• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laser-Assisted Stark Deceleration of Polar Molecules HC2n+1N(n=2,3,4) in High-Field-Seeking State

    2017-09-03 07:54:15KaiChenYunxiaHuangXiaohuaYang
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Kai Chen,Yun-xia Huang,Xiao-hua Yang

    School of Science,Nantong University,Nantong 226019,China

    Laser-Assisted Stark Deceleration of Polar Molecules HC2n+1N(n=2,3,4) in High-Field-Seeking State

    Kai Chen,Yun-xia Huang,Xiao-hua Yang?

    School of Science,Nantong University,Nantong 226019,China

    Laser-assisted Stark deceleration scheme was proposed to decelerate the high- field-seeking molecule ICl in its rovibronic ground state.However,the laser intensity of 1.0×1010W/cm2is hard to realize in experiment.The time-of- flight signals of HC2n+1N(n=2,3 and 4) by three-dimensional Monte-Carlo simulation suggest that deceleration of such molecules is more feasible experimentally as only one-tenth laser intensity is needed.

    Stark effect,Optical Stark effect,Molecular deceleration

    I.INTRODUCTION

    Molecules with rich internal structures provide the platform for studying the interaction dynamics of interand intra-molecules,and the interactions of molecules with external fields as well. However,the complex structures make us limit to such interactions accurately. Cold molecules by preparing molecules to low temperature region,due to clean quantum states and thus easier to be modeled,have made breakthroughs in the past two decades in this field,both experimentally and theoretically[1].Various methods have been carried out to obtain cold molecules,such as conformation of laser-cooled alkaline atoms[2,3],direct laser cooling of molecules[4,5],buffer gas cooling combined with bend guiding of polar molecules[6,7],Stark deceleration of polar molecules[8?12]and Zeeman deceleration of paramagnetic molecules[13?15].The anisotropic and long-range dipolar interactions add new ingredients to strongly correlated and collective quantum dynamics in many-body systems[16],so Stark deceleration of polar molecules is of great interest.Many weak- fieldseeking(WFS)molecules,CO[8],OH[10],H2CO[11], ND3[17],NH[12],SO2[18],YbF[19],and LiH[20] have been decelerated by employing this method to the equivalent temperature near 0.01 K so far.

    However,most chemically stable(close shell)molecules are high- field-seeking(HFS)in their rovibronic ground states.Additionally,because the HFS molecules have no any scattering channel for inelastic collision [21],such cold molecules are probably cooled to ultralow temperature when trapped,and evaporatively cooled without any scattering loss by inelastic collision. Therefore,it is of particular importance to decelerate HFS molecules.A traditional Stark decelerator(SD) does not work for HFS molecules since such molecules will be transversely dispersed by the non-uniform electrostatic field produced by the deceleration stages[22]. Bethlem et al.[9]worked out an alternate gradient electrode array to decelerate HFS molecules,however,this scheme elongates the deceleration path greatly and the electrodes are difficult to be aligned experimentally[23].

    Most recently,our group proposed a laser-assisted Stark deceleration(LSD)scheme[24]to decelerate ICl in its rovibronic ground state.We proposed that a far red-detuning laser beam,counter propagated to the molecular beam,can be used to guide HFS molecules transversely.In addition,the applied laser beam can also deepen the potential well in each stage,which will improve the deceleration efficiency(i.e.,lower velocity molecular package will be obtained).However,achieving the required laser intensity is experimentally challenging.To make it more feasible experimentally,linear HC2n+1N(n=2,3 and 4)molecules with large polarizability are recommended to be decelerated in the present work.Furthermore,the deceleration efficiency can be improved by amplitude-modulating the assisting laser.

    II.APPARATUS AND THEORETICAL DESCRIPTION

    The experimental apparatus of the switched-laserassisted Stark deceleration(SLSD)is similar to the LSD[24],as shown in FIG.1.The left part is a usual Stark decelerator merely omitting the hexapole(for focusing WFS molecules),which has been described in detail elsewhere[25],and the first deceleration stage locates 5 mm downstream the skimmer.The molecules HC2n+1N(n=2 and 3)can be synthesized by standard techniques of organic synthesis and HC9N can be prepared by mixed gas discharging[26,27].The sample molecules,HC2n+1N(n=2,3,and 4),buffered by xenon,at the backing pressure of about 1.0×105Paare supersonically expanded to a vacuum chamber via a liquid-nitrogen-cooled pulse valve.The molecular expansion then passes through a skimmer of 0.1 mm in diameter(matching the assisted laser beam)to form a molecular beam of a longitudinal central velocity of 280 m/s with 50 m/s full width at half magnitude and of a transverse temperature of about 10 mK.

    FIG.1 Experimental apparatus scheme of switched-laser-assisted Stark deceleration of polar molecules.

    TABLE I Molecular parameters of HC2n+1N.

    The molecular beam passes through the alternately perpendicular electrode pairs,which is identically spaced at 5.0 mm. Each electrode pair consists of two stainless steel rods,and±10 kV high voltages are applied to the pair to produce an electric field of 100 kV/cm at the center.A continuous wave far red-detuning laser beam,collimated by a lens set into 0.1 mm in diameter,co-axially but counter propagates against the molecular beam. The bene fits of the assisted-laser beam are:(i)to bunch molecular beam transversely due to optical Stark effect,and(ii) to give pseudo- first-order Stark effect to ground1Σ state molecules resulting in deeper potential well due to combined electrostatic and laser fields orientation[24]. Meanwhile,the linear polarization of the laser beam is modulated by an electro-optical modulator(EOM)to ensure that it is always parallel to the electric field experienced by the molecular package of interest.Before the laser beam enters EOM,it passes through a Faraday rotator.If the rotator switches the laser beam,it is SLSD,otherwise,it is simple LSD.The decelerated molecules can be detected after the slowing stages via either resonance enhanced multi-photon ionization or laser induced fluorescence spectroscopy.

    In the rigid rotator model,the Hamiltonian of the molecule in combined electric and laser fields can be expressed as[28]:

    where B is molecular rotational constant,J is the molecular total angular momentum excluding nuclear spin,μis the molecular permanent electric dipole,θ is the angular of the molecular dipole with the electric field ES,the polarizability anisotropy?α=α//?α⊥, where α//and α⊥are the polarizability components parallel and perpendicular to the molecular axis,respectively,and ESand ELare the amplitudes of electrostatic and laser fields.Therefore,the energy levels of the molecules in the combined fields can be obtained by diagonalizing the Hamiltonian matrix[29].

    III.RESULTS AND DISCUSSION

    Table I lists the molecular constants of HC2n+1N needed in the present work.Some constants are unavailable experimentally.Thus,we compute the values for the experimentally unknown constants employing the density functional theory(DFT).The geometry structures of the molecules are optimized under PBE1PBE/TZVP level[30,31],and the polarizability components are calculated under PBE1PBE/def2-TZVP level[31,32].To verify our prediction,our calculated values of permanent dipole moment are also listed in the second column ofμfor comparing with those of experiment or CCSD(T)theory( first column).Generally,the errors are within 15%,which implies that the DFT methodology works for our study.Note that,the values of the literatures(if available)are adopted in the following simulation.When calculating the electronic energy Teof the first excited state,the time-dependent DFT is employed to optimize the geometry structure under PBE1PBE/TZVP level[30,31].In Table I,λ is the wavelength of the resonance-exciting laser beam to excite the molecule into its first electronic excited state. Therefore,the wavelength of the detection laser is at λ, while the wavelength of the assisted laser beam is far red-detuning to λ.

    TABLE II Values of?E1,?E2,?E3and?E4denoted in FIG.2.

    FIG.2 Spatial-dependentStark potentialcurvesof HC2n+1N in their high- field-seeking state|0,0〉.The dot line represents the potential in the usual Stark deceleration scheme,the solid line represents the potential in the laser-assisted Stark deceleration scheme,and the dash line represents the potential in the switched-laser-assisted Stark deceleration scheme with the laser switched o ffgradually at ?=0?.

    The potential of the|J,M〉=|0,0〉HFS state of HC2n+1N in the stage are plotted in FIG.2 and the values are listed in Table II,where the magnitude of the assisting laser intensity is set to be 1.0×109W/cm2. In FIG.2,the potential without any assisted laser field (SD),the potential with the laser field[24](LSD),and the potential with the switched-laser field(SLSD),are compared.Evidently,the molecule will lose up to?E1kinetic energy when passing through each stage in SD, it will lose up to?E3in LSD,and it will lose up to?E2in SLSD.Therefore,the SLSD scheme is the most efficient for decelerating molecules.

    Due to their lighter mass,larger permanent dipole moment and larger anisotropic polarizability of the HC2n+1N molecules compared to ICl,these molecules are experimentally more feasible to be decelerated to rest within 100 stages under the assisting laser intensity of 1.0×109W/cm2.In addition,as is evident in FIG.2,if switching the assisted laser beam,additional?E4energy will be taken away when molecular beam passes through the electrode pairs.

    FIG.3 Switching time sequences of the odd and even electrostatic fields(a)and of the assisted laser field(b),and the potentials(c)molecules experienced(see FIG.2 for details) and the odd-even potential differences(d)when switching varying with ?.

    The SD cannot decelerate molecules to rest due to the unavoidable low velocity loss[37],because the decelerating and bunching are achieved by the same electrodes.However,this kind of loss does not exist in LSD or SLSD because the decelerating and guiding are realized by the electrodes and laser beam,respectively.To compare the detail features of these three deceleration schemes,the control time sequences of the electrostatic field and the assisted laser are plotted in FIG.3,and the potentials and potential differences are plotted as well.The phase angle[37]is de fined as ?=zπ/L,where z is the longitudinal position originating from the middle of two successive stages and L is the spatial period of stages.In our Monte-Carlo simulation,a final velocity of 45 m/s and the laser intensity of 1.0×109W/cm2are chosen.

    In addition,a time-of- flight(TOF)signals are plotted in FIG.4,where the down arrow indicates the TOF signal of the decelerated molecular package.FIG.4 tells that,it needs 52 and 53 stages to decelerate the HFS |0,0〉vibronic ground state of HC5N to the final velocity with the guiding efficiencies(de fined as the number ratio of the decelerated molecules to the incident molecules into the slower)of 0.30%and 0.39%in the SLSD and LSD respectively,while it needs 95 stages to decelerate the WFS|1,?1〉vibronic ground state of HC5N with the efficiency of 0.20%.The results are similar for HC7N and HC9N.Therefore,the SLSD and LSD are predicted to be more favorable than SD.

    The one-tenth weaker laser intensity is still too intensive in experiment.To make the proposed scheme more feasible,we can choose a near-resonant red-detuning assisting laser,because the far red-detuning laser produces the AC Stark shift proportional to the laser intensity while the near-resonant red-detuning laser produces the AC Stark shift proportional almost to the square of the laser intensity[38].Modelling the nearresonant,red-detuning,optical Stark effect of molecules is in progress in our group.

    IV.CONCLUSION

    Decelerating HC2n+1N by both LSD and SLSD is studied in the present work.It is predicted that these HFS molecules can be decelerated to rest utilizing less than 100 stages.That the assisted laser intensity can be one-tenth weak of the previous proposal of the deceleration of ICl[24]makes it more feasible experimentally.Prospectively,near-resonant red-detuning laser beam employed as the assisted laser will be much more experimentally practical.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.20273066).

    [1]S.Y.T.van de Meerakker,H.L.Bethlem,N.Vanhaecke,and G.Meijer,Chem.Rev.112,4828(2012).

    [2]A Vardi,M.Shapiro,and K.Bergmann,Opt.Express 4,91(1999).

    [3]K.K.Ni,S.Ospelkaus,M.H.G.de Miranda,A.Pe’Er, B.Neyenhuis,J.J.Zirbel,S.Kotochigova,P.S.Julienne,D.S.Jin,and J.Ye,Science 322,231(2008).

    [4]M.T.Hummon,M.Yeo,B.K.Stuhl,A.L.Collopy,Y. Xia,and J.Ye,Phys.Rev.Lett.110,143001(2013).

    [5]J.F.Barry,E.S.Shuman,E.B.Norrgard,and D. Demille,Phys.Rev.Lett.108,103002(2012).

    [6]S.A.Rangwala,T.Junglen,T.Rieger,P.W.H.Pinkse, and G.Rempe,Phys.Rev.A 67,043406(2002).

    [7]T.Junglen,T.Rieger,S.A.Rangwala,P.W.H.Pinkse, and G.Rempe,Phys.Rev.Lett.92,223001(2004).

    [8]H.L.Bethlem,G.Berden,and G.Meijer,Phys.Rev. Lett.83,1558(1999).

    [9]H.L.Bethlem,F.M.H.Crompvoets,R.T.Jongma, S.Y.T.van de Meerakker,and G.J.M.Meijer,Phys. Rev.A 65,053416(2002).

    [10]J.R.Bochinski,E.R.Hudson,H.J.Lewandowski,G. Meijer,and J.Ye,Phys.Rev.Lett.91,243001(2003).

    [11]E.R.Hudson,C.C.Ticknor,B.C.Sawyer,C.A.Taatjes,H.J.Lewandowski,J.R.Bochinski,J.L.Bohn,and J.Ye,Phys.Rev.A 73,063404(2005).

    [12]S.Y.T.van de Meerakker,I.Labazan,S.Hoekstra,J. Kpper,and G.Meijer,J.Phys.B:At.Mol.Opt.Phys. 39,S1077(2005).

    [13]N.Vanhaecke,U.Meier,M.Andrist,B.H.Meier,and F.Merkt,Phys.Rev.A 75,031402(2007).

    [14]S.D.Hogan,A.W.Wiederkehr,H.Schmutz,and F. Merkt,Phys.Rev.Lett.101,143001(2008).

    [15]E.Narevicius,A.Libson,C.G.Parthey,I.Chavez,J. Narevicius,U.Even,and M.G.Raizen,Phys.Rev.A 77,051401(2008).

    [16]M.A.Baranov,A.Micheli,S.Ronen,and P.Zoller, Physics 83,043602(2010).

    [17]H.L.Bethlem,G.Berden,F.M.H.Crompvoets,R.T. Jongma,A.J.A.van Roij,and G.Meijer,Nature 406, 491(2000).

    [18]S.Jung,E.Tiemann,and C.Lisdat,Phys.Rev.A 74, 040701(2006).

    [19]M.R.Tarbutt,H.L.Bethlem,J.J.Hudson,V.L. Ryabov,V.A.Ryzhov,B.E.Sauer,G.Meijer,and E. A.Hinds,Phys.Rev.Lett.92,173002(2004).

    [20]S.K.Tokunaga,J.O.Stack,J.J.Hudson,B.E.Sauer, E.A.Hinds,and M.R.Tarbutt,J.Chem.Phys.126, 124314(2007).

    [21]J.L.Bohn,Phys.Rev.A 63,052714(2001).

    [22]H.L.Bethlem,A.J.A.van Roij,R.T.Jongma,and G.Meijer,Phys.Rev.Lett.88,133003(2002).

    [23]T.E.Wall,J.F.Kanem,J.M.Dyne,J.J.Hudson,B. E.Sauer,E.A.Hinds,and M.R.Tarbutt,Phys.Chem. Chem.Phys.13,18991(2011).

    [24]Y.X.Huang,S.W.Xu,and X.H.Yang,J.Phys.B: At.Mol.Opt.Phys.49,135101(2016).

    [25]F.M.H.Crompvoets,R.T.Jongma,H.L.Bethlem, A.J.A.van Roij,and G.Meijer,Phys.Rev.Lett.89, 093004(2002).

    [26]M.C.McCarthy,M.J.Travers,A.Kovcs,C.A.Gottlieb,and P.Thaddeus,Astrophys.J.Suppl.Ser.113, 105(1997).

    [27]M.Iida,Y.Ohshima,and Y.Endo,Astrophys.J.371, L45(1991).

    [28]B.Friedrich and D.Herschbach,J.Phys.Chem.A 103, 10280(1999).

    [29]M.H¨artelt and B.Friedrich,J.Chem.Phys.128, 224313(2008).

    [30]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [31]A.Sch¨afer,C.Huber,and R.Ahlrichs,J.Chem.Phys. 100,5829(1994).

    [32]F.Weigend and R.Ahlrichs,Phys.Chem.Chem.Phys. 7,3297(2005).

    [33]H.S.Liszt,J.Pety,and R.Lucas,Astron.Astrophys. 486,493(2008).

    [34]L.W.Avery,T.Oka,N.W.Broten,and J.M. MacLeod,Astrophys.J.231,48(1979).

    [35]P.Botschwina and M.Horn,J.Mol.Spectrosc.185, 191(1997).

    [36]H.W.Kroto,C.Kirby,D.R.M.Walton,L.W.Avery, N.W.Broten,J.M.Macleod,and T.Oka,Astrophys. J.219,L133(1978).

    [37]E.R.Hudson,J.R.Bochinski,H.J.Lewandowski,B. C.Sawyer,and J.Ye,Eur.Phys.J.D 31,351(2004).

    [38]H.Stapelfeldt and T.Seideman,Rev.Mod.Phys.75, 543(2003).

    ceived on April 24,2017;Accepted on June 3,2017)

    ?Author to whom correspondence should be addressed.E-mail: xhyang@ntu.edu.cn

    国产无遮挡羞羞视频在线观看| 亚洲精品日韩在线中文字幕| 少妇丰满av| 亚洲精品自拍成人| 我要看黄色一级片免费的| 精品午夜福利在线看| 草草在线视频免费看| 亚洲色图 男人天堂 中文字幕 | 婷婷色综合大香蕉| 国产av国产精品国产| 简卡轻食公司| 午夜免费男女啪啪视频观看| 免费观看av网站的网址| 2018国产大陆天天弄谢| 国产成人aa在线观看| 亚洲美女搞黄在线观看| 欧美最新免费一区二区三区| 中国三级夫妇交换| 老司机影院成人| 国产亚洲精品第一综合不卡 | 大香蕉久久成人网| 天堂中文最新版在线下载| 在线 av 中文字幕| av在线播放精品| 九色成人免费人妻av| 大码成人一级视频| 中文字幕最新亚洲高清| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 久久99一区二区三区| 爱豆传媒免费全集在线观看| 精品国产国语对白av| 三上悠亚av全集在线观看| 国产毛片在线视频| 国产熟女午夜一区二区三区 | 视频中文字幕在线观看| 免费日韩欧美在线观看| 日本91视频免费播放| 久久鲁丝午夜福利片| 91国产中文字幕| 青春草亚洲视频在线观看| 水蜜桃什么品种好| 午夜免费男女啪啪视频观看| 亚洲精品久久久久久婷婷小说| 一级毛片电影观看| 免费看av在线观看网站| 麻豆成人av视频| freevideosex欧美| 中国国产av一级| 免费黄色在线免费观看| 欧美激情 高清一区二区三区| 男女边摸边吃奶| √禁漫天堂资源中文www| 色婷婷久久久亚洲欧美| 久久这里有精品视频免费| 人成视频在线观看免费观看| 国产亚洲最大av| 狂野欧美白嫩少妇大欣赏| 两个人免费观看高清视频| 人成视频在线观看免费观看| 久久ye,这里只有精品| 亚洲精品第二区| 赤兔流量卡办理| 国产永久视频网站| 美女xxoo啪啪120秒动态图| 少妇熟女欧美另类| 在线精品无人区一区二区三| 精品国产乱码久久久久久小说| 日韩成人av中文字幕在线观看| 久久久精品区二区三区| 亚洲久久久国产精品| 如日韩欧美国产精品一区二区三区 | 午夜免费鲁丝| 欧美成人午夜免费资源| 99精国产麻豆久久婷婷| 大片电影免费在线观看免费| 一级黄片播放器| 国产又色又爽无遮挡免| 亚洲熟女精品中文字幕| 插阴视频在线观看视频| 久久精品熟女亚洲av麻豆精品| 日韩人妻高清精品专区| 国产综合精华液| 蜜桃国产av成人99| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 嫩草影院入口| 久久狼人影院| 欧美精品人与动牲交sv欧美| 男女边吃奶边做爰视频| 国产无遮挡羞羞视频在线观看| 国产毛片在线视频| 亚洲av成人精品一二三区| av国产精品久久久久影院| 美女xxoo啪啪120秒动态图| 成人午夜精彩视频在线观看| 在线免费观看不下载黄p国产| 麻豆乱淫一区二区| 免费黄网站久久成人精品| 免费看光身美女| 91久久精品电影网| 精品人妻偷拍中文字幕| 久久精品久久久久久噜噜老黄| 久久久精品94久久精品| 亚洲成人手机| a级毛片黄视频| 成年av动漫网址| 岛国毛片在线播放| 美女主播在线视频| 天堂8中文在线网| 国产精品一区www在线观看| 一本久久精品| 下体分泌物呈黄色| 女的被弄到高潮叫床怎么办| 嫩草影院入口| 日韩亚洲欧美综合| 亚洲三级黄色毛片| 99久久精品一区二区三区| 国产毛片在线视频| 亚洲欧美一区二区三区黑人 | 国产一级毛片在线| 女的被弄到高潮叫床怎么办| 久久久久国产网址| 午夜日本视频在线| 亚洲美女视频黄频| 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 亚洲av在线观看美女高潮| 91成人精品电影| 久久精品人人爽人人爽视色| 日韩制服骚丝袜av| 久久韩国三级中文字幕| 久久精品夜色国产| 日日啪夜夜爽| 看免费成人av毛片| 亚洲精品久久久久久婷婷小说| 精品一区在线观看国产| 久久久久网色| 成人综合一区亚洲| 亚洲精品美女久久av网站| 交换朋友夫妻互换小说| 又大又黄又爽视频免费| 成人漫画全彩无遮挡| 2021少妇久久久久久久久久久| 亚洲国产欧美日韩在线播放| 熟女av电影| a级毛片在线看网站| 色吧在线观看| 久久 成人 亚洲| 啦啦啦啦在线视频资源| 国产午夜精品一二区理论片| 人体艺术视频欧美日本| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 秋霞在线观看毛片| 两个人免费观看高清视频| 国产熟女欧美一区二区| 91国产中文字幕| 九草在线视频观看| 欧美三级亚洲精品| 3wmmmm亚洲av在线观看| 女人精品久久久久毛片| 五月玫瑰六月丁香| videossex国产| 99热这里只有精品一区| 欧美人与善性xxx| 91午夜精品亚洲一区二区三区| 欧美精品国产亚洲| 婷婷色综合www| 久久久久久久国产电影| 高清视频免费观看一区二区| 永久免费av网站大全| 18禁裸乳无遮挡动漫免费视频| 亚洲婷婷狠狠爱综合网| 下体分泌物呈黄色| 麻豆精品久久久久久蜜桃| 亚洲av成人精品一区久久| 一级毛片aaaaaa免费看小| 亚洲国产精品一区二区三区在线| 国产片内射在线| 熟妇人妻不卡中文字幕| 久久免费观看电影| 亚洲欧美清纯卡通| 欧美日本中文国产一区发布| 一级a做视频免费观看| 国产精品蜜桃在线观看| 亚洲av欧美aⅴ国产| 色视频在线一区二区三区| 日日啪夜夜爽| 亚洲精品日韩av片在线观看| 亚洲欧美一区二区三区国产| 中文字幕人妻丝袜制服| 一二三四中文在线观看免费高清| 亚洲人成网站在线观看播放| 99久久中文字幕三级久久日本| 狂野欧美白嫩少妇大欣赏| 五月开心婷婷网| 午夜激情久久久久久久| 午夜精品国产一区二区电影| 亚洲精品自拍成人| 大香蕉97超碰在线| 国产成人精品福利久久| 亚洲内射少妇av| 18禁观看日本| 亚洲精品久久久久久婷婷小说| 亚洲高清免费不卡视频| 国产毛片在线视频| 国产精品三级大全| 亚洲国产毛片av蜜桃av| 日韩伦理黄色片| 久久久久网色| 美女脱内裤让男人舔精品视频| 久久午夜综合久久蜜桃| 精品一区二区三卡| 国产一区二区在线观看av| 热99国产精品久久久久久7| 人妻一区二区av| 十分钟在线观看高清视频www| 在线免费观看不下载黄p国产| 国产成人精品在线电影| 日本爱情动作片www.在线观看| 国产色婷婷99| 日本色播在线视频| 秋霞在线观看毛片| 欧美精品一区二区大全| 啦啦啦中文免费视频观看日本| videos熟女内射| 街头女战士在线观看网站| 性色avwww在线观看| 在线播放无遮挡| 日日撸夜夜添| 亚洲精品国产av蜜桃| 交换朋友夫妻互换小说| 美女cb高潮喷水在线观看| 十八禁网站网址无遮挡| 久久久久人妻精品一区果冻| 在线观看一区二区三区激情| 色婷婷av一区二区三区视频| 国产一级毛片在线| 蜜臀久久99精品久久宅男| 一本大道久久a久久精品| 免费看光身美女| 亚洲内射少妇av| 久久精品国产a三级三级三级| 亚洲精品久久久久久婷婷小说| 日韩免费高清中文字幕av| 欧美+日韩+精品| 午夜激情久久久久久久| 一个人免费看片子| 成人国产麻豆网| 人妻系列 视频| 一级毛片黄色毛片免费观看视频| 一二三四中文在线观看免费高清| 亚洲在久久综合| 久久久国产一区二区| 精品99又大又爽又粗少妇毛片| 婷婷色麻豆天堂久久| 最近手机中文字幕大全| .国产精品久久| 91久久精品国产一区二区三区| 最近的中文字幕免费完整| 欧美+日韩+精品| 大片电影免费在线观看免费| 久久久精品区二区三区| 国产有黄有色有爽视频| 日本爱情动作片www.在线观看| 成人午夜精彩视频在线观看| 最近最新中文字幕免费大全7| 亚洲国产欧美日韩在线播放| av播播在线观看一区| 老司机影院成人| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 18禁裸乳无遮挡动漫免费视频| 在线亚洲精品国产二区图片欧美 | 亚洲国产色片| 亚洲第一区二区三区不卡| 国产av国产精品国产| 另类亚洲欧美激情| 亚洲内射少妇av| 91成人精品电影| 日韩伦理黄色片| 国产精品一二三区在线看| 人妻夜夜爽99麻豆av| 一区二区三区免费毛片| 久久久国产精品麻豆| 在线观看美女被高潮喷水网站| h视频一区二区三区| 亚洲av.av天堂| 特大巨黑吊av在线直播| 日本午夜av视频| 一边摸一边做爽爽视频免费| 日本-黄色视频高清免费观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品一二三| 九色成人免费人妻av| 老女人水多毛片| 日韩不卡一区二区三区视频在线| 国产爽快片一区二区三区| 国产精品成人在线| 下体分泌物呈黄色| 交换朋友夫妻互换小说| av女优亚洲男人天堂| 国产av精品麻豆| av在线播放精品| 尾随美女入室| 久久久精品94久久精品| 考比视频在线观看| 男女高潮啪啪啪动态图| 午夜视频国产福利| 男女高潮啪啪啪动态图| 大又大粗又爽又黄少妇毛片口| 国产成人免费观看mmmm| 精品亚洲成国产av| 久久久久久久久大av| 久久久久久久大尺度免费视频| 国产极品天堂在线| 国产黄色视频一区二区在线观看| 男女啪啪激烈高潮av片| 亚洲国产精品成人久久小说| 成人毛片60女人毛片免费| 精品久久久精品久久久| 精品国产露脸久久av麻豆| 亚洲精品av麻豆狂野| 亚洲av成人精品一区久久| 蜜臀久久99精品久久宅男| 久久97久久精品| 大又大粗又爽又黄少妇毛片口| 欧美日韩在线观看h| 曰老女人黄片| 成人免费观看视频高清| 亚洲精品色激情综合| 韩国高清视频一区二区三区| 国产成人freesex在线| 亚洲怡红院男人天堂| 熟女人妻精品中文字幕| 女人久久www免费人成看片| 亚洲精品乱久久久久久| 亚洲人与动物交配视频| 人妻一区二区av| 桃花免费在线播放| av不卡在线播放| 一区二区日韩欧美中文字幕 | 成人18禁高潮啪啪吃奶动态图 | 中文精品一卡2卡3卡4更新| 新久久久久国产一级毛片| 亚洲国产av影院在线观看| 九九爱精品视频在线观看| av免费观看日本| 成人二区视频| 3wmmmm亚洲av在线观看| 三上悠亚av全集在线观看| 五月伊人婷婷丁香| 免费黄网站久久成人精品| 最新中文字幕久久久久| 自线自在国产av| 成人国产麻豆网| 99热这里只有精品一区| 日本vs欧美在线观看视频| 免费黄网站久久成人精品| 国产极品粉嫩免费观看在线 | 欧美日韩在线观看h| 性色av一级| 国产精品成人在线| 特大巨黑吊av在线直播| 一区二区av电影网| 91成人精品电影| 日韩大片免费观看网站| 日本欧美视频一区| 亚洲欧洲日产国产| 欧美老熟妇乱子伦牲交| 9色porny在线观看| 亚洲在久久综合| 国产黄片视频在线免费观看| 久久精品人人爽人人爽视色| 插阴视频在线观看视频| 人妻夜夜爽99麻豆av| 美女国产高潮福利片在线看| 母亲3免费完整高清在线观看 | √禁漫天堂资源中文www| 青春草视频在线免费观看| 一级片'在线观看视频| 成年女人在线观看亚洲视频| 多毛熟女@视频| 久久毛片免费看一区二区三区| 高清av免费在线| 亚洲精品久久成人aⅴ小说 | 男女无遮挡免费网站观看| 大片电影免费在线观看免费| 另类亚洲欧美激情| 天美传媒精品一区二区| 成人亚洲精品一区在线观看| 最后的刺客免费高清国语| 99国产综合亚洲精品| 免费观看的影片在线观看| 亚洲av日韩在线播放| 简卡轻食公司| 国产黄频视频在线观看| 18禁观看日本| 97超视频在线观看视频| 99久久精品一区二区三区| 伦理电影免费视频| 高清视频免费观看一区二区| 在线观看免费高清a一片| 国产免费现黄频在线看| 婷婷色综合www| 男女免费视频国产| 秋霞在线观看毛片| 日本午夜av视频| 高清毛片免费看| 国产一区二区在线观看av| 在线观看人妻少妇| 夫妻午夜视频| 久久av网站| 国产黄片视频在线免费观看| 久久久国产精品麻豆| 人妻人人澡人人爽人人| 成人毛片60女人毛片免费| 狂野欧美白嫩少妇大欣赏| 大香蕉久久成人网| 免费黄网站久久成人精品| 亚洲av男天堂| 日韩精品免费视频一区二区三区 | 男男h啪啪无遮挡| 插逼视频在线观看| 精品一区二区三区视频在线| 亚洲精品,欧美精品| 最近2019中文字幕mv第一页| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| 99久久精品一区二区三区| 草草在线视频免费看| 国产精品久久久久久久久免| 日本与韩国留学比较| 免费日韩欧美在线观看| av.在线天堂| 一本久久精品| 久久女婷五月综合色啪小说| 久久ye,这里只有精品| 日本欧美视频一区| 狂野欧美激情性xxxx在线观看| 欧美激情国产日韩精品一区| 国产免费一区二区三区四区乱码| 永久免费av网站大全| 日韩一区二区三区影片| 五月伊人婷婷丁香| 丝袜喷水一区| 久久ye,这里只有精品| 欧美日本中文国产一区发布| 最近手机中文字幕大全| 亚洲一区二区三区欧美精品| 久热久热在线精品观看| 国产成人免费观看mmmm| 80岁老熟妇乱子伦牲交| 午夜免费鲁丝| 熟女电影av网| 亚洲欧美日韩另类电影网站| 69精品国产乱码久久久| videos熟女内射| 国产亚洲午夜精品一区二区久久| 国产探花极品一区二区| 99九九在线精品视频| 男女免费视频国产| 啦啦啦啦在线视频资源| 亚洲伊人久久精品综合| 日韩欧美一区视频在线观看| 久久精品久久精品一区二区三区| 在线观看免费高清a一片| 亚洲人成77777在线视频| 色婷婷久久久亚洲欧美| 街头女战士在线观看网站| 亚洲图色成人| 男女边吃奶边做爰视频| 免费大片黄手机在线观看| 午夜老司机福利剧场| 交换朋友夫妻互换小说| 久热久热在线精品观看| 日韩三级伦理在线观看| 国产不卡av网站在线观看| 一区二区三区四区激情视频| 亚洲欧美一区二区三区黑人 | 国产老妇伦熟女老妇高清| 国产精品偷伦视频观看了| 国产爽快片一区二区三区| av又黄又爽大尺度在线免费看| 日韩在线高清观看一区二区三区| 99久久综合免费| 制服丝袜香蕉在线| 另类精品久久| 成人国产av品久久久| 国产精品欧美亚洲77777| 国产成人freesex在线| 插阴视频在线观看视频| 亚洲精品久久久久久婷婷小说| 熟妇人妻不卡中文字幕| 一级a做视频免费观看| 国产一区二区三区综合在线观看 | 午夜福利视频在线观看免费| 丰满乱子伦码专区| 性高湖久久久久久久久免费观看| 久久久久网色| 3wmmmm亚洲av在线观看| 美女脱内裤让男人舔精品视频| 人妻少妇偷人精品九色| 精品国产乱码久久久久久小说| 亚洲第一av免费看| 观看美女的网站| 狠狠婷婷综合久久久久久88av| 国产片特级美女逼逼视频| 日本与韩国留学比较| 97在线人人人人妻| 一级毛片电影观看| 国产成人精品在线电影| 久久久久国产精品人妻一区二区| 视频区图区小说| 日韩精品免费视频一区二区三区 | 亚洲精品国产av成人精品| 亚洲精品久久久久久婷婷小说| 99久久人妻综合| 久久久精品94久久精品| 日韩熟女老妇一区二区性免费视频| 成年人午夜在线观看视频| 哪个播放器可以免费观看大片| 99久久人妻综合| 国产精品免费大片| 国产精品.久久久| 下体分泌物呈黄色| 免费播放大片免费观看视频在线观看| 秋霞伦理黄片| 嫩草影院入口| 2022亚洲国产成人精品| 亚洲少妇的诱惑av| 18禁在线播放成人免费| 欧美三级亚洲精品| 丝袜在线中文字幕| 久久久国产一区二区| 黄色配什么色好看| 男人爽女人下面视频在线观看| 婷婷色综合大香蕉| 秋霞伦理黄片| 嫩草影院入口| 蜜臀久久99精品久久宅男| 91成人精品电影| 黑人欧美特级aaaaaa片| 一级毛片黄色毛片免费观看视频| 亚洲成人一二三区av| 爱豆传媒免费全集在线观看| 不卡视频在线观看欧美| 老司机亚洲免费影院| 国产精品一国产av| 在线观看一区二区三区激情| 国产高清有码在线观看视频| 22中文网久久字幕| 亚洲国产精品国产精品| 中国国产av一级| 肉色欧美久久久久久久蜜桃| 欧美亚洲日本最大视频资源| 国产亚洲欧美精品永久| 成人免费观看视频高清| 秋霞在线观看毛片| 一本色道久久久久久精品综合| 99国产精品免费福利视频| 免费日韩欧美在线观看| 少妇丰满av| 热99久久久久精品小说推荐| 人妻人人澡人人爽人人| 国产精品一国产av| 在线观看免费视频网站a站| 嫩草影院入口| 国产精品偷伦视频观看了| 天天影视国产精品| 91精品国产国语对白视频| 亚洲av国产av综合av卡| 久久久国产欧美日韩av| 人人妻人人添人人爽欧美一区卜| 天天操日日干夜夜撸| 久久久久久久国产电影| 日韩强制内射视频| 在线天堂最新版资源| 飞空精品影院首页| 丰满乱子伦码专区| 一级毛片黄色毛片免费观看视频| 久热久热在线精品观看| 欧美少妇被猛烈插入视频| 九九在线视频观看精品| 久热久热在线精品观看| 丰满乱子伦码专区| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久精品古装| 国产成人精品婷婷| 性高湖久久久久久久久免费观看| 麻豆乱淫一区二区| 自拍欧美九色日韩亚洲蝌蚪91| videosex国产| a级毛色黄片| 日韩三级伦理在线观看| 国产精品.久久久| 麻豆精品久久久久久蜜桃| 国产男人的电影天堂91| 亚洲经典国产精华液单| 欧美3d第一页| 夫妻午夜视频| 日本免费在线观看一区| 18禁动态无遮挡网站| 国产高清国产精品国产三级| 大话2 男鬼变身卡| 久久精品国产a三级三级三级| 青青草视频在线视频观看| av网站免费在线观看视频| 精品亚洲成a人片在线观看| 91在线精品国自产拍蜜月| 久久久午夜欧美精品| 亚洲三级黄色毛片| 欧美日韩国产mv在线观看视频|