• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly Responsive and Selective Ethanol Gas Sensor Based on Co3O4-Modi fied SnO2Nano fibers

    2017-09-03 07:54:07DongdongChenZhouLiXinJinJianxinYi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Dong-dong Chen,Zhou Li,Xin Jin,Jian-xin Yi

    State Key Laboratory of Fire Science,Department of Safety Science and Engineering,University of Science and Technology of China,Hefei 230026,China

    Highly Responsive and Selective Ethanol Gas Sensor Based on Co3O4-Modi fied SnO2Nano fibers

    Dong-dong Chen,Zhou Li,Xin Jin,Jian-xin Yi?

    State Key Laboratory of Fire Science,Department of Safety Science and Engineering,University of Science and Technology of China,Hefei 230026,China

    SnO2nano fibers were synthesized by electrospinning and modi fied with Co3O4via impregnation in this work.Chemical composition and morphology of the nano fibers were systematically characterized,and their gas sensing properties were investigated.Results showed that Co3O4modi fication signi ficantly enhanced the sensing performance of SnO2nano fibers to ethanol gas.For a sample with 1.2 mol%Co3O4,the response to 100 ppm ethanol was 38.0 at 300?C,about 6.7 times larger than that of SnO2nano fibers.In addition,the response/recovery time was also greatly reduced.A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2sensor.The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.

    SnO2nano fibers,Heterojunction,Electrospinning,Impregnation,Gas sensors

    I.INTRODUCTION

    Resistance-type gas sensors based on semiconductor metal oxides such as SnO2,ZnO,and TiO2have been widely investigated due to their high sensitivity,fast response,and low cost.Among them,SnO2is widely regarded as one of the most promising sensing materials for detection of various gases.However,SnO2-based gas sensors are still limited by their poor selectivity and relatively long response/recovery time for practical applications.

    In order to obtain better selectivity and faster response/recovery speed,much effort has been made on the design of material microstructure and surface modification.Various shapes of SnO2materials on the nanoscale,including flowers[1],spheres[2],rods[3],and fibers[4]have been fabricated. In particular,SnO2nano fibers are of great interest because of their large surface-to-volume ratio.Furthermore,their gas-sensing property can also be effectively enhanced by forming heterojunctions with other semiconductor metal oxides, such as Co3O4[5,6],NiO[7,8],CuO[9],and In2O3[10].Among these oxides,Co3O4has attracted much attention due to its excellent catalytic performance and synergetic effect with SnO2.Jeong et al.synthesized Co3O4-coated SnO2hollow nanospheres via galvanic replacement,and obtained highly improved selectivity to xylene and methylbenzenes[5].Wang et al.modified SnO2nanospheres with Co3O4via a hydrothermal method,and signi ficantly enhanced the response to ammonia gas[11].However,these synthesis methods are difficult for wide-spread use because of the complexity. In contrast,impregnation has been widely adopted as a facile and low cost route for preparation of nano-sized catalysts,which may also be used for synthesis of heterojunction sensing materials.

    In this work,SnO2nano fibers were prepared by electrospinning,and modi fied with Co3O4by impregnation.The results showed that gas sensors based on Co3O4/SnO2nano fibers were highly responsive and selective to ethanol gas.Furthermore,signi ficant reduction in both the response and recovery time was also observed relative to that for the SnO2nano fibers.The gas-sensing performance was discussed in relation to the p-n heterojunction.

    II.EXPERIMENTS

    All reagents were of analytical grade and purchased from Sinopharm Chemical Reagent Co.,Ltd.,China. Pristine SnO2nano fibers were prepared via electrospinning.Typically,0.4 g SnCl2·2H2O,5.6 mL anhydrous ethanol,and 4.7 mL N,N-dimethylformamide(DMF) were mixed and stirred for 30 min under 1000 r/min. 0.8 g polyvinyl pyrrolidone(PVP,Mw=1.3×106)was then added under stirring.The obtained transparent solution was transferred to a plastic syringe.A voltage of 15 kV was applied for electrospinning and the feeding rate was kept constant at 0.4 mL/h using a syringe pump.The as-spun fibers were dried at 80?C,and then calcined at 600?C for 3 h to obtain SnO2nano fibers.

    Appropriate amounts of SnO2nano fibers were soaked in 0.1 mol/L cobalt nitrate solution followed by filtering. The filtered powders were dried at 80?C for 2 h,and then heated at 600?C for 3 h to obtain Co3O4/SnO2nano fibers.These procedures were repeated to obtain another sample with different Co3O4amounts.SnO2nano fibers subjected to this impregnation treatment for 0,1,and 2 times are denoted as SCo-0,SCo-1,and SCo-2,respectively.

    Crystal structure was examined by powder X-ray diffraction(XRD,TTR III)with Cu Kα1 radiation.Morphology and microstructure of the nano fibers were studied by scanning electron microscope(JSM-6700F)and transmission electron microscopy(JEM-2011)equipped with an energy-dispersive X-ray spectrometer(EDX).X-ray photoelectron spectroscopy (XPS)was performed on an ESCLAB 250 spectrometer using Al Kα as the exciting source.

    To prepare the sensor,nano fibers were dispersed in ethanol under ultrasonic vibration for 10 min.The obtained paste was coated on an alumina tube and then heat-treated at 400?C for 2 h.The alumina tube has been equipped with a pair of Au electrodes,which was each connected with two platinum wires.A Ni-Cr alloy coil was inserted into the alumina tube as a heater.

    The sensing properties of the nano fibers were examined with a WS-30A(Weisheng Electronics Co.Ltd., China)system and an electrometer(Agilent 34461A). The testing method was similar to that described in our previous work[7].Measurements were conducted in an 18 L chamber in a static atmosphere.Appropriate amounts of certi fied analyte gas(Nanjing Specialty Gas Co.,Ltd.) were injected with a syringe,which led to changes in the electrical resistance of the sensor.For ethanol and acetone,vapors were obtained by vaporizing their liquid samples with an evaporator inside the chamber.The sensor response was de fined as S=Rair/Rgas(Rair:resistance in air atmosphere,Rgas: resistance during exposure to the target gas).The time taken by the sensor to reach 90%of the total resistance change was de fined as the response time in the case of response or the recovery time in the case of recovery.

    III.RESULTS AND DISCUSSION

    FIG.1 shows the XRD patterns of the as-prepared samples.For pristine SnO2,a single-phase tetragonal rutile structure(JCPDS No.41-1445)was obtained.For Co3O4/SnO2composites,all peaks could be indexed to SnO2,and neither presence of Co3O4nor shift of the diffraction peaks was observed.Under the present synthesis conditions,Co3O4would be formed by thermal decomposition of Co(NO3)2·6H2O[12].The absence of Co3O4diffraction peaks is explained as follows.As the concentration of cobalt nitrate solution used was relatively low and the impregnation time was as short as 2 min,only a small amount of Co3O4with small parti-cle size would be formed,which is consistent with the SEM-EDX results discussed below.Similar phenomena have also been observed in other composite materials prepared by impregnation methods[4,13,14].On the other hand,FIG.1 also shows that the diffraction peaks became broadened for the Co3O4/SnO2composites,suggesting larger crystalline size.According to the Debye-Scherrer equation,the crystallite size was estimated to be 9.3 nm for SCo-0,which increased to 33.6 and 48.0 nm for SCo-1 and SCo-2,respectively.The grain growth can be attributed to the repeated calcinations at 600?C after the impregnation.

    FIG.1 XRD patterns of the as-prepared samples.

    XPS was used to analyze the composition and chemical state of the samples,wherein the binding energy for the C 1s peak at 284.8 eV was used as a reference for energy calibration(FIG.2).Sn and O peaks were observed for all the samples,and Co peaks were found for the impregnated samples.The Sn 3d3/2and Sn 3d5/2peaks appeared at 495.0 and 486.6 eV,respectively,which agreed well with other reports for SnO2[15].Co 2p1/2and Co 2p3/2doublets for SCo-1 and SCo-2 were observed at 796.5 and 781.0 eV,respectively,which was consistent with those of Co3O4[16]. The Co/(Sn+Co)ratio was determined to be 6.9 at% for SCo-1 and 9.9 at%for SCo-2(Table I),indicating an increase of Co loading amount with the increase of impregnation times.For the O 1s spectra,each peak was asymmetric and could be deconvoluted into two peaks at~531.4 and~530.3 eV,corresponding to the adsorbed oxygen(Oads)and lattice oxygen(Olat),respectively.As can be seen from Table I,the peak area ratio for adsorbed oxygen to total O 1s decreased monotonically with increasing impregnation time,indicating that oxygen adsorption was depressed by the presence of Co3O4.

    SEM images in FIG.3 shows that the length and the diameter of SnO2nano fibers were~1μm and 100?200 nm,respectively.Similar morphology was observed for the SCo-1 and SCo-2 nano fibers.TEM analysis further indicated that the particle size was around 10?50 nm(FIG.4).Some small pores were present in the nano fibers,which would be favorable for achiev-ing high gas accessibility of the materials.EDX analysis revealed a Co/(Sn+Co)ratio of 3.7 at%for SCo-2 nano fibers,corresponding to~1.2 mol%Co3O4.The Co content is much lower than that measured by XPS, which is also consistent with the fact that Co3O4was formed on the surface of SnO2.Direct observation of Co3O4particles was not successful,owing to the low content of Co3O4as well as its small particle size prepared by impregnation.

    FIG.2(a)Survey XPS spectrum and high resolution spectra for(b)Sn 3d,(c)Co 2p,and(d)O 1s of pristine and Co3O4modi fied SnO2nano fibers.

    FIG.3 SEM photographs of the as-prepared samples of(a)SCo-0,(b)SCo-1,(c)SCo-2.

    TABLE I Compositions determined from XPS for pristine and Co3O4modi fied SnO2.

    FIG.5(a)presents the response of the as-prepared samples to 100 ppm ethanol at different temperatures. For all the samples,the response first increased with temperature,reached a maximum at 300?C,and then decreased.The response increased signi ficantly with the Co3O4loading.A response of 38.0 was obtained at 300?C for SCo-2,6.7 times higher than that of SCo-0. Table II shows that the ethanol response of SCo-2 nano fibers is higher than that of some other SnO2-based sensors[17?19].As shown in FIG.5(b),the gas response of the sensors varied linearly with the ethanol concentration on a log-log scale,indicating a power-law type relationship.The distinctly larger slope observed for the SCo-2 sensor suggests a more pronounced enhancement of the response at higher ethanol concentra-tions.Assuming a value of 1.2 as the lowest response [20],the detection limit was estimated by extrapolating the regressed linear line in FIG.5(b)to be 2.3 and 1.5 ppm for SCo-0 and SCo-2,respectively.Further investigation of gas-sensing performance was focused on SCo-2 due to its higher response and lower detection limit.

    FIG.4 TEM pictures of the as-prepared samples of(a)SCo-0,(b)SCo-1,(c)SCo-2.

    FIG.5(a)Response of as-prepared samples to 100 ppm ethanol gas at different temperatures.(b)Log-log plot for the dependence of response on the ethanol concentration.

    FIG.6 presents the continuous response curves of SCo-0 and SCo-2 nano fibers to 100 ppm ethanol gas at 300?C.It can be seen that the dynamic responserecovery features for both samples were well repeated, and the sensor response could restore to the initial base line after each cycle.The response and recovery time for SCo-2 were found to be 5 and 23 s,respectively,which were remarkably reduced compared with the respectivevalues(10 and 62 s)for SCo-0.

    TABLE II The 100 ppm ethanol gas sensing properties of SnO2-based ethanol sensors.

    FIG.6 Dynamic response curves of SCo-0 and SCo-2 to 100 ppm ethanol at 300?C.

    The cross sensitivity of SCo-2 nano fibers was examined in the temperature range of 200?400?C(FIG.7). The sensor exhibited negligible response to methane, propane,and carbon monoxide,and minor response to hydrogen at temperatures above 300?C.The response to ethanol was over 28 times higher than that to the interferent gases,which clearly demonstrated excellent ethanol selectivity for SCo-2.

    It is widely accepted that the gas sensing mechanism of metal oxide semiconductor is based on the adsorption and desorption of gases on the surface of materials [21].In air atmosphere,oxygen molecules are adsorbed on the material surface,and form O2?,O?and O2?ions by capturing electrons from the material.Then an electron depletion layer and a potential barrier are formed on the surface,leading to increase of resistance. When ethanol is present in the atmosphere,adsorbed oxygen species will react with ethanol and the capturedelectrons will be released back to the material.As a result,the electron depletion layer becomes thinner and the resistance decreases.

    FIG.7 Response of SCo-2 to 100 ppm various gases at different temperatures.

    Generally speaking,better surface oxygen adsorption,smaller grain size,and formation of p-n heterojunction are bene ficial to achieving higher gas sensing performance[7,22].The present work showed that Co3O4/SnO2nano fibers were associated with depressed surface oxygen adsorption(Table I)and larger grain size,which may deteriorate the gas sensing properties. Therefore,the remarkable enhancement of ethanol response for SnO2nano fibers by Co3O4decoration may mainly result from formation of p-n heterojunctions between the two oxides,which changes the surface potential barrier and makes the material more sensitive[20].

    IV.CONCLUSION

    SnO2and Co3O4/SnO2nano fibers were synthesized via electrospinning and impregnation.When compared with pristine SnO2nano fibers,Co3O4/SnO2exhibited greatly enhanced response to ethanol and signi ficantly reduced response/recovery time.A response of 38.0 to 100 ppm ethanol gas and a response/recovery time of 5 and 23 s was observed for SCo-2 at 300?C.Furthermore,excellent ethanol selectivity against interference of methane,propane,hydrogen,and carbon monoxide was also observed for SCo-2.The improved ethanol sensing performance may be ascribed to formation of p-n heterojunctions between SnO2and Co3O4.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.U1432108)and the Fundamental Research Funds for the Central Universities(No.WK2320000034).

    [1]H.L.Zhang,C.G.Hu,X.S.He,L.Hong,G.J.Du, and Y.Zhang,J.Power Sources 196,4499(2011).

    [2]Q.R.Zhao,Y.Xie,T.Dong,and Z.G.Zhang,J.Phys. Chem.111,11598(2007).

    [3]J.P.Liu,Y.Y.Li,X.T.Huang,R.M.Ding,Y.Y.Hu, J.Jiang,and L.Liao,J.Mater.Chem.19,1859(2009).

    [4]Y.G.Zheng,J.Wang,and P.J.Yao,Sens.Actuators B 156,723(2011).

    [5]H.M.Jeong,J.H.Kim,S.Y.Jeong,C.H.Kwak,and J.H.Lee,ACS Appl.Mater.Interfaces 8,7877(2016).

    [6]R.J.Wu,J.G.Wu,M.R.Yu,T.K.Tsai,and C.T. Yeh,Sens.Actuators B 131,306(2008).

    [7]Z.Li and J.X.Yi,Sens.Actuators B 243,96(2017).

    [8]L.Liu,Y.Zhang,G.G.Wang,S.C.Li,L.Y.Wang, Y.Han,X.X.Jiang,and A.G.Wei,Sens.Actuators B 160,448(2011).

    [9]Y.Zhao,X.L.He,J.P.Li,X.G.Gao,and J.Jia,Sens. Actuators B 165,82(2012).

    [10]H.Y.Du,J.Wang,M.Y.Su,P.J.Yao,Y.G.Zheng, and N.S.Yu,Sens.Actuators B 166,746(2012).

    [11]L.L.Wang,J.N.Deng,Z.Lou,and T.Zhang,Sens. Actuators B 201,1(2014).

    [12]J.W.Yoon,J.K.Choi,and J.H.Lee,Sens.Actuators B 161,570(2012).

    [13]H.X.Guo,J.H.Chen,W.Weng,Z.S.Zheng,and D. F.Wang,J.Ind.Eng.Chem.20,3081(2014).

    [14]W.Wang,Z.Y.Li,W.Zheng,H.Huang,C.Wang,and J.H.Sun,Sens.Actuators B 143,754(2010).

    [15]Y.H.Choi,and S.H.Hong,Sens.Actuators B 125, 504(2007).

    [16]S.T.Navale,C.S.T.Liu,P.S.Gaikar,V.B.Patil, R.U.R.Sagar,B.Du,R.S.Mane,and F.J.Stadler, Sens.Actuators B 245,524(2017).

    [17]S.Liu,Y.Zhang,B.Yu,Z.Y.Wang,H.R.Zhao, N.Zhou,and T.Zhang,Sens.Actuators B 210,700 (2015).

    [18]J.Cao,T.Zhang,F.Li,H.Yang,and S.Liu,New J. Chem.37,2031(2013).

    [19]L.L.Wang,Z.Lou,R.Zhang,T.T.Zhou,J.N.Deng, and T.Zhang,ACS Appl.Mater.Interfaces 8,6539 (2016).

    [20]C.W.Na,H.S.Woo,I.D.Kim,and J.H.Lee,Chem. Commun.47,5148(2011).

    [21]M.Batzil and U.Diebold,Prog.Surf.Sci.79,47(2005).

    [22]D.R.Miller,S.A.Akbar,and P.A.Morris,Sens.Actuators B 204,250(2014).

    ceived on April 24,2017;Accepted on May 22,2017)

    ?Author to whom correspondence should be addressed.E-mail: yjx@ustc.edu.cn,Tel:+86-551-63607817

    日本爱情动作片www.在线观看| 国产在线视频一区二区| 亚洲精品久久午夜乱码| 亚洲成人手机| 欧美精品亚洲一区二区| 国产综合精华液| 久久ye,这里只有精品| 欧美少妇被猛烈插入视频| 又黄又粗又硬又大视频| 国产男女超爽视频在线观看| 国产精品一国产av| 国产麻豆69| 汤姆久久久久久久影院中文字幕| 香蕉国产在线看| 黄色毛片三级朝国网站| 亚洲激情五月婷婷啪啪| av不卡在线播放| 18禁动态无遮挡网站| 美女大奶头黄色视频| 欧美精品av麻豆av| 波野结衣二区三区在线| 国产日韩欧美在线精品| 亚洲美女搞黄在线观看| 最近手机中文字幕大全| 成年av动漫网址| 激情五月婷婷亚洲| 欧美bdsm另类| 纵有疾风起免费观看全集完整版| 18禁国产床啪视频网站| 97在线人人人人妻| 性色av一级| 国产片特级美女逼逼视频| 高清不卡的av网站| 亚洲av电影在线观看一区二区三区| 成人国语在线视频| 制服诱惑二区| 国产免费福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美激情国产日韩精品一区| 国产又色又爽无遮挡免| 99国产精品免费福利视频| 巨乳人妻的诱惑在线观看| 天天躁夜夜躁狠狠躁躁| 丰满饥渴人妻一区二区三| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区国产| 毛片一级片免费看久久久久| 男女高潮啪啪啪动态图| √禁漫天堂资源中文www| 亚洲欧洲日产国产| 国产精品三级大全| 亚洲精品国产色婷婷电影| 国产精品三级大全| 色哟哟·www| 一本—道久久a久久精品蜜桃钙片| 女人精品久久久久毛片| 99久久中文字幕三级久久日本| 国产一区二区在线观看日韩| 2022亚洲国产成人精品| av播播在线观看一区| 熟女电影av网| 久久久久精品人妻al黑| 蜜桃在线观看..| 尾随美女入室| 中国三级夫妇交换| 人妻一区二区av| 欧美97在线视频| 亚洲第一av免费看| 久久久a久久爽久久v久久| 亚洲av在线观看美女高潮| 亚洲美女搞黄在线观看| 熟妇人妻不卡中文字幕| 国产爽快片一区二区三区| 亚洲图色成人| 精品亚洲乱码少妇综合久久| 亚洲精品456在线播放app| 欧美人与性动交α欧美软件 | 999精品在线视频| 亚洲av综合色区一区| 三级国产精品片| a级毛色黄片| 妹子高潮喷水视频| 日韩制服丝袜自拍偷拍| 巨乳人妻的诱惑在线观看| 国产高清三级在线| 日韩精品免费视频一区二区三区 | 天天躁夜夜躁狠狠躁躁| 精品熟女少妇av免费看| 制服诱惑二区| 日韩一区二区视频免费看| 18+在线观看网站| 在线天堂最新版资源| 精品人妻偷拍中文字幕| av在线观看视频网站免费| 成人国产av品久久久| 各种免费的搞黄视频| 欧美精品av麻豆av| 热re99久久国产66热| 国产日韩一区二区三区精品不卡| av又黄又爽大尺度在线免费看| av线在线观看网站| 国产日韩欧美视频二区| 亚洲五月色婷婷综合| 建设人人有责人人尽责人人享有的| 18禁动态无遮挡网站| 成年女人在线观看亚洲视频| 九草在线视频观看| 久久99一区二区三区| 日产精品乱码卡一卡2卡三| 少妇人妻 视频| 欧美国产精品一级二级三级| 免费大片18禁| a级毛片黄视频| 国产深夜福利视频在线观看| 欧美97在线视频| 久久久久国产网址| 国产成人精品无人区| 国产精品一国产av| 各种免费的搞黄视频| 国产av国产精品国产| 国产片特级美女逼逼视频| 亚洲成人一二三区av| 十八禁高潮呻吟视频| 人妻 亚洲 视频| 五月开心婷婷网| 亚洲欧美一区二区三区黑人 | 成人免费观看视频高清| 日本-黄色视频高清免费观看| 五月伊人婷婷丁香| 国产激情久久老熟女| 国产高清国产精品国产三级| 亚洲婷婷狠狠爱综合网| 亚洲欧美一区二区三区国产| 老熟女久久久| 中国美白少妇内射xxxbb| 久久久久久久久久人人人人人人| 免费人妻精品一区二区三区视频| 一区在线观看完整版| 欧美精品国产亚洲| 免费观看性生交大片5| 在线 av 中文字幕| 欧美亚洲日本最大视频资源| 久久狼人影院| 久久女婷五月综合色啪小说| freevideosex欧美| 久久这里只有精品19| 黄片播放在线免费| 精品少妇内射三级| 韩国av在线不卡| 成年av动漫网址| 高清视频免费观看一区二区| 在线看a的网站| 亚洲色图 男人天堂 中文字幕 | 中文乱码字字幕精品一区二区三区| 九九爱精品视频在线观看| 午夜免费男女啪啪视频观看| 国产熟女欧美一区二区| 看非洲黑人一级黄片| 色视频在线一区二区三区| a级毛片黄视频| 丁香六月天网| 亚洲中文av在线| 亚洲精品久久久久久婷婷小说| 99热国产这里只有精品6| 2018国产大陆天天弄谢| 久久韩国三级中文字幕| 啦啦啦啦在线视频资源| 精品视频人人做人人爽| 色94色欧美一区二区| 国产黄色免费在线视频| xxx大片免费视频| 18禁在线无遮挡免费观看视频| 欧美丝袜亚洲另类| 精品人妻在线不人妻| 夫妻性生交免费视频一级片| 久久精品久久久久久噜噜老黄| 成人国语在线视频| 啦啦啦中文免费视频观看日本| 久久精品国产综合久久久 | 欧美精品一区二区大全| 日本vs欧美在线观看视频| 视频中文字幕在线观看| 国产精品99久久99久久久不卡 | 黑人猛操日本美女一级片| av不卡在线播放| 高清毛片免费看| 91精品三级在线观看| 交换朋友夫妻互换小说| 精品一区二区三区四区五区乱码 | 久久免费观看电影| 精品一区二区三区四区五区乱码 | 18禁裸乳无遮挡动漫免费视频| www.熟女人妻精品国产 | www.av在线官网国产| 寂寞人妻少妇视频99o| 成人黄色视频免费在线看| 日本猛色少妇xxxxx猛交久久| 久久 成人 亚洲| 丰满饥渴人妻一区二区三| 男女无遮挡免费网站观看| 波野结衣二区三区在线| 街头女战士在线观看网站| 亚洲一级一片aⅴ在线观看| 国产av国产精品国产| www日本在线高清视频| 久久人人爽人人片av| 国产xxxxx性猛交| 伦理电影大哥的女人| 亚洲精品日韩在线中文字幕| 五月伊人婷婷丁香| 精品一区在线观看国产| 老司机亚洲免费影院| 欧美 日韩 精品 国产| 国产不卡av网站在线观看| 亚洲人成77777在线视频| 亚洲色图 男人天堂 中文字幕 | 99久久综合免费| 99热6这里只有精品| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 一级片免费观看大全| 久久精品国产自在天天线| 国产国拍精品亚洲av在线观看| 国精品久久久久久国模美| 免费日韩欧美在线观看| 日韩制服丝袜自拍偷拍| 赤兔流量卡办理| 中文字幕人妻丝袜制服| 国产 一区精品| 久久久久人妻精品一区果冻| 亚洲欧美清纯卡通| 韩国高清视频一区二区三区| 免费少妇av软件| 成人亚洲欧美一区二区av| 亚洲色图 男人天堂 中文字幕 | 亚洲国产色片| 丝瓜视频免费看黄片| 欧美+日韩+精品| 日产精品乱码卡一卡2卡三| 欧美国产精品一级二级三级| 亚洲精品日本国产第一区| 国产乱人偷精品视频| 90打野战视频偷拍视频| 国产极品粉嫩免费观看在线| 日韩制服骚丝袜av| 两个人看的免费小视频| 国内精品宾馆在线| 国产在线一区二区三区精| 亚洲,欧美,日韩| 在线看a的网站| 一本—道久久a久久精品蜜桃钙片| 久久韩国三级中文字幕| 国产成人欧美| 免费看光身美女| 亚洲av日韩在线播放| 欧美精品国产亚洲| 亚洲国产精品成人久久小说| 国产欧美日韩一区二区三区在线| 少妇高潮的动态图| 婷婷色麻豆天堂久久| 国产片内射在线| 国产日韩欧美视频二区| kizo精华| 国产黄色免费在线视频| 综合色丁香网| 性色av一级| 亚洲精华国产精华液的使用体验| 大香蕉久久成人网| 久久综合国产亚洲精品| 天堂俺去俺来也www色官网| 精品一区二区三卡| 欧美xxⅹ黑人| 国产一区亚洲一区在线观看| 老司机亚洲免费影院| 久久久精品区二区三区| 久久毛片免费看一区二区三区| 22中文网久久字幕| 精品久久蜜臀av无| av不卡在线播放| 国产精品久久久av美女十八| 免费观看av网站的网址| 18禁裸乳无遮挡动漫免费视频| 卡戴珊不雅视频在线播放| 九九爱精品视频在线观看| 成年女人在线观看亚洲视频| 久久久欧美国产精品| 成年美女黄网站色视频大全免费| 免费不卡的大黄色大毛片视频在线观看| 日韩成人av中文字幕在线观看| 久久久久精品性色| 精品国产一区二区三区四区第35| 伦理电影大哥的女人| 成人国产av品久久久| 中文字幕人妻熟女乱码| 日韩大片免费观看网站| 欧美人与性动交α欧美软件 | 最黄视频免费看| 男女国产视频网站| 日韩 亚洲 欧美在线| 久久久久久久亚洲中文字幕| 最近最新中文字幕大全免费视频 | 日本wwww免费看| 欧美性感艳星| 麻豆精品久久久久久蜜桃| 看十八女毛片水多多多| 搡女人真爽免费视频火全软件| 精品少妇久久久久久888优播| 亚洲av在线观看美女高潮| 寂寞人妻少妇视频99o| 一边亲一边摸免费视频| 天堂俺去俺来也www色官网| 成年人免费黄色播放视频| 亚洲av成人精品一二三区| 国语对白做爰xxxⅹ性视频网站| 男女午夜视频在线观看 | 性色avwww在线观看| 日韩欧美一区视频在线观看| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 亚洲精品456在线播放app| 国产成人精品福利久久| 日韩大片免费观看网站| 亚洲欧美中文字幕日韩二区| 国产伦理片在线播放av一区| 波多野结衣一区麻豆| 精品久久久精品久久久| 国产色婷婷99| 国产精品久久久久久久电影| 18禁裸乳无遮挡动漫免费视频| a级毛片黄视频| 深夜精品福利| 一区二区av电影网| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av天美| 岛国毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色综合www| 国产精品人妻久久久久久| 精品国产乱码久久久久久小说| 一本大道久久a久久精品| 国产又色又爽无遮挡免| 全区人妻精品视频| 一级毛片 在线播放| 免费日韩欧美在线观看| 亚洲精品一二三| 国产一区二区在线观看日韩| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 国产黄色免费在线视频| 亚洲婷婷狠狠爱综合网| 国产色婷婷99| 香蕉国产在线看| 在线观看免费高清a一片| 国产精品蜜桃在线观看| 国产一区二区激情短视频 | 国产亚洲精品久久久com| 日韩视频在线欧美| 欧美日韩成人在线一区二区| 中文字幕av电影在线播放| 丁香六月天网| 亚洲精品aⅴ在线观看| 久久综合国产亚洲精品| 久久人人97超碰香蕉20202| 你懂的网址亚洲精品在线观看| √禁漫天堂资源中文www| 18禁动态无遮挡网站| 黑丝袜美女国产一区| 99热网站在线观看| 国产精品熟女久久久久浪| 美女中出高潮动态图| 欧美日韩成人在线一区二区| 国产1区2区3区精品| 国产精品久久久av美女十八| 男女啪啪激烈高潮av片| 成人18禁高潮啪啪吃奶动态图| 男女午夜视频在线观看 | 老司机亚洲免费影院| 黄色配什么色好看| 日韩不卡一区二区三区视频在线| 欧美 亚洲 国产 日韩一| 宅男免费午夜| 亚洲av.av天堂| 久久久久网色| 国产在线视频一区二区| 久久精品国产自在天天线| 亚洲综合精品二区| 两个人免费观看高清视频| 久久这里只有精品19| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 精品久久国产蜜桃| 男人舔女人的私密视频| 久久免费观看电影| 卡戴珊不雅视频在线播放| 天天影视国产精品| 亚洲熟女精品中文字幕| 在现免费观看毛片| 欧美激情 高清一区二区三区| 亚洲av男天堂| 日韩一区二区三区影片| 国产精品一区二区在线观看99| 久久精品国产自在天天线| 91在线精品国自产拍蜜月| 男人添女人高潮全过程视频| 观看av在线不卡| 精品一区二区三区视频在线| 欧美激情国产日韩精品一区| 99热网站在线观看| 99热这里只有是精品在线观看| 老司机影院毛片| 午夜激情久久久久久久| 十八禁高潮呻吟视频| 2022亚洲国产成人精品| videossex国产| a级片在线免费高清观看视频| 久久久久久伊人网av| 韩国高清视频一区二区三区| 亚洲国产精品一区二区三区在线| 久久 成人 亚洲| 熟女av电影| 国产国语露脸激情在线看| 97精品久久久久久久久久精品| 熟女电影av网| xxxhd国产人妻xxx| 国产一区有黄有色的免费视频| av免费观看日本| 在线免费观看不下载黄p国产| 亚洲第一区二区三区不卡| 久久韩国三级中文字幕| 日韩欧美一区视频在线观看| 国产 一区精品| 久久久久国产精品人妻一区二区| 你懂的网址亚洲精品在线观看| 国精品久久久久久国模美| 午夜免费男女啪啪视频观看| 日韩中文字幕视频在线看片| 美女视频免费永久观看网站| 在线看a的网站| 成人无遮挡网站| 欧美老熟妇乱子伦牲交| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 亚洲精品aⅴ在线观看| 免费大片18禁| 欧美变态另类bdsm刘玥| 国产成人免费观看mmmm| 18禁观看日本| 成人手机av| 欧美精品亚洲一区二区| 中文字幕人妻丝袜制服| 毛片一级片免费看久久久久| 色5月婷婷丁香| 国产精品三级大全| 国产一区有黄有色的免费视频| 久久久久精品久久久久真实原创| 日本欧美视频一区| 人妻一区二区av| 大片电影免费在线观看免费| 亚洲成人一二三区av| 伊人亚洲综合成人网| 亚洲国产最新在线播放| 精品一品国产午夜福利视频| 各种免费的搞黄视频| 国产在线一区二区三区精| 免费人妻精品一区二区三区视频| 美女内射精品一级片tv| 国产毛片在线视频| 国产亚洲欧美精品永久| 久久久久久久国产电影| 香蕉国产在线看| 99热全是精品| 国产女主播在线喷水免费视频网站| 91精品伊人久久大香线蕉| 欧美激情国产日韩精品一区| 国产男女内射视频| 天天影视国产精品| 色吧在线观看| 久久人人97超碰香蕉20202| 国产 一区精品| 少妇人妻精品综合一区二区| 男女下面插进去视频免费观看 | 欧美日本中文国产一区发布| 男女边吃奶边做爰视频| 成人综合一区亚洲| 一级毛片 在线播放| 在线亚洲精品国产二区图片欧美| 亚洲一区二区三区欧美精品| 中文乱码字字幕精品一区二区三区| 99视频精品全部免费 在线| 色视频在线一区二区三区| 宅男免费午夜| 男女高潮啪啪啪动态图| 免费人成在线观看视频色| 亚洲精品色激情综合| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 国产精品国产三级国产专区5o| av网站免费在线观看视频| 一本久久精品| 国产免费现黄频在线看| 久久久久久久精品精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品熟女少妇av免费看| 一级毛片我不卡| 欧美最新免费一区二区三区| 看免费av毛片| 久久av网站| 国国产精品蜜臀av免费| 免费人成在线观看视频色| 国产精品人妻久久久影院| 91成人精品电影| 日韩制服骚丝袜av| 久久精品国产亚洲av天美| 亚洲国产av影院在线观看| 黄网站色视频无遮挡免费观看| freevideosex欧美| 51国产日韩欧美| 成人毛片60女人毛片免费| 久久久久网色| 国产免费一级a男人的天堂| 国产亚洲精品久久久com| 国产成人精品无人区| 欧美国产精品va在线观看不卡| 国产福利在线免费观看视频| a级毛片黄视频| 亚洲精品aⅴ在线观看| a 毛片基地| 免费观看在线日韩| 免费日韩欧美在线观看| 国产女主播在线喷水免费视频网站| 国产老妇伦熟女老妇高清| 国产免费福利视频在线观看| 久久久久网色| 一级,二级,三级黄色视频| 亚洲欧美日韩另类电影网站| 国产精品国产三级专区第一集| 少妇 在线观看| 午夜av观看不卡| 黄色视频在线播放观看不卡| 男的添女的下面高潮视频| 亚洲精品第二区| 午夜av观看不卡| 三上悠亚av全集在线观看| 日本wwww免费看| av在线app专区| 久久这里只有精品19| 少妇精品久久久久久久| 精品午夜福利在线看| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩卡通动漫| 国产在线免费精品| 亚洲成人手机| 国产av码专区亚洲av| av国产久精品久网站免费入址| 欧美日韩一区二区视频在线观看视频在线| 一本大道久久a久久精品| 人体艺术视频欧美日本| 午夜福利视频精品| 国产一区二区激情短视频 | 国产69精品久久久久777片| 午夜福利网站1000一区二区三区| videossex国产| 亚洲成人av在线免费| 男男h啪啪无遮挡| 欧美激情国产日韩精品一区| 免费av中文字幕在线| 精品视频人人做人人爽| 午夜激情久久久久久久| 少妇精品久久久久久久| 日日撸夜夜添| 99久久人妻综合| 日本vs欧美在线观看视频| 亚洲av在线观看美女高潮| 七月丁香在线播放| 高清在线视频一区二区三区| 久久这里只有精品19| 中文字幕免费在线视频6| 99热国产这里只有精品6| 亚洲国产精品国产精品| av免费观看日本| 中文字幕制服av| 国产熟女午夜一区二区三区| 妹子高潮喷水视频| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡 | 黑人猛操日本美女一级片| 久久这里有精品视频免费| 777米奇影视久久| 久久这里有精品视频免费| 高清av免费在线| 亚洲丝袜综合中文字幕| 久久人人爽人人爽人人片va| 国产淫语在线视频| 九色成人免费人妻av| 赤兔流量卡办理| 国产视频首页在线观看| 97超碰精品成人国产| 青春草亚洲视频在线观看| 国产成人午夜福利电影在线观看| 中文字幕最新亚洲高清| 日韩成人伦理影院| 9色porny在线观看| 色5月婷婷丁香| 日本爱情动作片www.在线观看| 亚洲精品一二三| 两个人看的免费小视频| 免费在线观看完整版高清| 国产成人av激情在线播放| 亚洲国产日韩一区二区| 高清不卡的av网站| 亚洲经典国产精华液单| 99久久精品国产国产毛片| 肉色欧美久久久久久久蜜桃| a 毛片基地| 18在线观看网站|