产mv在线观看视频 | 大香蕉久久网|