• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometric Design of Anode-Supported Micro-Tubular Solid Oxide Fuel Cells by Multiphysics Simulations

    2017-09-03 07:54:15HongyuShiJiangZhuZijingLin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Hong-yu Shi,Jiang Zhu,Zi-jing Lin

    Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    Geometric Design of Anode-Supported Micro-Tubular Solid Oxide Fuel Cells by Multiphysics Simulations

    Hong-yu Shi,Jiang Zhu,Zi-jing Lin?

    Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    High volumetric power density(VPD)is the basis for the commercial success of micro-tubular solid oxide fuel cells(mtSOFCs).To find maximal VPD(MVPD)for anode-supported mt-SOFC(as-mtSOFC),the effects of geometric parameters on VPD are analyzed and the anode thickness,tan,and the cathode length,lca,are identi fied as the key design parameters.Thermo- fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters.The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters.The optimal lcaand the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin,the inner tube radius,and tan.And all these optimization are made at 1073.15 K.The results show that:(i)signi ficant performance improvement may be achieved by geometry optimization,(ii)the seemingly high MVPD of 11 and 14 W/cm3can be easily realized for as-mtSOFC with single-and double-terminal anode current collection,respectively.Moreover,the variation of the area speci fic power density with lca∈(2 mm,40 mm)is determined for three representative(rin,tan)combinations.Besides,it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.Key words:I-V relations,Thermal fluid electrochemistry model,Parametric optimization, Volumetric power density,Anode thickness

    I.INTRODUCTION

    Due to their high electrical efficiency,fuel flexibility and low pollutant emission,solid oxide fuel cells (SOFCs)bear the promise of revolutionizing the fossil fuel based power generation technology[1].For applications in the automotive field and in the auxiliary power supply sector,a new design of SOFC,i.e.,micro-tubular SOFC(mtSOFC)with a tubular diameter typically under a few millimeters,was developed in 1990s[2].Since its inception,mtSOFC has shown drastic improvements over the conventional SOFC designs on thermal shock resistance,fast startup and thermal cycling[3].As a result,mtSOFC is attracting an increased attention in the research and development community[4,5].

    High volumetric power density(VPD)is a prerequisite for the commercial success of mtSOFCs in the field of vehicle applications.To meet the requirements in practice,substantial improvements in the designs of cell geometries,stack con figurations,and system operations are required[6].As mtSOFC is a relatively new design and an mtSOFC cell is the basic electricity generating unit,most research efforts are devoted to the fabrication technique for the performance improvement at the cell level.Like the cases for planar SOFCs(pSOFCs),anode supported mtSOFCs(as-mtSOFCs)show higher performance than their electrolyte-and cathode-supported counterparts.Logically,most researchers focused on asmtSOFCs for the performance improvement[7?9].

    There are a large number of experimental studies on the performances of mtSOFCs with various choices of materials and geometries[4,10,11]. Compared with conventional SOFCs,there is hardly anything new about the material choices for mtSOFCs,e.g.,YSZ or GDC for the electrolyte,Ni-YSZ or Ni-GDC for the anode,LSCF or LSM for the cathode.However,there are completely new geometric parameters for mtSOFCs, e.g.,the tube diameter and length.Moreover,the anode thickness emerges as an in fluential design parameter as it affects the cell volume and mass that in turn affect the VPD and thermal behavior of mtSOFC.The anode thickness also affects the current collection in most mt-SOFC designs that in turn affects the current output of mtSOFC[4].Furthermore,it has been observed that the cathode location can have substantial in fluence on the output of mtSOFC[11].Clearly,attention should be paid to these new geometric parameters when deve-loping the mtSOFC technology.

    There are large differences in the values of anode thickness,tube diameter and cell length of the reported as-mtSOFCs.The anode thickness,though mainly in the range of 200?300μm,varies from 130μm[12]to 2 mm[13].The inner tube diameter is centered around 2 mm,but may vary from 0.8 mm to 22 mm[4].The cell length varies from a few mm to 160 mm[14?16]. The wide variations in the geometric parameters of the manufactured mtSOFCs may be partly attributed to the difference in the fabrication abilities of different groups.More importantly,the phenomenon re flects the fact that there is no good understanding about the correlation between the geometries and cell performance. Improved understanding is necessary for the realization of the best performing mtSOFCs to make their practical applications a reality.As experimental examination is expensive and time consuming,numerical models incorporating the physics of SOFC to predict the performance are invaluable tools for the understanding and development of mtSOFCs.

    In this work,the impact of geometric parameters on VPD of as-mtSOFC was examined by performing systematic multiphysics numerical simulations.The multiphysics model considers the intricate interdependency among the ionic and electronic conductions,gas transport,and electrochemical reaction.The model is validated by comparison with experimental results.Simulations with this validated numerical model provide detailed information about the dependence of VPD on geometric parameters.The optimal geometric parameters and the corresponding power output can be used to guide the design and optimization of as-mtSOFCs.

    II.THEORETICAL METHOD

    A multiphysics model was built and applied to the geometric model of mtSOFC.Simulations of the multiphysics model are carried out to examine the effect of geometric parameters on the cell output.Optimal geometric parameter sets are determined based on the optimization objective as well as practicality considerations.

    A.Geometric model and optimization target

    A schematic of an as-mtSOFC is shown in FIG.1(a). The mtSOFC consists of a porous anode as the inner layer,a dense electrolyte as the middle layer,and a porous cathode as the outer layer.On the cathode side, the current is collected through the cathode surface.On the anode side,the current is collected through the anode current collector(s)at one or both sides of the anode tube.Due to the axial symmetry of mtSOFC,it is necessary only to apply a two-dimensional(2D)geometric model illustrated in FIG.1(b)for the numericalsimulation.The actual 3D structure of the mtSOFC is obtained by revolving the 2D computational domain around the symmetry axis.

    FIG.1 Schematic diagram of mtSOFC.(a)3D structure, (b)2D computational domain.

    The goal of multiphysics simulations is to find the geometric parameters that maximize VPD=Pm/Vcell, where Pmand Vcellare respectively the maximum electrical power output and the overall volume of the mt-SOFC cell.Vcellis calculated as,

    where lcell,rout,and rinare respectively the length,the outer radius and inner radius of the mtSOFC cell,tan, teland tcaare the thickness of anode,electrolyte and cathode,respectively.The cell length is set as lel+?l, where lelis the length of electrolyte and?l accounts for the required anode current collector,edge sealing,cell connection in a stack,etc.The value of?l is determined by the manufacturing practice.In this work,a value of 6 mm,namely 3 mm for each tube terminal,is used for?l.Such a value for?l is believed to be sufficiently large for practical purpose[3].It is used here also for the purpose of avoiding an overstated maximum VPD (MVPD)achievable by the geometry optimization.

    It is reasonable to assume that the current outputis roughly proportional to the area of electrochemically active region,

    where lcais the cathode length(FIG.1).For a fixed tube radius,the cathode area is proportional to lca. Therefore,it is trivial to expect that MVPD is obtained with the largest possible lca,i.e.,lca=lel.Though no optimization of lcais necessary,lcaand the cathode position relative to the anode current collector are variable in the geometric model of FIG.1(b)so that the simulation results may be compared with the relevant experiments.

    Note that the cell volume increases quadratically with rin,tan,teland tca,while the electrochemically active area increases linearly with rinand tan.This observation calls for as small values of rin,tan,teland tcaas possible for obtaining MVPD.In addition,reducing telalso reduces the ohmic polarization.It is then clear that telshould be as small as possible.However,there is a practical lower limit for teldue to the fabrication technique and the required mechanical strength and gas tightness of the electrolyte layer.Though tel=1μm has been reported[17],telaround 5μm is more manageable in practice[18].Therefore,a default value of 5μm is assigned to tel,unless explicitly stated otherwise.Similarly,rincannot be too small due to the fuel supply requirement and the limitation of the fabrication technique.Reducing tcais also bene ficial for the cell performance as long as the cathode layer is adequately thick to accommodate the electrochemical reaction region that is known to be around 10μm for the widely used cathode materials[19].Consequently,tca=10μm is used in this work.

    Unlike the cases with teland tca,reducing tanis detrimental to the anode current collection by reducing the cross section of current passage for the anode current collection method shown in FIG.1.There should be an optimal balance between the needs of reducing tanfor the reduced Vcelland increasing tanfor the reduction of ohmic polarization.It is noted that the relationship between tanand the current conducting cross section is dependent on the method used for the anode current collection.However,the anode current collection shown in FIG.1 is widely used for its technical simplicity[3,4] and is the focus of this study.

    A related but different consideration is required for the geometric parameter lel=lca.Notice that both the cell volume and the current producing area increase linearly with lel=lca.Increasing lel=lcaincreases the fraction of the current producing area on the cell surface and is bene ficial for VPD.However,there is a limit on the total cell current due to the ohmic loss of anode current collection.The cell current production is in fact expected to increase less than linearly with lel.As a result,there is an optimal value of lel=lcathat yields MVPD.

    Based on the above analysis,there are basically two optimizing parameters,lcaand tan,for given rinas well as?l that are set by practical fabrication considerations.Moreover,the anode layer cannot be too thin in an as-mtSOFC.That is,the choice of tanis in fact not arbitrary.Therefore,this work focuses on finding the optimal lcell=lca+?l for a set of practical combinations of rinand tan.Nevertheless,the optimal tanfor a given rinis also examined.

    B.Thermal fluid electrochemistry multiphysics model

    A standard set of governing equations for the currentvoltage(I-V)relation,mass and momentum transports are applied.The multiphysics equations and the associated source terms used are shown as follows.

    For I-V relation:

    For charge transport:

    For mass transport[20]:

    For momentum transport:

    (i)fuel channel,

    (ii)porous electrode,

    Most variables and parameters mentioned in Eq.(3)?Eq.(13)are self explanatory.Details about the governing equations and their source terms,boundary conditions,numerical grids and solver,basic parameters for physical properties of materials and cell operating conditions,etc.,are referred to Ref.[7].The multiphysics model has been shown to provide I-V curves that are in very good agreement with the experimental results for both pSOFC and mtSOFC consisting of Ni-YSZ anode/YSZ electrolyte/LSM-YSZ cathode[7,10,21,22].

    Although the multiphysics model employs a set of governing equations that are quite general,the numerical results are dependent on the values of model parameters.To avoid using a large number of variable material parameters,only the material combination of Ni-YSZ anode/YSZ electrolyte/LSM-YSZ cathode with parameters described in Ref.[7]is considered here.Notice that this is not a limitation as it appears to be. Instead,the optimization results are in fact quite general. This is because that,as discussed above,the thicknesses of electrolyte and cathode are not the true geometric optimization targets.The optimal cell and electrolyte/cathode lengths are closely related to the electronic conductivity of the anode.Considering the fact that Ni is currently a universal material choice for SOFC anodes,the anode electronic conductivity is determined by the Ni content.Consequently,the Ni-YSZ based optimization results are of broad implications as they are valid also for other Ni based anode materials, e.g.,Ni-GDC,Ni-SDC,Ni-CGO,etc.

    III.RESULTS AND DISCUSSION

    A.Dependence of cell performance on the cathode location

    The in fluence of the cathode location on the cell performance has been examined experimentally by comparing the electrochemical performances of four single cells[11].The four single cells composed of Ni-YSZ anode/YSZ electrolyte/LSM-YSZ cathode were essentially identical,but differed in the distance,d,between the cathode and the anode current collector.The four single cells,cell A,cell B,cell C and cell D,correspond to d=2,5,8 and 14 cm,respectively.Geometric models were built to correspond to the speci fications of the four single cells and the same set of property parameters as described in Ref.[7]was applied for the multiphysics simulations.The parameter set of Ref.[7]have been shown to reproduce the experimental results of Ref.[10]very well.With this set of parameters,the theoretical I-V curves for the four single cells are shown together with the experimental data in FIG.2.As seen in FIG.2,the theoretical and experimental results are in very good agreement.The result is remarkable as the values of all the model parameters are exactly the same as that in Ref.[7]and there is no fitting parameter used in this study.The ability to reproduce two independent experiments[10,11]with the same set of parameters demonstrates convincingly the predictive power of the multiphysics model employed here.

    FIG.2 Comparison of the theoretical and experimental I-V curves of four single cells A,B,C,D that differ in the distance d between the cathode and the anode current collector with d=2,5,8,14 cm,respectively.

    The decreased cell performance with the increased d shown in FIG.2 is simply due to the associated increase of the ohmic loss of current collection.The current is collected by traveling a distance of d and passing through a cross section area:

    For the above four single cells,tan≈rin≈1.5 mm[11] and Aanis relatively large at about 20 mm2.For such a large Aan,the decrease in the cell performance is already noticeable for a distance of a few centimeters,as shown in FIG.2.For a typical mtSOFC with Aan≈1 mm2[4],a cell performance decrease is therefore expected to be substantial for an increase of d in the order of a few millimeters.As a result,the bene fit of increasing lcafor the cell current production quickly diminishes while the rate of cell volume increase remains constant. Therefore, finding an optimal lcathat maximizes VPD is important in practice.

    B.Optimal cell length with single-terminal anode current collection

    Multiphysics simulations were performed for 20 combinations of(rin,tan),with rin=(0.4,0.85,1.5,3.0, 5.0 mm)and tan=(100,200,300,500μm).The ranges of rinand tanare chosen to cover the ranges of tube radius and anode thickness of known mtSOFCs that use anode tube terminal current collection[4].lcais varied for the search of MVPD.The optimal lcaand the corresponding MVPD for each of the 20 combinations of (rin,tan)are shown in Table I.

    TABLE I Cell lengths that maximize VPD at T=1073.15 K for different combinations of anode thickness,tan,and inner tube radius,rin.The cell uses a single-terminal anode current collector and lcell=lca+6 mm.lcais in mm and MVPD in W/cm3.

    As seen in Table I,the optimal cell length,or the corresponding lca,is mainly determined by tanand weakly dependent on rin.On one hand,as can be seen in Eq.(2) and Eq.(14),for a given rin,an increase of tan,?tan, causes a relative increase of Aanby

    and a relative increase of AECby

    Due to the extra capacity of current conduction provided by the larger increase of Aan,lcaincreases with tan,as shown in Table I.On the other hand,for a given tan,an increase of rin,?rin,corresponds to

    Thatis, ?Aan/Aanisonly slightly largerthan?AEC/AEC.As a result,there is only a small increase of lcafor the increase of rin.

    The optimal tanfor a given rin,in terms of yielding the highest MVPD,is also shown together with the optimized lcaand MVPD in Table I.As expected and discussed above,Table I shows that MVPD increases with the reduced rin.A small rinmeans a small AECand does not require a large current conducting capacity.Meanwhile,an increase of tancorresponds to a large relative change in Vcell.As a result,the optimal tanfor finding MVPD is small for a small rin,as seen in Table I.

    It should be noticed that the data in Table I are obtained with a set of conventional and mature materials,i.e.,Ni-YSZ anode/YSZ electrolyte/LSM-YSZ cathode.A thickness of 5μm assumed for the electrolyte layer should also impose no signi ficant challenge on fabrication technique[4,17,18].The tube outer diameter for practical mtSOFCs is often under 2 mm [4].Such a tube is about the size of the tube with rin=850μm and tan=150?200μm.Moreover,an ample room,?l=6 mm of the tube length,has been allocated for the current collection and stack assembly[23]. Therefore,it may be concluded that the seemingly high MVPD=11 W/cm3for rin=0.85 mm is not only achievable,but also surpassable in practice.

    As the practical lcamay not be optimal due to various considerations,FIG.3 shows the dependence of the maximum area speci fic power density,pm=Pm/AEC, on lcafor three combinations of(rin,tan):(0.4 mm, 100μm),(0.85 mm,200μm),(1.5 mm,300μm). The three(rin,tan)combinations are representative as rin∈(0.4 mm,1.5 mm)and tan∈(100μm,300μm)are reported for most mtSOFCs[4].For other practically chosen(rin,tan)with rinand tanin the above stated range,pmmay be estimated by suitable interpolation. Together with?l required in practice,VPD can then be predicted and used to help the design of mtSOFC. As a special case of practical interest,FIG.3 shows that pm≈0.9 W/cm2may be expected for as-mtSOFC with (rin=0.85 mm,tan=200μm,lca=10 mm).

    C.Optimal cell length with double-terminal anode current collection

    Similar to the cases with single-terminal anode current collection(STACC),multiphysics simulations were performed for mtSOFCs with double-terminal anode current collection(DTACC).The results for the optimal lcaand MVPD are shown in Table II.Due to the same reason analyzed above,the results shown in Table II and Table I are qualitatively the same concerning:(i)lcaincreases with the increase of tanmuch more than with the increase of rin.(ii)MVPD decreases while the optimal tanincreases with the increase of rin.Moreover,it is natural to see that lcaand MVPD are larger for DTACC than for STACC. Though the length of current pathway is cut by half from STACC to DTACC,lca(DTACC)is less than 2lca(STACC)for MVPD as pmdecreases with lca,as shown in FIG.3.As a result,lca(DTACC)is about 60%larger than lca(STACC)for finding MVPD.It is noted in Table I that lca(DTACC)/lca(STACC)is fairly constant,whereas MVPD(DTACC)/MVPD(STACC) shows a little more variation and decreases with the increased lca. Nevertheless,it is a good approximations to say that MVPD(DTACC)is 30%higherthan MVPD(STACC).For the practical combination of(rin≈0.85 mm,tan≈150μm),an MVPD of over 15 W/cm3may be expected with DTACC.

    TABLE II Cell lengths that maximize VPD at T=1073.15 K for different combinations of(rin,tan).The cell uses a double-terminal anode current collector and lcell=lca+6 mm.lcais in mm and MVPD in W/cm3.

    FIG.3The maximum area speci fic power density,pm, by single-terminal anode current collection(STACC)vs. the cathode length,lca,for(rin,tan)=(0.4 mm,100μm), (0.85 mm,200μm)and(1.5 mm,300μm).

    To provide more information about the performance of mtSOFC versus the tube size,FIG.4 shows the dependence of pmon lcafor the three combinations of(rin, tan):(0.4 mm,100μm),(0.85 mm,200μm),(1.5 mm, 300μm).Comparison of FIG.3 and 4 shows clearly that pmis higher for DTACC than for STACC.Notice that theoretically pmfor DTACC is the same as pmfor STACC when lcaapproaches zero.The improvement on pmwith DTACC is attributed to the fact that the length of current conducting path and the amount of current collected by each collector are both cut by half in comparison with that in STACC. The ohmic loss with DTACC is reduced by the shortened conducting path and the reduced current amount. As both the conducting path and the total current increase with lca,the ohmic loss reduction increases with the increased lca.Consequently,the improvement on pmwith DTACC increases with the increased lca. Similarly,pmwith DTACC deceases slower than that with STACC for the increased lca,as shown in FIG. 3 and 4.Increasing lcafor the increased pmis more meaningful with DTACC than with STACC.Though STACC may be convenient and is the main method in use,the effort of developing DTACC technique is worthwhile for reasonably large lca,say,6 mm or more. For(rin=0.85 mm,tan=200μm,lca=10 mm),pmis increased from 0.9 W/cm2for STACC to 1.2 W/cm2for DTACC.

    FIG.4 pmby double-terminal anode current collection (DTACC)vs. lcafor(rin,tan)=(0.4 mm,100μm), (0.85 mm,200μm)and(1.5 mm,300μm).

    D.Primitive comparison of the performances of mtSOFC and pSOFC

    It is a common perception that mtSOFC is advantageous on thermal shock resistance and fast startup as well as thermal cycling,but suffers from the drawback of much lower current output than that of pSOFC.As shown above,however,the cell current production can be substantially improved by the geometric optimization and by using DTACC instead of the conventional STACC.In fact,FIG.4 indicates that the performance of mtSOFC can be comparable with that of the state of the art pSOFC[21].It should be interesting to compare the performances of mtSOFC and pSOFC.However,a quality comparison should examine the effect of a number of key design parameters and require a dedicated effort of study.Consequently,only a preliminary comparison is made here.

    As the experimental results reported in Ref.[21]are representative of the best performing pSOFC,the same set of materials and relevant geometric parameters are used for mtSOFC.In addition,the practical parametersof(rin=0.85 mm,tan=200μm,lca=10 mm)are assigned for the mtSOFC.FIG.5 compares the I-V curves and power densities of the theoretical mtSOFC and experimental pSOFC cells.

    FIG.5 Comparison of I-V and I-p relations of mtSOFC and pSOFC(p:area speci fic power density).

    As shown in FIG.5,the power output of mtSOFC is in fact quite comparable to its pSOFC counterpart. This is understandable as the material properties of the two cells are similar and the extra ohmic loss in mt-SOFC with lca=10 mm and tan=200μm is quite limited(FIG.4).That is,with proper selections of geometric parameters,the electrochemical performance of mtSOFCs can be sufficiently high and very close to that of pSOFCs.The observed phenomenon that the current output of mtSOFC is much lower than that of pSOFC is caused by immature fabrication technique and poor choice of geometric parameters.In other words,the common perception that the current output of mtSOFC is much lower than that of pSOFC is inaccurate and misguided.

    IV.CONCLUSION

    Based on this study,the following results are obtained.(i)rin,tanand lcaare the main geometric parameters affecting VPD of as-mtSOFC.(ii)The multiphysics model employed is capable of reproducing experimental I-V curves with no adjustable parameters. (iii)The optimal values of lcaand the corresponding MVPDs are found for 20 combinations of(rin,tan)with five representative rinand four representative tan.(iv) The variation of pmwith lca∈(2 mm,40 mm)is determined for three representative combinations of(rin, tan).(v)The electrochemical performances of mtSOFC and pSOFC are comparable.

    The numerical results show that:(i)for(rin=850μm, tan=200 μm) representative ofthe practicalasmtSOFCs and T=800?C,the seemingly high MVPD of 11 and 14 W/cm3can be easily realized for STACC and DTACC,respectively;(ii)considering the practical lcaof about 1 cm,it is realistic to expect pmof about 0.9 and 1.2 W/cm2for as-mtSOFC with STACC and DTACC,respectively;(iii)signi ficant performance improvement may be achieved by geometry optimization. The performance of optimized as-mtSOFC is comparable to that of pSOFC.Based on these numerical results, it is concluded that mtSOFC is a promising technology for vehicle applications.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11374272 and No.11574284)and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

    [1]T.Suzuki,Z.Hasan,Y.Funahashi,T.Yamaguchi,Y. Fujishiro,and M.Awano,Science 325,852(2009).

    [2]K.K.T.Alston,M.Palin,M.Prica,and P.Windibank, J.Power Sources 71,271(1998).

    [3]V.Lawlor,S.Griesser,G.Buchinger,A.G.Olabi,S. Cordiner,and D.Meissner,J.Power Sources 193,387 (2009).

    [4]V.Lawlor,J.Power Sources 240,421(2013).

    [5]J.Li and Z.Lin,Int.J.Hydrogen Energ.37,12925 (2012).

    [6]A.Li,C.Song,and Z.Lin,Appl.Energ.190,1234 (2017).

    [7]J.Li,W.Kong,and Z.Lin,J.Power Sources 232,106 (2013).

    [8]B.X.Wang,Z.Jiang,and Z.J.Lin,Chin.J.Chem. Phys.28,299(2015).

    [9]K.S.Howe,G.J.Thompson,and K.Kendall,J.Power Sources 196,1677(2011).

    [10]C.Yang,W.Li,S.Zhang,L.Bi,R.Peng,C.Chen,and W.Liu,J.Power Sources 187,90(2009).

    [11]C.Jin,J.Liu,L.Li,and Y.Bai,J.Membrane Sci.341, 233(2009).

    [12]T.Suzuki,Y.Funahashi,T.Yamaguchi,Y.Fujishiro, and M.Awano,Solid State Ionics 180,546(2009).

    [13]A.Mirahmadi and K.Vale fi,Ionics 17,767(2011).

    [14]Y.Funahashi,T.Shimamori,T.Suzuki,Y.Fujishiro, and M.Awano,J.Power Sources 163,731(2007).

    [15]A.Li and Z.Lin,Chin.J.Chem.Phys.30,139(2017).

    [16]S.B.Lee,K.i.S.Yun,T.H.Lim,R.H.Song,and D. R.Shin,ECS Transactions 7,187(2007).

    [17]T.Suzuki,M.H.Zahir,T.Yamaguchi,Y.Fujishiro,M. Awano,and N.Sammes,J.Power Sources 195,7825 (2010).

    [18]S.Lee,T.Lim,R.Song,D.Shin,and S.Dong,Int.J. Hydrogen Energ.33,2330(2008).

    [19]D.Chen,W.Bi,W.Kong,and Z.Lin,J.Power Sources 195,6598(2010).

    [20]W.Kong,H.Zhu,Z.Fei,and Z.Lin,J.Power Sources 206,171(2012).

    [21]F.Zhao and A.Virkar,J.Power Sources 141,79(2005).

    [22]W.Kong,J.Li,S.Liu,and Z.Lin,J.Power Sources 204,106(2012).

    [23]N.M.Sammes,Y.Du,and R.Bove,J.Power Sources 145,428(2005).

    ceived on April 14,2017;Accepted on May 19,2017)

    ?Author to whom correspondence should be addressed. E-mail:zjlin@ustc.edu.cn,Tel.:+86-551-63606345,FAX:+86-551-63606348

    日韩欧美国产在线观看| 日本 av在线| 免费大片18禁| 国产中年淑女户外野战色| 日本一本二区三区精品| 女同久久另类99精品国产91| 久久精品国产自在天天线| 亚洲无线在线观看| 精品无人区乱码1区二区| 中文字幕久久专区| 午夜福利高清视频| 国产精品爽爽va在线观看网站| 桃红色精品国产亚洲av| 99热这里只有是精品50| 色哟哟哟哟哟哟| 日本 av在线| 女人十人毛片免费观看3o分钟| 成年免费大片在线观看| 久久久久免费精品人妻一区二区| 午夜免费成人在线视频| 一级毛片久久久久久久久女| 91精品国产九色| 亚洲成av人片在线播放无| 国产精品久久久久久久电影| 欧美精品国产亚洲| 18禁黄网站禁片午夜丰满| 日韩大尺度精品在线看网址| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| 干丝袜人妻中文字幕| 中文字幕高清在线视频| 国产爱豆传媒在线观看| 露出奶头的视频| 精品人妻熟女av久视频| 日日摸夜夜添夜夜添小说| 999久久久精品免费观看国产| 久久久久久伊人网av| 嫩草影院入口| av在线老鸭窝| 亚洲av五月六月丁香网| 亚洲精品亚洲一区二区| 亚洲精品亚洲一区二区| 乱系列少妇在线播放| 两个人视频免费观看高清| 国内毛片毛片毛片毛片毛片| 婷婷六月久久综合丁香| 日韩中字成人| 亚洲 国产 在线| 国产男靠女视频免费网站| 国产高清激情床上av| 热99在线观看视频| 色哟哟·www| 亚洲av熟女| 精品一区二区三区视频在线| 干丝袜人妻中文字幕| 精品一区二区三区av网在线观看| 中国美白少妇内射xxxbb| 精品不卡国产一区二区三区| 又粗又爽又猛毛片免费看| 国产主播在线观看一区二区| 亚洲国产欧美人成| 99久久无色码亚洲精品果冻| 亚洲国产色片| 校园春色视频在线观看| 熟女电影av网| 国产一区二区激情短视频| 国产成人aa在线观看| av专区在线播放| ponron亚洲| 有码 亚洲区| 能在线免费观看的黄片| 久久久久久久久久成人| 亚洲美女视频黄频| 日本欧美国产在线视频| 国产伦精品一区二区三区四那| 一进一出抽搐gif免费好疼| 变态另类丝袜制服| 免费看av在线观看网站| 欧美最新免费一区二区三区| 91麻豆精品激情在线观看国产| videossex国产| 色尼玛亚洲综合影院| 欧美最新免费一区二区三区| 精品久久久久久久久av| 国产精品伦人一区二区| 国产高清不卡午夜福利| 少妇的逼好多水| 国产成人aa在线观看| 18+在线观看网站| 欧美日本亚洲视频在线播放| 最近最新免费中文字幕在线| 国产av麻豆久久久久久久| 日本免费一区二区三区高清不卡| 嫩草影院新地址| 国产精品久久电影中文字幕| 欧美区成人在线视频| 免费电影在线观看免费观看| 18禁黄网站禁片午夜丰满| 免费av观看视频| 自拍偷自拍亚洲精品老妇| 国产精品女同一区二区软件 | 久久久久久九九精品二区国产| 国产成人福利小说| 91精品国产九色| 国产白丝娇喘喷水9色精品| 久久这里只有精品中国| 99在线视频只有这里精品首页| 欧美潮喷喷水| 国产 一区精品| 亚洲国产精品成人综合色| 高清在线国产一区| 22中文网久久字幕| 亚洲七黄色美女视频| 亚洲人成网站在线播| 一级黄色大片毛片| 国产一区二区激情短视频| xxxwww97欧美| 欧美精品啪啪一区二区三区| 欧美精品国产亚洲| 蜜桃亚洲精品一区二区三区| 亚洲中文字幕日韩| 舔av片在线| 久久草成人影院| 亚洲av五月六月丁香网| АⅤ资源中文在线天堂| 精品无人区乱码1区二区| 两性午夜刺激爽爽歪歪视频在线观看| 成人国产综合亚洲| 日韩欧美一区二区三区在线观看| 国产麻豆成人av免费视频| 中国美白少妇内射xxxbb| 婷婷色综合大香蕉| www.www免费av| 国产色爽女视频免费观看| 两个人的视频大全免费| 69人妻影院| 日本在线视频免费播放| 国产女主播在线喷水免费视频网站 | 国产精品,欧美在线| 真人一进一出gif抽搐免费| 少妇的逼水好多| 国产 一区精品| 国模一区二区三区四区视频| 波多野结衣巨乳人妻| 色在线成人网| 给我免费播放毛片高清在线观看| 欧美日韩国产亚洲二区| 99久久中文字幕三级久久日本| 好男人在线观看高清免费视频| 日韩欧美在线乱码| 国产精品免费一区二区三区在线| 成年免费大片在线观看| 免费观看在线日韩| 久久久精品欧美日韩精品| 极品教师在线视频| 国产精品综合久久久久久久免费| 欧美成人性av电影在线观看| 淫妇啪啪啪对白视频| 嫩草影视91久久| 一夜夜www| 亚洲天堂国产精品一区在线| 国产精品无大码| 欧美xxxx黑人xx丫x性爽| 精品国内亚洲2022精品成人| 3wmmmm亚洲av在线观看| 久99久视频精品免费| 欧美+日韩+精品| 国产伦精品一区二区三区视频9| 男人和女人高潮做爰伦理| netflix在线观看网站| 3wmmmm亚洲av在线观看| 一进一出抽搐动态| av福利片在线观看| 超碰av人人做人人爽久久| 久久精品国产亚洲av天美| 欧美日韩黄片免| 久久久精品欧美日韩精品| 内地一区二区视频在线| 国产三级中文精品| 日韩欧美精品免费久久| 伊人久久精品亚洲午夜| 亚洲内射少妇av| 极品教师在线视频| 中文字幕av成人在线电影| 国产高清有码在线观看视频| 日本一本二区三区精品| 亚洲中文字幕一区二区三区有码在线看| 欧美bdsm另类| 九色成人免费人妻av| 一个人观看的视频www高清免费观看| 欧美另类亚洲清纯唯美| 日本熟妇午夜| 两个人的视频大全免费| 自拍偷自拍亚洲精品老妇| 亚洲精品国产成人久久av| 18禁裸乳无遮挡免费网站照片| 99久国产av精品| 国内精品一区二区在线观看| 18禁黄网站禁片免费观看直播| 亚洲性夜色夜夜综合| 99热6这里只有精品| 人人妻人人看人人澡| 久久欧美精品欧美久久欧美| 国产一区二区激情短视频| 精品无人区乱码1区二区| 中文资源天堂在线| 免费看a级黄色片| 丰满乱子伦码专区| 亚洲人与动物交配视频| 99热精品在线国产| 国内精品美女久久久久久| 亚州av有码| 男人和女人高潮做爰伦理| 欧美最黄视频在线播放免费| 国产精品综合久久久久久久免费| 欧美性猛交黑人性爽| 成人亚洲精品av一区二区| 日韩欧美 国产精品| av视频在线观看入口| 日日夜夜操网爽| 久久精品国产自在天天线| 国产真实乱freesex| 少妇熟女aⅴ在线视频| АⅤ资源中文在线天堂| 老师上课跳d突然被开到最大视频| 此物有八面人人有两片| 毛片女人毛片| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 国产精品久久电影中文字幕| 深夜a级毛片| 日本欧美国产在线视频| 在线观看66精品国产| 露出奶头的视频| 一本精品99久久精品77| 国产高清激情床上av| 非洲黑人性xxxx精品又粗又长| 在线a可以看的网站| 18禁在线播放成人免费| 99久久精品一区二区三区| 在线观看一区二区三区| 日本黄色片子视频| 22中文网久久字幕| 久久午夜亚洲精品久久| 国产高清不卡午夜福利| 欧美在线一区亚洲| 尾随美女入室| 久久久久久国产a免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品sss在线观看| 日韩亚洲欧美综合| 夜夜看夜夜爽夜夜摸| 观看美女的网站| 成人美女网站在线观看视频| 国产精品久久久久久精品电影| 国产亚洲欧美98| 中文亚洲av片在线观看爽| 国产不卡一卡二| 亚洲经典国产精华液单| 最新中文字幕久久久久| 欧美性感艳星| 夜夜夜夜夜久久久久| 波多野结衣巨乳人妻| 精品人妻视频免费看| 欧美在线一区亚洲| 日本一本二区三区精品| 12—13女人毛片做爰片一| 欧美一区二区国产精品久久精品| 成人性生交大片免费视频hd| 中文资源天堂在线| 91av网一区二区| videossex国产| 男女那种视频在线观看| 久久精品人妻少妇| 亚洲av不卡在线观看| 黄色配什么色好看| 他把我摸到了高潮在线观看| 久久久色成人| 尾随美女入室| 日本 av在线| 亚洲四区av| 少妇的逼水好多| 久久久午夜欧美精品| 搡老妇女老女人老熟妇| 精品日产1卡2卡| av福利片在线观看| 国产成人福利小说| 熟女人妻精品中文字幕| 免费一级毛片在线播放高清视频| 国产高清视频在线播放一区| 亚洲最大成人av| 欧美日韩亚洲国产一区二区在线观看| 天天一区二区日本电影三级| 久久久成人免费电影| 亚洲最大成人手机在线| 亚洲av中文字字幕乱码综合| 成人三级黄色视频| 男插女下体视频免费在线播放| 亚洲午夜理论影院| 婷婷色综合大香蕉| 亚洲精华国产精华精| 老师上课跳d突然被开到最大视频| av在线蜜桃| 观看美女的网站| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 成人综合一区亚洲| 日本五十路高清| 一区二区三区四区激情视频 | 我要看日韩黄色一级片| 男女那种视频在线观看| 九九在线视频观看精品| 国产免费一级a男人的天堂| 国语自产精品视频在线第100页| 男人舔女人下体高潮全视频| 久久久久久久精品吃奶| 精品久久久久久久人妻蜜臀av| 日本色播在线视频| 春色校园在线视频观看| 在线国产一区二区在线| 久久精品国产亚洲av香蕉五月| 在现免费观看毛片| 久久久久久久久久成人| 免费电影在线观看免费观看| 一边摸一边抽搐一进一小说| 日日摸夜夜添夜夜添小说| 久久久午夜欧美精品| 啪啪无遮挡十八禁网站| 国产在视频线在精品| 国产高潮美女av| 91久久精品国产一区二区三区| 精品午夜福利视频在线观看一区| 波野结衣二区三区在线| 99热网站在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲av五月六月丁香网| 有码 亚洲区| 人妻久久中文字幕网| 国产一级毛片七仙女欲春2| 中文字幕熟女人妻在线| 级片在线观看| 亚洲精品亚洲一区二区| 免费人成视频x8x8入口观看| 人妻丰满熟妇av一区二区三区| 亚洲乱码一区二区免费版| 日本一二三区视频观看| 中文字幕高清在线视频| 久久这里只有精品中国| 精品人妻熟女av久视频| 精品福利观看| 国产精品三级大全| 天堂影院成人在线观看| 免费看a级黄色片| 日本欧美国产在线视频| 不卡视频在线观看欧美| 床上黄色一级片| 日本 av在线| 一本一本综合久久| 91狼人影院| 波多野结衣高清无吗| 免费搜索国产男女视频| 午夜视频国产福利| 午夜a级毛片| 麻豆精品久久久久久蜜桃| av福利片在线观看| 深夜精品福利| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 成人特级av手机在线观看| 中文字幕免费在线视频6| 91久久精品电影网| 日本a在线网址| av在线老鸭窝| 五月伊人婷婷丁香| 久久久国产成人免费| 日本熟妇午夜| 少妇的逼好多水| 国产精品永久免费网站| 人人妻人人澡欧美一区二区| 俺也久久电影网| 少妇熟女aⅴ在线视频| 精品午夜福利在线看| 欧美日韩亚洲国产一区二区在线观看| .国产精品久久| 俄罗斯特黄特色一大片| 欧美极品一区二区三区四区| 中文字幕av成人在线电影| 久久午夜福利片| 国产午夜精品论理片| 亚洲国产欧洲综合997久久,| 99久久成人亚洲精品观看| 国产真实伦视频高清在线观看 | 日韩在线高清观看一区二区三区 | 亚洲精品456在线播放app | 欧美日韩亚洲国产一区二区在线观看| 婷婷色综合大香蕉| 九九爱精品视频在线观看| 国产精品av视频在线免费观看| 亚洲国产精品久久男人天堂| 日韩欧美一区二区三区在线观看| 女的被弄到高潮叫床怎么办 | 欧美日韩亚洲国产一区二区在线观看| 少妇丰满av| 老司机福利观看| 3wmmmm亚洲av在线观看| 亚洲国产精品久久男人天堂| 日日撸夜夜添| 亚洲第一电影网av| 久久99热这里只有精品18| 欧美高清性xxxxhd video| 黄片wwwwww| 99热这里只有精品一区| 一进一出好大好爽视频| 亚洲在线自拍视频| 国产国拍精品亚洲av在线观看| 精品久久久噜噜| 天堂√8在线中文| 国产欧美日韩精品一区二区| 成人特级av手机在线观看| 在线国产一区二区在线| 国内毛片毛片毛片毛片毛片| 看免费成人av毛片| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播放欧美日韩| 国产精华一区二区三区| 九九在线视频观看精品| 一本一本综合久久| 三级毛片av免费| 自拍偷自拍亚洲精品老妇| 少妇人妻精品综合一区二区 | 国产精品久久久久久久久免| 国产高清激情床上av| 欧美极品一区二区三区四区| 他把我摸到了高潮在线观看| 老女人水多毛片| 亚洲av美国av| 中文字幕久久专区| or卡值多少钱| 少妇熟女aⅴ在线视频| 日本爱情动作片www.在线观看 | 一级a爱片免费观看的视频| 精品久久久久久成人av| 97超视频在线观看视频| 成人综合一区亚洲| 我要看日韩黄色一级片| 欧美日韩瑟瑟在线播放| 高清毛片免费观看视频网站| av在线蜜桃| 久99久视频精品免费| 亚洲精品在线观看二区| 一级av片app| 国产伦精品一区二区三区视频9| 日韩欧美国产在线观看| 变态另类丝袜制服| 熟妇人妻久久中文字幕3abv| 一边摸一边抽搐一进一小说| 亚洲av电影不卡..在线观看| 久久久久久伊人网av| 精品国内亚洲2022精品成人| 在线观看美女被高潮喷水网站| 免费无遮挡裸体视频| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av在线| 色av中文字幕| 亚洲av美国av| 在线播放无遮挡| 一区二区三区四区激情视频 | 成年版毛片免费区| 欧美色视频一区免费| 日本五十路高清| 精品久久久久久成人av| 久久人人爽人人爽人人片va| 日日摸夜夜添夜夜添av毛片 | 99久久久亚洲精品蜜臀av| 亚洲成a人片在线一区二区| 3wmmmm亚洲av在线观看| av在线老鸭窝| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 男插女下体视频免费在线播放| 男女啪啪激烈高潮av片| 精品午夜福利视频在线观看一区| 97超视频在线观看视频| 中文资源天堂在线| 国模一区二区三区四区视频| 91午夜精品亚洲一区二区三区 | 亚洲国产欧洲综合997久久,| 国产伦一二天堂av在线观看| 日韩高清综合在线| 成人国产一区最新在线观看| 99热这里只有精品一区| 亚洲精品粉嫩美女一区| 欧美日韩瑟瑟在线播放| 真人一进一出gif抽搐免费| 日本与韩国留学比较| 亚洲美女搞黄在线观看 | 精品人妻熟女av久视频| 黄片wwwwww| 国产色婷婷99| 免费看美女性在线毛片视频| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲网站| 一进一出好大好爽视频| 国产精品人妻久久久久久| 欧美激情在线99| av在线蜜桃| 一级av片app| 99热只有精品国产| 国产亚洲精品av在线| 久久天躁狠狠躁夜夜2o2o| 在线观看av片永久免费下载| 精品日产1卡2卡| 十八禁网站免费在线| 国产精品亚洲美女久久久| 18禁裸乳无遮挡免费网站照片| 日韩欧美国产一区二区入口| 国内久久婷婷六月综合欲色啪| 国产一区二区亚洲精品在线观看| 伊人久久精品亚洲午夜| 真人一进一出gif抽搐免费| 国产真实伦视频高清在线观看 | 欧美性猛交╳xxx乱大交人| 变态另类成人亚洲欧美熟女| 国内精品久久久久久久电影| 草草在线视频免费看| 日日摸夜夜添夜夜添小说| 久久6这里有精品| 12—13女人毛片做爰片一| 亚洲欧美精品综合久久99| 欧美精品国产亚洲| 亚洲国产精品合色在线| 成人av在线播放网站| 男人舔女人下体高潮全视频| 99久久精品一区二区三区| 免费人成视频x8x8入口观看| 国产乱人视频| 日本在线视频免费播放| 露出奶头的视频| 在线a可以看的网站| 精品免费久久久久久久清纯| 麻豆久久精品国产亚洲av| 国产单亲对白刺激| 国产精品国产三级国产av玫瑰| 色5月婷婷丁香| 精品免费久久久久久久清纯| 国产白丝娇喘喷水9色精品| www.www免费av| 动漫黄色视频在线观看| 毛片女人毛片| 日韩中文字幕欧美一区二区| 嫩草影院入口| 亚洲电影在线观看av| 亚洲国产色片| 波多野结衣高清无吗| 91精品国产九色| 国产精品免费一区二区三区在线| 欧美最黄视频在线播放免费| 欧美一区二区亚洲| 国产精品国产高清国产av| 少妇猛男粗大的猛烈进出视频 | 国产一区二区在线av高清观看| 国产在线男女| 亚洲狠狠婷婷综合久久图片| 一个人看视频在线观看www免费| 啪啪无遮挡十八禁网站| 国产熟女欧美一区二区| 好男人在线观看高清免费视频| 97碰自拍视频| 老司机午夜福利在线观看视频| 九九久久精品国产亚洲av麻豆| av在线老鸭窝| 欧美日韩中文字幕国产精品一区二区三区| 韩国av一区二区三区四区| 91在线精品国自产拍蜜月| 网址你懂的国产日韩在线| 日韩高清综合在线| 午夜福利高清视频| 国产69精品久久久久777片| www日本黄色视频网| 日韩欧美国产在线观看| 亚洲熟妇熟女久久| 中文资源天堂在线| 日韩av在线大香蕉| 全区人妻精品视频| 51国产日韩欧美| 国产真实伦视频高清在线观看 | 久久久成人免费电影| 天堂网av新在线| 亚洲最大成人av| 天天一区二区日本电影三级| 午夜精品久久久久久毛片777| 国产伦精品一区二区三区视频9| 亚洲国产日韩欧美精品在线观看| 午夜精品在线福利| 搡女人真爽免费视频火全软件 | 波野结衣二区三区在线| 国产69精品久久久久777片| 十八禁网站免费在线| 网址你懂的国产日韩在线| 国产亚洲欧美98| 99在线人妻在线中文字幕| 在线观看66精品国产| 一级av片app| 色综合站精品国产| av.在线天堂| 精品久久久久久成人av| 欧美性猛交╳xxx乱大交人| 两个人的视频大全免费| 高清在线国产一区| 一夜夜www| 亚洲av中文av极速乱 | 欧美性猛交╳xxx乱大交人| 免费在线观看影片大全网站| 国产av一区在线观看免费|