• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation

    2017-09-03 07:54:13ZhoyngChenLongDunYouqunChuJingfengShengWenfengLinChun
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Zho-yng Chen,Long-f Dun,You-qun Chu,Jing-feng Sheng,Wen-feng Lin, Chun-n M

    a.State Key Laboratory Breeding Base for Green Chemistry Synthesis Technology,College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310032,China

    b.Department of Chemical Engineering,Loughborough University,Loughborough,Leicestershire,LE11 3TU,UK

    Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation

    Zhao-yang Chena?,Long-fa Duana,You-qun Chua?,Jiang-feng Shenga,Wen-feng Linb, Chun-an Maa

    a.State Key Laboratory Breeding Base for Green Chemistry Synthesis Technology,College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310032,China

    b.Department of Chemical Engineering,Loughborough University,Loughborough,Leicestershire,LE11 3TU,UK

    The spray-dried spheres within a W/Pt multi-separation can be used to prepare discrete core-shell WC@C/Pt catalysts through a typical carburization production mechanism at 800?C.In contrast with previous studies of the WC/Pt synthesis,the reaction observed here proceeds through an indirect annealing mechanism at 600?C wherein species diffuse, thereby resulting in core-shell structure,and Pt nanoparticles were successfully dispersed in size/shape and randomly scattered across the in situ produced C spheres.Through direct carburization or at higher initial hydrochloroplatinic acid concentrations,however,complete reaction with core-shell spheres was not observed.Indirect carburization reduces the strain felt by the bonds featuring the larger WC particles and allows the motion of carbon around WC and Pt nanoparticles to be reserved,in fluencing the electrocatalytic performance and stability toward methanol oxidation.

    Self-disperse,Core-shell structure,Carbon-resist,Tungsten carbide,Methanol oxidation

    I.INTRODUCTION

    Pt-based catalysts demonstrate superior activity and stability for methanol electro oxidation in DMFC(Direct methanol fuel cells),and typical bimetallic catalysts include Pt-Ru,Pt-Au,and Pt-Pd alloys[1–4].Researches,in recent years,mostly focused on the costeffective and CO anti-poisoning improvement of Pt metals to accelerate the commercialization of DMFC[5–8].Pt nano-metalling,crystal plane control,and support effects are the main strategies to enhance the unit activity.The same synergistic effect strategy has also been extended to several other support effects systems.It is critical,therefore,to prepare high-efficiency precious metal-free supports(WC[9,10],MoC[11], and TiO2[12,13]),which is an effective way to reduce the Pt particle diameter and also increase the anti-poisoning ability.Tungsten carbide(WC)displays potential applications for Pt-like behavior[14],CO-tolerance[15],and highly electrical conductivity[16]as support part in anode-catalysts for methanol oxidation reaction(MOR)[17,18].Special crystal structures WC materials(porous WC[19–21],WC microspheres[22], nanochains[23],nanorods and nanoplatelets[24])have been prepared to enhance the electro-catalytic properties and stability for methanol oxidation.However, porous WC always exhibits coarse particle and smaller surface area than active carbon for its higher molecular mass.It has been researched to synthesize nano scale WC with a controllable size for achieving higher surface area,such as WC nanotubes with the diameter ranging from 30 nm to 70 nm[25,26].WC nanoparticles with an average size of 20 nm in diameter[27].Actually,the single WC particle is still difficult to meet the requirements for application in electrocatalysis.

    The more active centers,therefore,must be effectively created by the nano WC-Pt contact of hybrid from construction of hierarchical pores rather than typical Pt doped WC particles.Furthermore,the coreshell hetero structures became an increasingly promising structure for the WC-Pt series catalysts,for it could effectively tailor the electronic structures which led to the dramatically enhanced catalytic ability and chemical stability[28].

    Herein we reported a study in which the core-shell structure could be readily formed via a facile and costeffective method.More speci fically,Pt and WC structures have been successfully in situ fabricated and wellde fined on core-shell WC@C spheres.The as-prepared core-shell WC@C/Pt spheres manifest markedly enhanced electro catalytic performance and stability toward methanol oxidation.The reasons could be ascribed to the more active sites,the well mesoporousWC@C core-shell structures and synergistic effect between Pt catalyst and WC support.

    II.EXPERIMENTS

    A.Synthesis of the micro-sized spherical composites precursor(MSCP)

    MSCP was prepared using spray drying(BCHI Spray Dryer B-290) treated an aqueous solution. Amixtureofammonium metatungstate (AMT,(NH4)2W4O13·xH2O)and chloroplatinic acid (H2PtCl6·6H2O,6.4 wt%Pt loaded vs.WC)were added to deionized water at 5 wt%. During spray drying process,the velocity of aqueous solution was 20 mL/min,the temperature of drying at the threshold and outlet was 200 and 100?C,respectively.

    B.Synthesis of the core-shell WC@C/Pt catalysts

    The as-made MSCP underwent the process of calciation in air at 600?C for 2 h,the obtained powder was then removed to a quartz tube,and was sent into tubal resistance furnace,which had been puri fied by N2for 0.5 h.Then this product underwent the gas-solid reaction under an atmosphere of CO/H2(125/250 cm3/min),the temperature was then increased to 800?C and maintained for 4 h,the resulting product was denoted as indirect-carb WC@C/Pt. To be comparable,the precursor was directly carbonized without the heat treatment process under otherwise identical conditions,and the resulting product was denoted as direct-carb WC@C/Pt,H2PtCl6-free direct-carb WC was synthesized in the H2PtCl6-free directly carburization with other conditions same as direct-carb WC@C/Pt.

    C.Characterization

    The crystalline structures,composition,and morphology were investigated by X-ray diffraction analyzer(XRD,Rigakv D/max-III),scanning electron microscopy(SEM,Hitachi S-4800),high-resolution TEM using a Tecnai G2 F30 S-Twin microscope(FEI, Netherlands)at a voltage of 200 kV and a current of 103 mA coupled with energy dispersive X-ray spectrometer(EDX,Thermo NORAN VANSTAGE ESI). The thermogravimetric analysis(TGA)was performed on Pyris diamond thermoanalyzer.Particle-size distribution curve was performed on Malvern laser particle analyzer(MS2000).BET surface areas and pore size distributions were determined on a physical adsorption instrument(ASAP 2020,Micro-meritics Co.,USA).

    D.Electrochemical measurements

    Electrochemical measurements were carried out using a CHI600C electrochemical station,and a standard three-electrode setup with a saturated calomel electrode (SCE)and Pt foil as the reference and counter electrodes,respectively.For working electrode fabrication, indirect-carb and direct-carb WC@C/Pt(5 mg,respectively)were dispersed in a mixture aqueous solution of ethanol(1 mL)and Na fion solution(5 wt%,125μL)under ultrasonic treatment for 10 min.Afterwards,10μL of the catalyst ink(containing 0.044 mg of catalyst) were loaded onto a glassy carbon electrode(3 mm in diameter).Cyclic voltammetry(CV)was measured in N2saturated 0.5 mol/L H2SO4and 0.5 mol/L CH3OH solution at a scan rate of 50 mV/s.All the electrochemistry experiments were carried out at room temperature.The commercial Pt/C(20%Pt on Vulcan XC-72R,Johnson Matthey Corp.)and Pt black were also tested for comparison.

    III.RESULTS AND DISCUSSION

    SEM images of the MSCP are shown in FIG.1(a), hollow microsphere with thin wall(200?300 nm)were observed from the broken ones,the diameter of the microspheres was about 200 nm?5μm.It also can be found that the surface of hollow spherical was relatively smooth and there were an amount of spheres adhering to the surface both internal and external.

    To investigate the factors contributing to the formation of the microsphere structure,TG-DTA patterns of the original AMT and MSCP are shown in inset of FIG.1(a).It can be speculated that the reaction of the original AMT(red line)in each stage along with the different temperature range is as follows:

    (i)The mass of the AMT begins to decrease at the temperature from 150?C to 230?C,and weight loss comes to 3.85%of original weight.It is quite clear that the mass losses derive from free water and part of the crystalline water in original AMT,the equation is given by:

    (ii)In the second step,decomposition between 290 and 340?C leads to 5.01%weight loss,the resulting products are mainly ammonia,gaseous water and tungstate.The thermal decomposition reaction formula can be written as:

    (iii)The weight of sample reduces slightly in the final decomposition around 390?410?C,only results in 1.50%weight loss.This situation illustrates tungstatehas already decomposed into tungsten trioxide(WO3), as shown in Eq.(3):

    FIG.1(a)SEM images of the MSCP and TG curves(inset)of the original AMT and MSCP.(b)XRD patterns of direct-carb(black line)and indirect-carb(red line)WC@C/Pt composite.SEM images of(c)direct-carb WC@C/Pt and (d)indirect-carb WC@C/Pt composite.

    The AMT decomposition was completed and became stable when the temperature was over 450?C, these results were consistent with the previous reports [29].As seen in FIG.1(a)(inset,yellow line),there are a lot of free water loss in the MSCP(weight loss take up 0.99%)from room temperature to 150?C compared with original AMT.The crystal water of AMT and H2PtCl6are lost with the weight decreasing 4.55%in the temperature range of 150?255?C.After that,AMT and H2PtCl6decomposed into tungstate and platinum tetrachloride(PtCl4),respectively,and the weight decreased about 5.50%in the range of 285?335?C.Tungstate and PtCl4eventually decomposed into WO3,chlorine(Cl2)and platinum chloride (PtCl2)from 375?C to 400?C,respectively.In addition to the equation of AMT,the extra chemical reactions for MSCP could be formulated as follows:

    This information showed that Cl?concentration became lower during the heating process,and excessive reunion can be resisted. Thus,the heat treatment at 600?C was employed to promote the formation of mesoporous structure and particles[30].The sample was prepared after annealing and carbonization process,and signed as indirect carb WC@C/Pt.By contrast,we also obtained the sample through direct carburation of the MSCP without 600?C anneal process and signed as direct-carb WC@C/Pt. To analyze the phase structure,XRD patterns determinations were applied to characterize the obtained samples after the MSCP carburization.FIG.1(b)shows XRD pattern of the as-synthesized WC@C/Pt,where main peaks at 2θ=31.52?,35.70?,and 48.25?correspond to diffractions from(001),(100),and(101) planes of hexagonal WC(JCPDS No.51-0939).Moreover,XRD pattern displays diffraction peaks at 39.79?, 46.28?,and 67.53?correspond to the crystal planes of Pt(111),(200),and(220),respectively.The XRD data con firmed the formation of Pt nanoparticles with face-centered-cubic(fcc),which was consistent with the JCPDS No.87-0646.Nevertheless,compared with direct-carb WC@C/Pt,the indirect-carb WC@C/Pt exhibited stronger Pt diffraction peaks,especially(111) direction,which was due to the indirect carburization process in favor of the Pt growth prefering(111)direction.For Pt crystal,the surface energies associated with the low-index crystallographic planes were in the order of γ(111)<γ(100)<γ(110)[31].Carbon component,which was produced in the indirect carburization process,provided better macroscopic melting condition as the support of the Pt nano particles.During the high temperature treatment,the(111)plane of Pt in the indirect carburization sample was in dominant growth. The Pt particles in the direct carburization sample were covered by the WC and the lower surface energy plane was not in dominant growth.

    FIG.2(a)The particle size distributions of H2PtCl6-free direct-carb WC and direct/indirect-carb WC@C/Pt.(b)Pore size distributions for direct/indirect-WC@C/Pt sample.

    The microstructures and morphologies for WC@C/Pt weredeterminedbySEM.From FIG.1(c),the WC@C/Ptobtainedbydirectcarbonizationwas severely agglomerated with coarse particles,on the contrary,the indirect-carb WC@C/Pt(FIG.1(d))displayed a remarkably spherical structure with diameters ranging between 50 and 120 nm.

    The particle size distributions of direct-carb WC and direct/indirect-carb WC@C/Pt are given in FIG.2(a). Compared to H2PtCl6-free direct-carb WC sample,the particle size of direct-carb WC@C/Pt decreased slightly due to that the carburization with participation of Cl?led the particle to agglomerate,which finally promoted WC particles size to increase.However,particle size distributions of indirect-carb WC@C/Pt exhibited much smaller than direct-carb WC@C/Pt,resulted from the indirect-carburization processes which made the larger WC particles break and the secondary particles reduce greatly in size.The results indicated that the indirectcarburization processes promoted the ball to uniformly disperse and particles size to decrease during high temperature and carburization processes with Cl?participating.This phenomenon was much different from typical double heating treatments which inevitably became more highly branched and eventually entangled into large WC and Pt agglomerates.The discrepancies appeared to be related to the effect of chloride(Cl?)ions from H2PtCl6or PtCl2.In indirect carbonizing process, the crystal water,NH3,HCl,Cl2were removed and the mesoporous skeleton structure of MCSP was formed, it was bene ficial to Cl?ions(from PtCl2)removal and impeded the secondary reunion of WC and Pt nanoparticles for WC@C/Pt.We also added H2PtCl6in higher concentration(10 wt%and 15 wt%Pt loaded on WC), the MCSP particles were much larger than the original one,which was caused by the Cl?concentration and solution viscosity increase.And the spray-dried particles would not be well preserved.

    Pore size distributions of different samples are given in FIG.2(b). The results indicate that indirectcarb WC@C/Pt exhibits a higher speci fic surface(11.687 m2/g)which is17.3 timesofdirect-carb WC@C/Pt(0.675 m2/g).Pore size distribution shows the indirect-carb WC@C/Pt has better mesoporous structures.It is clear that the higher surface area was resulted mostly from the mesopores even when there were micropores present.These mesopores formed partially because the carbons were in situ produced from the CO decomposition during the carbonization.

    FIG.3(a,b)STEM images,(c)EDX line-scan analysis and (d1,d2,d3)elemental mapping,(e,f)HRTEM images of the indirect-carb WC@C/Pt composite.

    FIG.3(a)?(f)shows the typical STEM and highresolution TEM(HRTEM)images of indirect-carb WC@C/Pt as well as their elemental distribution. Clearly,the material displays spheres with core-shell structure from FIG.3(a).The core-shell structure was further con firmed by EDX line-scan analysis along the selected line across the particle(FIG.3(b),red line).As shown in FIG.3(c),it showed distinctly the WC-core and C-shell structure for WC@C/Pt.

    Moreover,in order to demonstrate the Pt nanoparticles can be well-dispersed on the WC support,elemental mapping had been performed and it proved C,W andPt were uniformly distributed and overlapped in the spheres(FIG.3(d1,d2,d3)).As shown in HRTEM image(FIG.3(e,f)),the crystalline lattices of WC(101) and(100),Pt(111),and(200)facets can be clearly observed,which is consistent with the results of XRD analysis.It shows that WC with mesoporous carbon shells on which WC and Pt particles uniformly dispersed have been prepared.Pt and WC thus successfully were separated without more impregnation or high-temperature hydrogen-reduction processes.

    FIG.4(a)EDX spectrum and(b)TG-DTA curves of indirect-carb WC@C/Pt.

    FIG.5(a)Cyclic voltammograms of indirect-carb WC@C/Pt,direct-carb WC@C/Pt and commercial Pt/C catalysts in N2-protecting 0.5 mol/L H2SO4electrolyte,(b)cyclic voltammograms curves on different electrodes in 0.5 mol/L H2SO4+0.5 mol/L CH3OH electrolyte at a scan rate of 50 mV/s.

    The quantitative analysis of the elements from the STEM region of indirect-carb WC@C/Pt by EDX is shown in FIG.4(a),con firming the existence of W,C and Pt,which is also proven by the mapping images (FIG.3(d))and XRD curves(FIG.1(b)).However,the mass ratio of the WC to Pt will not be con firmed by the EDX.TG analysis under air was used to determine the percent WC present in indirect-carb WC@C/Pt sample. Assuming all carbon from WC and C was removed as CO2(with no other impurities presented),the mass of WC was calculated as follows:

    where miis initial mass,mWCis mass of pure WC,mPtis mass of Pt,mCis mass of carbon,mWO3is mass of pure WO3,MWCis molecular mass of WC,MWO3is molecular mass of WO3.

    TG analyses of the WC samples under air show large mass gains of about 12.8 wt%(FIG.4(b),solid curve). WC and Pt were 69.6 wt%and 4.2 wt%(calculated by the Pt adding ratio vs.W)for indirect-carb WC@C/Pt sample,respectively.The oxidation point in air was also tested by the DTA result(FIG.4(b),broken cure). The sample would be oxidized and become stable during 420?580?C.

    The electrochemical measurements were used to characterize the surface composition of the prepared WC@C/Ptcatalyst. FIG.5(a)showstheCVs of indirect-carb WC@C/Pt,direct-carb WC@C/Pt, and commercial Pt/C electrodes in a N2-saturated 0.5 mol/L H2SO4solution. The comparison of the hydrogen adsorption/desorption behavior on different electrodes shows that the indirect-carb WC@C/Pt hybrid possesses a higher catalytic activity in the electro oxidation of hydrogen.The electrochemical surface area(ESA)of the Pt catalyst on the electrode surface has been estimated using the charge densities associated with adsorption/desorption of H de-rived from corresponding CV curves according to the reported literature[32]. The ESA of the indirectcarb WC@C/Pt(177.76 m2/g)is higher than commercial Pt/C(44.39 m2/g).However,the direct-carb WC@C/Pt shows no catalytic activity in the electro oxidation of hydrogen. The larger ESA of the indirect-WC@C/Pt catalyst can provide more active sites,which is signi ficant for enhanced electro activities of the indirect-WC@C/Pt catalyst.

    FIG.6(a)Cyclic voltammograms of indirect-carb WC@C/Pt and commercial Pt/C catalysts in N2-protecting 0.5 mol/L H2SO4+0.5 mol/L CH3OH electrolyte at a scan rate of 50 mV/s.(b)Chronoamperometry curves on different electrodes in 0.5 mol/L H2SO4+0.5 mol/L CH3OH electrolyte.

    To assess their electro catalytic property in the methanol oxidations,the cyclic voltammograms curves on different electrodes were collected in 0.5 mol/L CH3OH containing 0.5 mol/L H2SO4solutions,as shown in FIG.5(b).The electro catalytic activities of WC@C/Pt catalysts towards methanol oxidations were found to be highly dependent on the microstructure in the composite.As presented in FIG.5(b),the indirectcarb WC@C/Pt catalysts displayed considerable activity for methanol oxidation,while there was no activity to the direct-carb WC@C/Pt catalysts.It could be ascribed to the latter lack of the electrochemical active sites due to the bigger particle size and aggregation of Pt on the surface of WC.

    Additionally,the indirect-carb WC@C/Pt catalysts electro catalytic activity(552.16 mA/mg Pt)towards methanol oxidation was signi ficantly higher than that of Pt/C(218.93 mA/mg Pt),as could be seen from FIG.6(a).This was because Pt nanoparticles were uniformly dispersed in size/shape and randomly scattered across the in situ produced C by indirect carburization.In addition,in methanol electro oxidation,the tungsten carbide acts as adsorption site of hydroxyl ion,for which the intermediate species on Pt surface can be effectively removed on Pt surface during the methanol oxidation reaction.The larger ESA of the indirect-WC@C/Pt catalyst could provide more active sites,which was signi ficant for enhanced electro activities of the indirect-WC@C/Pt catalyst.Thus,we can expect that the highly improved electro catalytic properties of the indirect-WC@C/Pt may result from the above discussion.

    To further compare the long-term electro catalytic stabilities of catalyst materials,the current densitytime curves are recorded in FIG.6(b).The indirectcarb WC@C/Pt and Pt/C catalysts present gradually decay of current density(55.49 mA/mg Pt vs.Pt/C 7.82 mA/mg Pt)with the extension of time due to gradual accumulation of intermediate products(CO)which poisons the catalysts.Besides,FIG.6(b)also shows that the indirect-carb WC@C/Pt catalyst possesses the best electrocatalytic stability of two catalysts due to the synergy between Pt and WC as discussed above.

    IV.CONCLUSION

    In summary,we have developed a simple effective method for the synthesis of discrete core-shell WC@C/Ptcatalyststhroughatypicalcarburization production mechanism at 800?C.The spheres WC@C/Pt catalysts exhibited higher catalytic activity for electrochemical methanol oxidation reaction (552.16 mA/mg Pt vs.Pt/C 218.93 mA/mg Pt),and exceed 7 times higher in stability than a commercial Pt/C catalyst. By contrast,the as-prepared samples without the process of calcining showed no activity towards methanol oxidation due to lack of active sites.The thermal treatment promoted the formation of mesoporous structure and particles.It bene fited the Pt nanoparticles to be dispersed in size/shape and randomly scattered across the carbon spheres in the carbonizing process,which was believed to be the vital factor for the high quality catalysts.The current methods can be extended to synthesize other noble metals for wider ranges of electro catalysis and may find applications in a myriad of electrochemical processes.

    V.ACKNOWLEDGMENTS

    This work is supported by the International Science&Technology Cooperation Program of China(No.2010DFB63680),the Natural Science Foundation of Zhejiang Province(LQ15B030004)and Loughborough University and the EPSRC(EP/I013229/1).

    [1]M.Winter and R.J.Brodd,Chem.Rev.104,42(2004).

    [2]X.Yang,Q.D.Yang,J.Xu,and C.S.Lee,J.Mater. Chem.22,8057(2012).

    [3]K.Mikkelsen,B.Cassidy,N.Hofstetter,L.Bergquist, A.Taylor,and D.A.Rider,Chem.Mater.26,6928 (2014).

    [4]N.Zhang,S.J.Guo,X.Zhu,J.Guo,and X.Q.Huang, Chem.Mater.28,4447(2016).

    [5]H.Zhang,M.S.Jin,and Y.N.Xia,Chem.Soc.Rev. 41,8035(2012).

    [6]J.R.C.Salgado,F.Alcaide,G.Alvarez,L.Calvillo, and M.J.Lazaro,J.Power Sources 195,4022(2010).

    [7]W.J.Zhou,Z.H.Zhou,S.Q.Song,W.Z.Li,G.Q. Sun,P.Tsiakaras,and Q.Xin,Appl.Catal.46,273 (2003).

    [8]A.Chen and P.H.Hindle,Chem.Rev.110,3767 (2010).

    [9]S.Bukola,B.Merzougui,A.Akinpelu,and M.Zeama, Electrochimica Acta 190,1113(2016).

    [10]G.Singla,K.Singh,and O.P.Pandey,Int.J.Hydrogen Energy 40,5628(2015).

    [11]Z.X.Yan,J.M.Xie,and P.K.Shen,J.Power Sources 286,239(2015).

    [12]K.Woan,G.Pyrgiotakis,and W.Sigmund,Adv. Mater.21,2233(2009).

    [13]S.Y.Zhang,N.P.Philipp,J.W.Joshua,S.Dai,M.J. Xu,G.W.George,C.Matteo,A.P.Frank,and X.Q. Pan,Nano Lett.16,4528(2016).

    [14]R.B.Levy and M.Boudart,Science 181,547(1973).

    [15]J.G.Chen,Chem.Rev.96,1477(1996).

    [16]H.Chhina,S.Campbell,and O.Kesler,J.Power Sources 179,50(2007).

    [17]R.H.Wang,C.G.Tian,L.Wang,B.L.Wang,H.B. Zhang,and H.G.Fu,Chem.Commun.3104(2009).

    [18]G.S.Raman,J.H.Dong,and S.L.Jae,Electrochem. Commun.9,2576(2007).

    [19]J.S.Moon,Y.W.Lee,S.B.Han,and K.W.Park,Int. J.Hydrogen Energy 39,7798(2014).

    [20]R.Ganesan and J.S.Lee,Angew.Chem.Int.Ed.44, 6557(2005).

    [21]C.A.Ma,Z.Y.Chen,W.F.Lin,F.M.Zhao,and M. Q.Shi,Micropor.Mesopor.Mater 149,76(2012).

    [22]Y.Wang,S.Song,V.Maragou,P.K.Shen,and P. Tsiakaras,Appl.Catal.B 89,223(2009).

    [23]Y.Wang,S.Q.Song,P.K.Shen,C.X.Guo,and C. M.Li,J.Mater.Chem.19,6149(2009).

    [24]S.Shanmugam,D.S.Jacob,and A.Gedanken,J.Phys. Chem.B 109,19056(2005).

    [25]V.G.Pol,S.V.Pol,and A.Gedanken,Adv.Mater. 23,1179(2011).

    [26]V.G.Pol,S.V.Pol,and A.Gedanken,Adv.Mater. 18,2023(2006).

    [27]F.P.Hu and P.K.Shen,J.Power Sources 173,877 (2007).

    [28]Z.Y.Chen,C.A.Ma,Y.Q.Chu,J.M.Jin,X.Lin,C. Hardacre,and W.F.Lin,Chem.Commun.49,11677 (2013).

    [29]G.J.French and F.R.Sale,J.Mater.Sci.16,3427 (1981).

    [30]Z.Y.Chen,M.Q.Shi,C.A.Ma,Y.Q.Chu,and A. J.Zhu,Powder Technol.235,467(2013).

    [31]J.Chen,B.Lim,E.P.Lee,and Y.Xia,Nano Today 4, 81(2009).

    [32]Y.J.Li,W.Gao,L.J.Ci,C.M.Wang,and P.M. Ajayan,Carbon 48,1124(2010).

    ceived on March 3,2017;Accepted on June 10,2017)

    ?Authors to whom correspondence should be addressed.E-mail: chenzhy@zjut.edu.cn,chuyq@zjut.edu.cn

    国产片内射在线| 免费在线观看黄色视频的| 日韩一卡2卡3卡4卡2021年| av一本久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品麻豆人妻色哟哟久久| 亚洲精品粉嫩美女一区| 国产成人影院久久av| 可以免费在线观看a视频的电影网站| 国产免费视频播放在线视频| 国产精品久久久久久精品古装| 两个人免费观看高清视频| 免费观看av网站的网址| e午夜精品久久久久久久| 脱女人内裤的视频| 狠狠精品人妻久久久久久综合| 国产成人系列免费观看| 欧美黑人欧美精品刺激| 最近最新免费中文字幕在线| 欧美中文综合在线视频| 欧美 亚洲 国产 日韩一| 午夜视频精品福利| 国产精品九九99| 成年人黄色毛片网站| 欧美中文综合在线视频| 91精品伊人久久大香线蕉| 另类精品久久| 深夜精品福利| 久9热在线精品视频| 久久热在线av| 在线观看www视频免费| 另类亚洲欧美激情| 黄片大片在线免费观看| 欧美另类一区| 大片免费播放器 马上看| 色老头精品视频在线观看| 欧美 亚洲 国产 日韩一| 人成视频在线观看免费观看| 69精品国产乱码久久久| 国产精品av久久久久免费| 日韩电影二区| kizo精华| 高清视频免费观看一区二区| 国产在线视频一区二区| 叶爱在线成人免费视频播放| 操出白浆在线播放| 日本猛色少妇xxxxx猛交久久| 久久国产亚洲av麻豆专区| 99国产精品一区二区三区| 亚洲精品国产av蜜桃| 国产精品久久久av美女十八| 久久久久精品人妻al黑| 另类亚洲欧美激情| 香蕉丝袜av| 桃红色精品国产亚洲av| 欧美日韩一级在线毛片| 欧美中文综合在线视频| 丰满迷人的少妇在线观看| 精品久久久久久电影网| 国产一区二区在线观看av| 色综合欧美亚洲国产小说| 两个人看的免费小视频| 国产成+人综合+亚洲专区| 丝袜在线中文字幕| 精品亚洲成国产av| 热99久久久久精品小说推荐| 黄片大片在线免费观看| 99久久国产精品久久久| 亚洲国产中文字幕在线视频| 亚洲中文日韩欧美视频| 亚洲精品在线美女| 亚洲视频免费观看视频| 最近中文字幕2019免费版| 十八禁人妻一区二区| 老司机福利观看| 一本大道久久a久久精品| 一边摸一边抽搐一进一出视频| 国产av国产精品国产| 亚洲五月色婷婷综合| 亚洲av成人不卡在线观看播放网 | 日本黄色日本黄色录像| 精品福利永久在线观看| 亚洲人成电影免费在线| 国产区一区二久久| 男女国产视频网站| 热re99久久国产66热| 日韩 亚洲 欧美在线| 动漫黄色视频在线观看| 久久久国产欧美日韩av| 国产精品国产av在线观看| 一本一本久久a久久精品综合妖精| 日韩熟女老妇一区二区性免费视频| 国产成人精品无人区| 欧美日韩一级在线毛片| 午夜成年电影在线免费观看| 精品少妇内射三级| 五月天丁香电影| 国产视频一区二区在线看| 9热在线视频观看99| 亚洲国产精品成人久久小说| 天堂俺去俺来也www色官网| 亚洲av成人不卡在线观看播放网 | 熟女少妇亚洲综合色aaa.| 日日摸夜夜添夜夜添小说| 丁香六月欧美| 国产精品麻豆人妻色哟哟久久| 99国产精品一区二区蜜桃av | 国产97色在线日韩免费| 热99国产精品久久久久久7| 亚洲精品久久成人aⅴ小说| 电影成人av| 亚洲国产精品一区三区| 丝瓜视频免费看黄片| 一个人免费在线观看的高清视频 | 午夜精品国产一区二区电影| 51午夜福利影视在线观看| 久久久国产一区二区| 久久国产精品影院| 免费在线观看完整版高清| 后天国语完整版免费观看| 国产免费视频播放在线视频| tube8黄色片| 国产精品久久久久久人妻精品电影 | 高清av免费在线| 久久人人爽人人片av| 亚洲男人天堂网一区| 美女主播在线视频| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久av美女十八| 如日韩欧美国产精品一区二区三区| 国产av国产精品国产| 国产日韩欧美亚洲二区| 母亲3免费完整高清在线观看| 男女国产视频网站| 亚洲伊人色综图| 日本a在线网址| 多毛熟女@视频| 建设人人有责人人尽责人人享有的| 十八禁网站免费在线| 欧美日韩成人在线一区二区| 国产免费一区二区三区四区乱码| 欧美av亚洲av综合av国产av| 交换朋友夫妻互换小说| 男男h啪啪无遮挡| 午夜福利视频在线观看免费| 一级,二级,三级黄色视频| 久久久久久久久免费视频了| 欧美av亚洲av综合av国产av| 男人操女人黄网站| 亚洲欧美一区二区三区久久| 国产真人三级小视频在线观看| 又大又爽又粗| 99国产精品99久久久久| 午夜福利乱码中文字幕| 一区在线观看完整版| 精品久久久精品久久久| 国产主播在线观看一区二区| 国产一区二区在线观看av| 女性被躁到高潮视频| 久久久欧美国产精品| 麻豆国产av国片精品| 9191精品国产免费久久| 人妻 亚洲 视频| 国产av又大| 大片免费播放器 马上看| 男人添女人高潮全过程视频| av福利片在线| 99国产精品一区二区三区| 欧美老熟妇乱子伦牲交| 免费不卡黄色视频| 不卡一级毛片| 久久99一区二区三区| 国产高清国产精品国产三级| 极品少妇高潮喷水抽搐| 国产av又大| 亚洲欧美清纯卡通| 久久av网站| 久久这里只有精品19| 老熟妇乱子伦视频在线观看 | 夫妻午夜视频| 亚洲国产成人一精品久久久| av网站免费在线观看视频| 黄色a级毛片大全视频| 国产精品影院久久| 最近最新免费中文字幕在线| 一本综合久久免费| 十八禁网站免费在线| 一本—道久久a久久精品蜜桃钙片| 国产精品一区二区精品视频观看| 精品久久久久久久毛片微露脸 | 国产亚洲av片在线观看秒播厂| 亚洲国产欧美一区二区综合| 午夜福利影视在线免费观看| 国产伦理片在线播放av一区| 婷婷丁香在线五月| 18禁观看日本| 国产成人影院久久av| 黑人操中国人逼视频| 日韩精品免费视频一区二区三区| 热99re8久久精品国产| 曰老女人黄片| 在线天堂中文资源库| 一本色道久久久久久精品综合| 99热全是精品| 亚洲av日韩在线播放| 亚洲欧美日韩高清在线视频 | 亚洲av日韩在线播放| 宅男免费午夜| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网| 亚洲九九香蕉| 成人影院久久| 亚洲国产看品久久| 国产熟女午夜一区二区三区| 97人妻天天添夜夜摸| 黄色视频不卡| 精品一区在线观看国产| 久久国产精品男人的天堂亚洲| 亚洲五月婷婷丁香| 91九色精品人成在线观看| 国产欧美日韩一区二区三 | 老司机深夜福利视频在线观看 | 亚洲五月色婷婷综合| 少妇精品久久久久久久| 亚洲国产日韩一区二区| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| 男男h啪啪无遮挡| 久久久久久人人人人人| 日韩三级视频一区二区三区| 18禁黄网站禁片午夜丰满| 丁香六月欧美| 亚洲伊人色综图| 欧美日韩亚洲综合一区二区三区_| 国产97色在线日韩免费| 不卡av一区二区三区| 美女中出高潮动态图| 欧美在线一区亚洲| 美女扒开内裤让男人捅视频| 亚洲五月色婷婷综合| 中文字幕人妻丝袜一区二区| 欧美日韩视频精品一区| 脱女人内裤的视频| 亚洲av成人不卡在线观看播放网 | 人妻人人澡人人爽人人| 国产精品久久久av美女十八| 男女下面插进去视频免费观看| 成年动漫av网址| 国产免费现黄频在线看| 国产一区二区在线观看av| 国产精品久久久久成人av| 国产日韩欧美在线精品| 啦啦啦 在线观看视频| 一区在线观看完整版| 欧美久久黑人一区二区| 一级黄色大片毛片| 精品一区二区三卡| 亚洲黑人精品在线| 亚洲精品国产色婷婷电影| 99热全是精品| 亚洲精品美女久久久久99蜜臀| 女警被强在线播放| 免费在线观看视频国产中文字幕亚洲 | 亚洲五月婷婷丁香| 久久国产精品影院| 日韩人妻精品一区2区三区| 人妻人人澡人人爽人人| 国产成人精品在线电影| 脱女人内裤的视频| 91精品三级在线观看| 欧美国产精品一级二级三级| 男女午夜视频在线观看| 在线观看免费午夜福利视频| 在线观看www视频免费| 亚洲av日韩在线播放| 在线观看免费高清a一片| 欧美在线黄色| 黄片大片在线免费观看| 久久久久网色| videosex国产| 精品久久蜜臀av无| 久久久久久免费高清国产稀缺| 亚洲av欧美aⅴ国产| 人妻人人澡人人爽人人| 亚洲精品粉嫩美女一区| 午夜免费鲁丝| 少妇被粗大的猛进出69影院| 欧美日韩亚洲国产一区二区在线观看 | 欧美人与性动交α欧美精品济南到| 国产精品久久久久成人av| 五月开心婷婷网| 成人影院久久| 少妇被粗大的猛进出69影院| 国产麻豆69| 777久久人妻少妇嫩草av网站| 国产一区二区三区综合在线观看| 啦啦啦 在线观看视频| 日韩一卡2卡3卡4卡2021年| 水蜜桃什么品种好| 久久av网站| 一本色道久久久久久精品综合| 激情视频va一区二区三区| 国产成人精品在线电影| 久久久国产一区二区| 侵犯人妻中文字幕一二三四区| 女人久久www免费人成看片| 国产精品秋霞免费鲁丝片| 老司机在亚洲福利影院| 成年人免费黄色播放视频| 两人在一起打扑克的视频| 又紧又爽又黄一区二区| 黄色视频不卡| 熟女少妇亚洲综合色aaa.| 亚洲三区欧美一区| 亚洲成av片中文字幕在线观看| 后天国语完整版免费观看| 丁香六月欧美| 久久国产精品男人的天堂亚洲| 欧美亚洲 丝袜 人妻 在线| 国产成人av激情在线播放| 久久精品国产a三级三级三级| 欧美xxⅹ黑人| 国产高清国产精品国产三级| 啦啦啦免费观看视频1| av片东京热男人的天堂| 丁香六月天网| 夜夜夜夜夜久久久久| 三上悠亚av全集在线观看| 国产一区二区三区av在线| 狂野欧美激情性bbbbbb| 电影成人av| 色老头精品视频在线观看| 男女之事视频高清在线观看| 国产精品一区二区免费欧美 | a 毛片基地| 男女午夜视频在线观看| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 欧美 日韩 精品 国产| 日本a在线网址| 99国产精品99久久久久| 日本91视频免费播放| 国产精品一区二区在线观看99| 各种免费的搞黄视频| 777久久人妻少妇嫩草av网站| 亚洲精品国产精品久久久不卡| 大码成人一级视频| 999精品在线视频| 丝袜喷水一区| 国产精品久久久久久人妻精品电影 | 欧美日韩视频精品一区| 中文字幕精品免费在线观看视频| 深夜精品福利| 日本猛色少妇xxxxx猛交久久| 亚洲第一av免费看| 熟女少妇亚洲综合色aaa.| 精品一区二区三卡| www.精华液| 男人添女人高潮全过程视频| 美女扒开内裤让男人捅视频| 久久精品国产亚洲av香蕉五月 | 视频在线观看一区二区三区| 人人妻人人澡人人看| 三级毛片av免费| av不卡在线播放| 日韩欧美一区视频在线观看| 香蕉国产在线看| 女性被躁到高潮视频| 亚洲精品粉嫩美女一区| 欧美另类亚洲清纯唯美| 乱人伦中国视频| 丝袜人妻中文字幕| 亚洲 欧美一区二区三区| 在线观看人妻少妇| 亚洲五月婷婷丁香| 欧美国产精品va在线观看不卡| 成年人免费黄色播放视频| 中文欧美无线码| 国产成人免费观看mmmm| 性色av一级| 人成视频在线观看免费观看| 18禁裸乳无遮挡动漫免费视频| 午夜视频精品福利| 亚洲五月婷婷丁香| 欧美 亚洲 国产 日韩一| 日韩熟女老妇一区二区性免费视频| 国产亚洲午夜精品一区二区久久| 国产视频一区二区在线看| 免费观看av网站的网址| 啦啦啦中文免费视频观看日本| 午夜免费观看性视频| 亚洲伊人久久精品综合| 国产亚洲av高清不卡| 免费观看人在逋| 一级毛片女人18水好多| 国产主播在线观看一区二区| 国产精品秋霞免费鲁丝片| 国产无遮挡羞羞视频在线观看| 国内毛片毛片毛片毛片毛片| 久久综合国产亚洲精品| 美女午夜性视频免费| 视频区图区小说| 日韩 亚洲 欧美在线| 黑丝袜美女国产一区| 欧美另类亚洲清纯唯美| 99久久人妻综合| 成人黄色视频免费在线看| 老司机影院成人| 国产有黄有色有爽视频| xxxhd国产人妻xxx| 国产主播在线观看一区二区| av片东京热男人的天堂| 黄色 视频免费看| av网站免费在线观看视频| 国产免费一区二区三区四区乱码| 深夜精品福利| 国产精品免费大片| videos熟女内射| 女警被强在线播放| 动漫黄色视频在线观看| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 欧美黄色片欧美黄色片| 久久久久视频综合| 91字幕亚洲| 亚洲精品久久久久久婷婷小说| 在线十欧美十亚洲十日本专区| 国产免费av片在线观看野外av| 免费看十八禁软件| 大片免费播放器 马上看| 午夜影院在线不卡| 纵有疾风起免费观看全集完整版| 黄色毛片三级朝国网站| 欧美午夜高清在线| 最新在线观看一区二区三区| 纯流量卡能插随身wifi吗| 男女边摸边吃奶| 亚洲va日本ⅴa欧美va伊人久久 | 性色av乱码一区二区三区2| 午夜福利视频精品| 亚洲精品国产一区二区精华液| 黄色片一级片一级黄色片| 不卡av一区二区三区| 成在线人永久免费视频| 99国产精品99久久久久| 人妻一区二区av| 国产男女内射视频| 国产亚洲精品第一综合不卡| 国产黄色免费在线视频| 欧美日韩国产mv在线观看视频| 日韩三级视频一区二区三区| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| √禁漫天堂资源中文www| 人人妻,人人澡人人爽秒播| 亚洲熟女精品中文字幕| 成年人午夜在线观看视频| 欧美激情极品国产一区二区三区| 精品一区在线观看国产| 男女无遮挡免费网站观看| 国产成人免费观看mmmm| 韩国精品一区二区三区| 在线观看免费午夜福利视频| 性色av一级| 亚洲精品久久久久久婷婷小说| 国产精品99久久99久久久不卡| 99精国产麻豆久久婷婷| 免费一级毛片在线播放高清视频 | 九色亚洲精品在线播放| 亚洲av日韩在线播放| 不卡av一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | a 毛片基地| 男女免费视频国产| 一本久久精品| 亚洲av日韩精品久久久久久密| 我的亚洲天堂| 1024香蕉在线观看| 男女国产视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 99热国产这里只有精品6| 婷婷成人精品国产| 少妇被粗大的猛进出69影院| 99热网站在线观看| 精品亚洲乱码少妇综合久久| 精品一区二区三区四区五区乱码| 亚洲精品一区蜜桃| 久久这里只有精品19| 午夜精品国产一区二区电影| 亚洲美女黄色视频免费看| 秋霞在线观看毛片| 高清黄色对白视频在线免费看| 搡老熟女国产l中国老女人| 午夜福利免费观看在线| 一区二区三区四区激情视频| 亚洲国产精品999| 欧美久久黑人一区二区| 久久亚洲精品不卡| 高清av免费在线| 国产精品久久久人人做人人爽| 国产精品免费大片| 久久国产精品人妻蜜桃| 一级a爱视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区mp4| 人妻 亚洲 视频| 国产激情久久老熟女| 午夜免费观看性视频| 国产男女内射视频| 亚洲成人免费av在线播放| 国产一区二区在线观看av| 国产日韩欧美亚洲二区| 亚洲伊人久久精品综合| 精品人妻1区二区| 亚洲av男天堂| 男女午夜视频在线观看| 18禁裸乳无遮挡动漫免费视频| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 久久久久久人人人人人| 欧美日韩福利视频一区二区| 成年av动漫网址| 女警被强在线播放| 老汉色∧v一级毛片| 国产精品成人在线| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 女人被躁到高潮嗷嗷叫费观| 日本一区二区免费在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 视频区图区小说| 男人舔女人的私密视频| 国产精品秋霞免费鲁丝片| 久久人人97超碰香蕉20202| 女警被强在线播放| 黑人巨大精品欧美一区二区蜜桃| 欧美人与性动交α欧美精品济南到| 午夜精品国产一区二区电影| 国产麻豆69| 波多野结衣av一区二区av| 亚洲精品乱久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 美女扒开内裤让男人捅视频| av视频免费观看在线观看| 黑人猛操日本美女一级片| 国产伦理片在线播放av一区| 我的亚洲天堂| 女性生殖器流出的白浆| 美国免费a级毛片| 中文字幕另类日韩欧美亚洲嫩草| 色老头精品视频在线观看| 亚洲av欧美aⅴ国产| 一边摸一边做爽爽视频免费| 波多野结衣一区麻豆| 日韩欧美国产一区二区入口| 各种免费的搞黄视频| 日韩欧美一区视频在线观看| 中国国产av一级| 在线精品无人区一区二区三| 一区二区三区四区激情视频| 色94色欧美一区二区| 99九九在线精品视频| 精品免费久久久久久久清纯 | 18在线观看网站| 成人av一区二区三区在线看 | 97在线人人人人妻| 成人国语在线视频| 午夜福利乱码中文字幕| 亚洲国产精品一区三区| 岛国毛片在线播放| 久久精品国产综合久久久| 丝袜美腿诱惑在线| 欧美精品啪啪一区二区三区 | 久久热在线av| 欧美激情极品国产一区二区三区| 在线观看舔阴道视频| 俄罗斯特黄特色一大片| 无限看片的www在线观看| 狠狠婷婷综合久久久久久88av| 久久久久网色| 嫁个100分男人电影在线观看| 精品国产超薄肉色丝袜足j| 国产欧美日韩综合在线一区二区| 精品人妻一区二区三区麻豆| 各种免费的搞黄视频| 日韩欧美一区视频在线观看| 黄色a级毛片大全视频| 久久国产精品大桥未久av| 亚洲自偷自拍图片 自拍| 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| 国产三级黄色录像| 国产成人a∨麻豆精品| 最近最新中文字幕大全免费视频| 建设人人有责人人尽责人人享有的| 制服诱惑二区| 丰满饥渴人妻一区二区三| 少妇裸体淫交视频免费看高清 | 超色免费av| av线在线观看网站| 美女扒开内裤让男人捅视频| 在线永久观看黄色视频| 淫妇啪啪啪对白视频 | 欧美一级毛片孕妇| 另类亚洲欧美激情| 啦啦啦视频在线资源免费观看| 俄罗斯特黄特色一大片| 手机成人av网站| 又大又爽又粗| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 亚洲av成人不卡在线观看播放网 | 巨乳人妻的诱惑在线观看| 欧美精品av麻豆av|