• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers

    2020-03-08 14:05:54WUSiMEILeiHUKongQiuCHAIZhiFangNIEChangMingSHIWeiQun
    無機材料學報 2020年2期
    關鍵詞:鈾酰草酸配位

    WU Si, MEI Lei, HU Kong-Qiu, CHAI Zhi-Fang,3, NIE Chang-Ming, SHI Wei-Qun

    pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers

    WU Si1,2, MEI Lei2, HU Kong-Qiu2, CHAI Zhi-Fang2,3, NIE Chang-Ming1, SHI Wei-Qun2

    (1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; 2. Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3. Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China)

    In this work, we report a novel octa-nuclear uranyl (U8) motif [(UO2)8O4(μ3-OH)2(μ2-OH)2]4+embedded in a uranyl-oxalate coordination polymer (compound 1) based on a U-shaped linker with extra-long xylylene chains for stabilizing the resulting high-nuclear motif through additional cross-linking connectivity. A comparison with dimeric and monomeric uranyl compoundsobtained at different pH value from the same hydrothermal system reveals that, solution pH plays a vital role in formation of this octa-nuclear uranyl motif by promoting hydrolysis of uranyl source. Since high similarity of eight uranium centers in this nearly planar U8 motif here, overlapping and broadening of signals in fluorescence, infra-red (IR) and Raman spectra can be found.

    actinide coordination polymers; octa-nuclear uranyl; U-shaped Linker; pH effect

    Because of the great importance in nuclear fuel cycle and environmental decontamination, actinide chemistry has gained increasing attentions from chemists, geolo-gists and materials specialists[1-2]. As a naturally occu-rring actinide element, uranium, which is mostly featured by the form of hexavalent uranyl cation (UO22+) in ambient atmosphere, has been utilized as metal node in many uranium-based metal-organic compounds[3-6]. In close relation with the strong hydrolysis tendency of uranyl cation at varying aqueous pH values[7-9], a large variety of uranyl building units with different uranium nuclearities and/or connecting modes could be found in the large library of uranyl compounds[6]. Therefore, stru-ctural identification of uranyl compounds with diver-sified uranyl compositions in solid state can provide an alternative route to explore the solution chemistry of uranyl cation in terms of hydrolysis and speciation under different conditions. Most importantly, the well-defined structural and chemical features of these uranyl com-pounds with high-nuclear units could be helpful to get more insight on precise control of actinide hydrolysis and effective isolation of certain high-nuclear species from the actinide aqueous solution.

    While many oligomeric uranyl units as well as infinite chain-like polynuclear uranyl motifs have been chara-cterized in uranyl-organic compounds, few cases of uranyl-organic compounds with oligomeric octa-nuclear uranyl motifs[10-11]have been reported so far, though there are several octa-nuclear uranyl cage species constr-ucted through coordination-driven assembly[12-13]. The scarcity of higher nuclearity might be attributed to harsh forming conditions for them as well as their instability in molecular structure.

    Herein, a uranyl-oxalate coordination polymer con-taining a new type of oligomeric octa-nuclear uranyl motif, [(UO2)8O4-(3-OH)2(2-OH)2]4+, was isolated succ-essfully and identified with the aid of a flexible U-shaped dicarboxylate linker (Xyl-BPy4CA) with an extra-long xylylene chain.

    1 Experimental

    1.1 Synthesis

    (UO2)8O4(3-OH)2(2-OH)2(C2O4)2(C20H16N2O4)2(1) UO2(NO3)2·6H2O (200 μL, 0.10 mmol), [-Xyl- BPy4CEt]Br2(28.0 mg, 0.05 mmol), NaOH (3.2 mg, 0.08 mmol), ultrapure water (1.0 mL) was loaded into a 15 mL autoclave (the initial pH is 2.72), sealed and heated to 150 ℃ in an oven for 2 d, then automa-tically cooled to ambient temperature. Dark yellow crystals of 1 (Fig. S1) were produced, filtered off, and rinsed with ultrapure water and subjected to air-drying at room temperature to give 1 in pure phase in spite of preferred alignment of some crystal indices (Fig. S2). Yield: 14 mg (35% based on uranium).

    [(UO2)2(2-OH)2(C20H16N2O4)2(H2O)2](NO3)2(2) com-pound 2 was synthesized using the same protocol except a reducing amount of NaOH (2.4 mg, 0.06 mmol). Prism yellow-green crystals were filtered off, and rinsed with ultrapure water and subjected to air-drying at room temperature to give 2 in pure phase (Fig. S1 and S3). Yield: 22 mg (31% based on uranium).

    (UO2)(C2O4)(C6H5NO2) (3) compound 3 was synth-esized using the same protocol like 1 and 2 but without NaOH added. Stick-like yellow-green crystals of 3 can be obtained as accompanied by considerable amount of 2 and other unidentified impurities (Fig. S1 and S4).

    1.2 Characterization

    1H-NMR spectra were recorded on a Bruker AVANCE III (500 MHz, Bruker, Switzerland) with deuterium oxide (D2O) as solvent. ESI-MS spectra were obtained with a Bruker AmaZon SL ion trap mass spectrometer (Bruker, USA). Powder X-ray diffraction (PXRD) measurements were recorded on a Bruker D8 Advance diffractometer with Cu Kα radiation (=0.15406 nm) in the range 5°–60° (step size: 0.02°). Thermogravimetric analysis (TGA) was performed on a TA Q500 analyzer over the temperature range of 25–800 ℃ in air with a heating rate of 10 ℃/min. Solid-state fluorescence spectra were measured on a Hitachi F-4600 fluorescence spectrophotometer. The Four-ier transform infrared (IR) spectra were recorded from KBr pellets in the range of 4000–400 cm–1at Bruker Tensor 27 spectrometer. Raman spectra were recorded on a Thermo Fisher Scientific DXRxi Micro Raman imaging spectrometer excited at 780 nm.

    Uranyl-oxalate coordination polymer (namely comp-ound 1, Fig. 1(a)) containing a new type of oligomeric octa- nuclear uranyl motif, [(UO2)8O4-(3-OH)2(2-OH)2]4+(Fig. 1(b)), was isolated successfully and identified with the aid of a flexible U-shaped dicarboxylate linker (Xyl-BPy4CA) with an extra-long xylylene chain (Fig. 1(c-d)). By a direct comparison with another uranyl compounds (namely compound 2 and compound 3) with monomeric or dimeric uranyl nodes from the same organic ligand, factors affecting the formation of compound 1 such as aqueous pH and hydrothermal stability of organic ligand have been discussed. The physicochemical properties of compound 1 were also characterized and compared in detail.

    Fig. 1 Octa-nuclear uranyl-oxalate network reinforced by U-shaped zwitterionic dicarboxylate linkers

    (a) two-dimensional coordination network; (b) octa-nuclear uranyl (U8) motif, [(UO2)8O4(3-OH)2(2-OH)2]4+; (c) U-shaped linker in a space- filling mode overlapped with its molecular structure; (d) U-shaped linker in a stick mode

    Color codes: uranyl polyhedra in yellow; U-shaped linkers in dark or blue

    2 Results and discussion

    2.1 Structural description

    Crystallographic analysis shows that compound 1 crystallizes in the monoclinic crystal system with a space group of P21/c, and its asymmetric unit contains four unique uranium centers, a linker of-Xyl-BPy4CA ([C20H16N2O4]) and an-formed oxalate ligand ([C2O4]2–) (Fig. 2(a)). The formation of oxalate ion is more or less a little surprising in spite of several similar cases found in other heterocycle-based or labile organic ligands[13].Viewing from the exten-ding structure of the asymmetric unit, an elongated U8 motif can be found (Fig. 2(b)), among which every uranium center is in a pentagonal bipyramid (P-type) geometry with equatorial U–O bond distances in the range of 0.2193(14)–0.2578(14) nm (Table S1), and links to each other through sharing equatorial edges with other neighboring polyhedrons.Based on the bond valence sum analysis[14], the bond valence value of O(11) is 1.393, which should be assigned to μ3-hydroxo group, while the atoms of O(9) and O(10) are μ3-oxo groups (bond valence values of 1.943 and 2.20, respectively), and O(12) is μ2-hydroxo group (bond valence values of 1.137). The feature of μ3-hydroxo group for O(11)is ascribed to weak binding affinity to U(3) and U(4). Compared with the cation-cation interactions (CCIs) directed U8 motif reported previously[11], the [(UO2)8O4(3-OH)2(2-OH)2]4–motif found here represents a new type of uranyl oligomer with a nearly planar geometry (Fig. S5).

    Fig. 2 Crystal structure of compound 1

    (a) ORTEP view of compound 1 with the 30% probability level for thermal ellipsoids; (b) octa-nuclear uranyl (U8) motif in compound 1 showing detailed coordination spheres of all uranyl centers

    Color codes: uranium atoms in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms pale gray

    Each U8 motif is eight-connected with four oxalate and four-Xyl-BPy4CA moieties surrounded (Fig S6(a)). The oxalate ligands, always go together with a U-shaped bidentate-Xyl-BPy4CA, promote the extension of U8 motif from four directions through connecting four adjacent ones in a bridging mode (one side is in2-2:1mode and the other side is in2mode) (Fig. S6(b)), and subsequently lead to a 2D network with the minimum rhombic loop in size of 1.193 nm×1.077 nm (Fig. S6(c-d)). Detailed analysis reveals that, every U8 motif displays a different overall orientation from that of its adjacent U8 with an angle of inclination of 36.6(4)°, which is contributed to the distortion of the above rhombic loop (Fig. S7).

    When the amount of sodium hydroxide added to the hydrothermal system of uranyl and [-Xyl-BPy4CEt]Br2decreased gradually, another two uranyl compounds 2 and 3 emerge. Compound 2 is a molecular compound with a dimeric uranyl motif containing two equivalent uranyl centers (Fig. 3(a-b)). Each uranyl is in a pentagonal bipyramid geometry with equatorial U–O bond distances in the range of 0.2325(2)–0.2576(2) nm (Table S1). Besides two bridging hydroxyl groups and two water molecules, the uranyl dimer is coordinated by two bidentate1-mode-Xyl-BPy4CA linkers both in a head-to-tail way, and finally gives a pattern of twinned double loops (Fig.3(b)). The simple double loops interact with two nitrate anions by hydrogen bonds (Fig. S8and Table S2) and stack with each other to form the final crystal lattice of molecular compound (Fig. 3(c-d)).

    Another uranyl compound 3 with a one-dimensional (1D) chain-like topology was produced under the more acidic condition. As the case of compound 1, the-formed oxalate ligand ([C2O4]2–) is present in compound 3, indicating the frequent occurrence of oxalate ion for the hydrothermal systems of pyridine derivatives[13]such as [-Xyl-BPy4CEt]Br2used here. In the crystal structure of compound 3, not only oxalate ligands that bridge monomeric uranyl groups to form a one-dimensional chain, but also protonated isonicotinate as a ligand at both sides can be found (Fig. 4). The presence of protonated isonicotinate in compound 3 suggests the higher degrees of decom-position of [-Xyl-BPy4CEt]Br2under more acidic condition compared with that found in compound 1 and 2.

    2.2 pH-dependent regulation on the formation of U8 motif

    The distinct structural difference among compounds 1, 2 and 3 suggests the significant impact of pH on the uranyl hydrothermal systems, especially the uranyl speciation and crystallization process (Fig. 5). The strong dependence on pH of uranyl speciation is largely attributed to hydrolysis of uranyl ion in aqueous solution. Generally speaking, uranyl monomer is likely to be stable at low pH, whereas high pH of aqueous solution always induces uranyl hydrolysis and promotes its oligomerization through the olation or oxolation process. With the aid of certain organic ligands, these oligomeric uranyl species could further transfer to the solid state as poly-nuclear uranyl compounds. Resembling most uranyl systems in aqueous solution, the formation of U8 motif in compound 1 also follows a pH-regulated mechanism. As revealed by the synthesis of compound 1–3, the aqueous pH used for compound 1 (pH ~2.72) with octa-nuclear uranyl motifs is higher than that for compounds 2 (pH ~2.29) and 3 (pH ~1.35) with only dimeric or monomeric uranyl motifs. Interestingly, pH also exerts a non-negligible influence on the stabilization of organic ligands under hydrothermal conditions. In contrast to the large degree of decompo-sition of [-Xyl-BPy4CEt]Br2to simple isonicotinate linkers found in compound 3, the original zwitterionic dicarboxylate linkers still retains its main molecular skeleton with controlled hydrolysis to its acid form of-Xyl-BPy4CA during hydrothermal reaction with uranyl under less acidic conditions for the synthesis of compound 1. It can be speculated that the preservation of total skeleton of-Xyl-BPy4CA with strong coordination capability toward uranyl units as demonstrated in com-pound 1 also contributes to the formation of U8 motifs by affording additional stabilization through coordination and cross- linkage. The role of U-shaped-Xyl-BPy4CA link-ers in the stabilization of high-nuclear U8 motifs will be discussed as followed.

    Fig. 3 Crystal structure of compound 2

    (a) ORTEP view of compound 2 with the 30% probability level for thermal ellipsoids; (b) coordination environment of each uranyl center for dimeric uranyl motif; (c-d) crystal lattice stacking for compound 2 viewed foraxis (c) andaxis (d)

    Color codes: uranium atoms in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms pale gray; the U-shaped linkers in green

    Fig. 4 Crystal structure of compound 3

    (a) ORTEP view of compound 3 with the 30% probability level for thermal ellipsoids; (b) coordination environments of uranyl center; (c-d) the extended structure based on one-dimensional oxalate-bridging mono-meric uranyl chain with (c) or without (d) terminal isonicotinate ligands

    Color codes: uranium atoms or polyhedras in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms in pale gray

    Fig. 5 pH-dependent regulation of hydrothermal reactions of m-Xyl-BPy4CA linkers and uranyl

    Color codes: uranium polyhedras in yellow; oxygen atoms in red; carbon atoms in gray; nitrogen atoms in blue

    2.3 Structural stabilization of high-nuclear U8 motifs

    It is interesting to find that most of uranyl-oxalate compounds[14-20]only afford uranyl secondary building units with nuclearities of no more than 4. The difference of compound 1 from those reported previously in uranyl oligomerization suggests that there are other additional factors contributing to the stabilization of U8 motif with more uranyl units. Apparently, structural stabilization based on coordination bonds and/or chelating effects of organic ligands is one of the vital factors to promote the final crystallization of U8-bearing product as companied with the pH-induced formation of U8 motifs. TheXyl-BPy4CA linker plays dual roles in the constru-ction of U8-based compound 1, including realizing coordination saturation of uranium centers of U8 and additional structural connectivity for rhombic loop as well as crystal packing. Specifically, two bidentateXyl-BPy4CA ligands in a couple crosslink all the four U8 motifs through coordination bonds and hydrogen bonds, where oneXyl-BPy4CA ligand points upwards and the other points downwards from the opposite direction (Fig.S9). The coordination bonds in a bridgingμ-η1:1mode on both ends ofXyl-BPy4CA joint two adjacent U8 motifs through two binding patterns (lateral and terminal binding sites), while hydrogen bonds between the C-H groups on the ‘back’ of U-shaped linker and oxygen atoms from another two U8 motifs of the rhombic loop consolidate the location ofXyl-BPy4CA in the cavity. Moreover, the important role ofXyl-BPy4CA also reflects on its participation of hydrogen bonds between adjacent layers of 2D sheets through interacting with neighboured uranyl group from another sheet, which mainly contributes to the crystal packing of compound 1 in three-dimensional (3D) space (Fig. S10). In all, the participation ofXyl-BPy4CA linker increases the molecular connectivity, enhances the structural stability of high-nuclear metal clusters and thus promotes the formation of new high-nuclear uranyl motifs.

    Moreover, a comprehensive survey on the relationship between high-nuclear uranyl motifs and organic ligands used reveals that, multi-topic organic ligand with a nonlinear configuration is more likely to fit for capture, fixation and stabilization of high-nuclear uranyl motifs by coordination to uranyl units in a compact way (Fig. S11). Another important feature ofXyl-BPy4CA linker in molecular structure is its flexible conformation (Fig. S12). This U-shaped ligand could display varying mole-cular conformations in different compounds so as to be adapted to different coordination environment of uranyl motif. For example, theXyl-BPy4CA linker gives a more open conformation when located at the cavity of uranyl-oxalate network in compound 1 (angle between two pyridium groups is ~47.9°, left in Fig. S12), while it becomes more compact with two dangled pyridium groups nearly paralleled to each other (angle between two pyridium groups is ~13.8°, right in Fig. S12). As shown above, the flexibility of molecular skeleton forXyl-BPy4CA linker ensures it structural adaptivity and facilitates the formation of new U8 motif.

    2.4 Physicochemical Properties

    Characterizations of properties including thermogravi-metric analysis (TGA), Fourier transform infrared (IR) spectra, Raman spectra, and solid-state fluorescence spectra for compounds 1 and 2 in pure phase were conducted. In terms of thermal stability, compound 1 does not undergo thermal decomposition of oxalate group on the backbone of 2D network until the tem-perature increases up to ~295 ℃ (Fig. S13), which is in sharp contrast to compound 2 (Fig. S14). The good stab-ility of compound 1 is similar to the thermal behavior of uranyl oxalate[21]. IR spectrum of compound 1 (Fig. S15) shows only a weak broad signal at ~915 nm correspond-ding to the characteristic vibrations of axial U=O bonds (calculated data based on the empirical equation of [d (U=O) (pm)=10650[1(cm–1)]–2/3+57.5][22]: 0.175–0.179 nm), although there are eight uranium centers in the secondary building unit of compound 1. The asymmetric stretching vibration of axial U=O bonds for compounds 2 and 3 (911 and 910 nm, respectively) is comparable to that observed for compound 1 (Fig. S15). The Raman spectrum of compound 1 (Fig. S16) also displays only two peaks assigned to asymmetric ν3vibrations (calcu-lated data based on the empirical equation of [d (U=O) (pm) = 9141 [3(cm–1)]–2/3+ 80.4][22]: 0.175–0.178 nm), which is very similar to that observed for compound 3 with monomeric uranyl unit. A comparison of compound 1 with previously-reported CCI- mediated U8 motif[11]in IR and Raman spectra shows that the latter one gives finer signals of stretching vibrations that could be resolved well and assigned to different uranyl centers among the U8 motif, while the IR and Raman signals for different uranyl centers of U8 motif in compound 1 seem to be highly overlapped with each other. This phenomenon might be, by contrasted to CCI-based U8 motif, ascribed to the nearly planar attribute of non-CCI U8 motif, which partly offsets the differences between uranyl centers of U8 motif in compound 1. In short, difference in physicochemical properties between this type of U8 motif and that mediated by CCIs reflects the particularity of U8 found here.

    As shown in Fig. S17, solid-state fluorescence spectra of compounds 1 and 2 are more or less different as compared to that of uranyl nitrate (UO2(NO3)2). Compound 2 gives the typical vibronic progression of uranium (VI) with the five main emission bands located at 499, 520, 543, 568 and 596 nm corresponding to the S11→ S00and S10→ S0ν(ν=0?4) electronic transitions[23]. It is very similar to that for a uranyl terephthalate compound with the same dimeric uranyl units[24], and shows a large red-shift (7?11 nm) compared to that of uranyl nitrate. The large red-shift observed here should be attributed to markedly different coordination geometries and coordination modes for uranyl centers in compound 2 and UO2(NO3)2[25-28]. Interestingly, the fluorescence of compound 1 gives an unresolved broad signal with a broad peak ranging from 530 to 550 nm, and also turns to own a red-shift as well as a little attenuation in intensity compared to those of compound 2 and uranyl nitrate. Resembling the situation of IR and Raman spectra, the peak broadening might be attributed to the signal overlapping of uranium(VI) centers in the nearly planar U8 motif of compound 1[25]. Considering the complexity for figuring out complicated interactions between different uranyl units in this large octa-nuclear uranyl cluster, the precise assignment and analysis of fluorescence spectra is still difficult here, and further study on this issue with the aid of modeling methods might be needed in the near future.

    3 Conclusions

    In summary, we have successfully synthesized a uranyl- oxalate coordination polymer with a new type of octa- nuclear uranyl motif, [(UO2)8O4-(μ3-OH)2(μ2-OH)2]4+by utilizing U-shaped pyridinium-based organic ligand [-Xyl-BPy4CEt]Br2a pH-dependent regulation. The mixed ligand system of oxalateandXyl-BPy4CA formedplays important roles for stabilizing high-nuclear uranyl species by bridging coordination linkage and superimposed structural connectivity, respec-tively. The U8-bearing uranyl compound found here provides more information on uranyl hydrolysis and speciation in aqueous solution, and also facilitates the exploration of new actinide materials by employing well- designed organic linkers.

    Supporting Materials:

    Supporting Materials related to this article can be found at https://doi.org/10.15541/jim20190118

    [1] ALTMAIER M, GAONA X, FANGHANEL T,. Recent advances in aqueous actinide chemistry and thermodynamics., 2013, 113(2): 901–943.

    [2] JONES M B, GAUNT A J. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes., 2013, 113(2): 1137–1198.

    [3] WANG K X, CHEN J S. Extended structures and physicochemical properties of uranyl-organic compounds., 2011, 44(7): 531–540.

    [4] ANDREWS M B, CAHILL C L. Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures., 2013, 113(2): 1121–1136.

    [5] YANG W T, PARKER T G, SUN Z M,. Structural chemistry of uranium phosphonates., 2015, 303(1): 86–109.

    [6] LOISEAU T, MIHALCEA I, HENRY N,. The crystal chemistry of uranium carboxylates., 2014, 266(35): 69–109.

    [7] RAI D, FELMY A R, RYAN J L,. Uranium (IV) hydrolysis constants and solubility product of UO2·H2O(am)., 1990, 29(2): 260–264.

    [8] AHRLAND S. On the complex chemistry of the uranyl ion Ι. The hydrolysis of the 6-valent uranium in aqueous solutions., 1949, 3(4): 374–400.

    [9] ZANONATO P, DI BERNARDO P, BISMONDO A,. Hydrolysis of uranium (VI) at variable temperatures (10–85 ℃)., 2004, 126(17): 5515–5522.

    [10] SALMON L, THUERY P, EPHRITIKHINE M,. Crystal structure of the first octanuclear uranium (IV) complex with compartmental schiff base ligands., 2004, 23(4): 623–627.

    [11] MIHALCEA I, HENRY N, CLAVIER N,. Occurence of an octanuclear motif of uranyl isophthalate with cation-cation interactions through edge-sharing connection mode., 2011, 50(13): 6243–6249.

    [12] PASQUALE S, SATTIN S, ESCUDERO-ADAN E C,. Giant regular polyhedra from calixarene carboxylates and uranyl., 2012, 3(1): 785.

    [13] THUERY P. A highly adjustable coordination system: nanotubular and molecular cage species in uranyl ion complexes with kemp's triacid., 2014, 14(3): 901–904.

    [14] WANG L H, SHANG R, ZHENG Z,. Two systems of [DabcoH2]2+/[PipH2]2+-uranyl-oxalate showing reversible crystal-to- crystal transformations controlled by the diammonium/uranyl/ oxalate ratios in aqueous solutions ([DabcoH2]2+=1,4-diazabicyclo- [2.2.2]-octaneH2and [PipH2]2+= PiperazineH2)., 2013, 13(6): 2597–2606.

    [15] CHAPELET-ARAB B, NOWOGROCKI G, ABRAHAM E,. Crystal structure of new uranyl oxalates (NH4)2[UO2(C2O4)·2H2O] and (NH4)2–x(N2H5)[UO2(C2O4)3]·3H2O (=0 and=1). Compar-ison with other uranyl oxalates., 2005, 93(5): 279–285.

    [16] GIESTING P A, PORTER N J, BURNS P C,. A series of sheet-structured alkali metal uranyl oxalate hydrates: structures and IR spectra., 2006, 221(8): 589–599.

    [17] GIESTING P A, PORTER N J, BURNS P C,. Uranyl oxalate hydrates: structures and IR spectra., 2006, 221(4): 252–259.

    [18] DUVIEUBOURG L, NOWOGROCKI G, ABRAHAM F,. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides:- and-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2((C2O4)(OH)2(H2O)2]·H2O., 2005, 178(11): 3437–3444.

    [19] THUERY P. Reaction of uranyl nitrate with carboxylic diacids under hydrothermal conditions. Crystal structure of complexes with L(+)-tartaric and oxalic acids., 2007, 26(1): 101–106.

    [20] VOLOGZHANINA A V, SEREZHKINA L B, NEKLYUDOVA N A,. Synthesis and characterisation of a trinuclear uranyl complex: crystal structure of (CN3H6)5[(UO2)3O(OH)2(CH3COO)(C2O4)3]., 2009, 362(14): 4921–4925.

    [21] CHUGH C A, SHARMA A, SHARMA A,. Kinetics and mechanism of thermal decomposition of uranyl oxalate., 2011, 23(4): 1865–1866.

    [22] BARTLETT J R, COONEY R P,. On the determination of uranium oxygen bond lengths in dioxouranium (VI) compounds by raman-spectroscopy., 1989, 193(1): 295–300.

    [23] BRACHMANN A, GEIPEL G, BERNHARD G,. Study of uranyl (VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS)., 2002, 90(3): 147–153.

    [24] MEI L, WANG C Z, ZHU L Z,. Exploring new assembly modes of uranyl terephthalate: templated syntheses and structural regulation of a series of rare 2d→3d polycatenated frameworks., 2017, 56(14): 7694–7706.

    [25] NATRAJAN L S. Developments in the photophysics and photochemistry of actinide ions and their coordination compounds., 2012, 256(15/16): 1583–1603.

    [26] THUERY P, HARROWFIELD J. Solvent effects in solvo-hydro-thermal synthesis of uranyl ion complexes with 1,3-adamantane-diacetate., 2015, 17(21): 4006– 4018.

    [27] THUERY P, HARROWFIELD J. Structural variations in the uranyl/4,4'-biphenyldicarboxylate system. rare examples of 2d→3d polycatenated uranyl-organic networks., 2015, 54(16): 8093–8102.

    [28] THUERY P, RIVIERE E, HARROWFIELD J,. Uranyl and uranyl-3d block cation complexes with 1,3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties., 2015, 54(6): 2838–2850.

    pH調控合成U型配體介導的八核鈾酰草酸網(wǎng)絡

    吳思1,2, 梅雷2, 胡孔球2, 柴之芳2,3, 聶長明1, 石偉群2

    (1. 南華大學 化學化工學院, 衡陽 421001;2. 中國科學院 高能物理研究所 核能放射化學實驗室, 北京 100049; 3. 中國科學院 寧波材料技術與工程研究所, 先進能源材料工程實驗室, 寧波 315201)

    本工作報道了一種含新型八核鈾酰(U8)團簇單元([(UO2)8O4(μ3-OH)2(μ2-OH)2]4+)的草酸鈾酰配合物, 該化合物中, U型有機配體鏈可以增強鈾酰之間的交聯(lián)度, 具有穩(wěn)定多核鈾酰團簇的作用。通過與另外兩種含單核和雙核的鈾酰配位化合物比較, 發(fā)現(xiàn)八核鈾酰團簇單元的形成是一個pH調控的過程。理化性質分析顯示, 熒光、紅外、拉曼的信號峰都出現(xiàn)了不同程度的重疊和寬化, 表明八個鈾酰離子具有較高的相似度, 這與此多核鈾酰團簇的近平面分子構型密切相關。

    錒系配位聚合物;八核鈾酰中心;U-型鏈;pH調控

    Supporting materials:

    pH-dependent Synthesis of Octa-nuclear Uranyl-Oxalate Network Mediated by U-shaped Linkers

    WU Si1,2, MEI Lei2, HU Kong-Qiu2, CHAI Zhi-Fang2,3, NIE Chang-Ming1, SHI Wei-Qun2

    (1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; 2. Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3. Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China)

    S1. General Methods

    S1. 1 Synthesis

    1,1¢-(1,3-phenylenebis(methylene))bis(4-(ethoxycarbonyl)pyridin-1-ium) bromide ([-Xyl-BPy4CEt]Br2).[-Xyl-BPy4CEt]Br2was synthesized according to the reported procedure[5-7].A mixture of 1, 3-Bis(bromo-methyl)benzene (0.65 g, 2.46 mmol) and isonicotinate (0.83 g, 5.49 mmol) were dissolved in 50 mL of acet-onitrile and refluxed for 48 h. After cooling to room temperature, the solution was concentrated by evapor-ation in vacuum, filtered, washed with acetone, and dried under vacuum to afford the final product.Yield: 1.287 g (92.8%).1H NMR (500 MHz, D2O,ppm): 9.11 (d, 4H); 8.54 (d, 4H), 7.59–4.63 (m, 4H), 5.95 (s, 4H), 4.51 (q, 4H), 1.42 (t, 6H). MS (ESI): mass calculated for C24H26N2O42+(M2+), 406.19; m/z found, 203.11 (M2+/2).

    S1. 2 X-ray single crystal structure determination

    X-ray diffraction data of compound 1 and 2 was performed on Bruker D8 VENTURE X-ray CMOS diff-ractometer with a Mo Kα X-ray source (=0.071073 nm) at 296 K. X-ray diffraction data of compound 3 was collected on a Agilent SuperNova X-ray CCD diffra-ctometer with a Cu Kα X-ray source (=0.154184 nm) with higher diffraction capability at 293 K. Standard Agilent Crysalis software was used for the determination of the unit cells and data collection control. All the crystal structures were solved by means of direct methods and refined with full-matrix least squares on SHELXL- 2014. SIMU were used to constrain the displacement parameters of the phenyl and pyridyl groups and ISOR were used to even out the electron density associated with disordered portions of the moieties for both 1 and 3. OMIT were used to eliminate bad reflections obscured by the beamstop for all compounds. Since there is high disorder of pyridyl groups dangling aside, the pyridyl ligand was forced to be half occupied to create a chemically sensible model for 3. Solvent molecules (water) in the structure are highly disordered and impossible to be modelled as discrete atomic sites. To resolve this issue, the contribution of solvent-electron density was removed using the SQUEEZE/PLATON procedure, thereby producing a set of solvent-free diffraction intensities used for improving the structure refinements. The crystal data of both compounds are given in Table S3. Crystallographic data for the structures in this study were deposited with the Cambridge Crystallographic Data Cen-tre as supplementary publication nos. CCDC- 1510791 (1), CCDC-1898268 (2) and CCDC-1510792 (3).

    S2. Figures

    Fig. S1 Different optical morphologies of 1 with octa-nuclear uranyl (U8) motifs, 2 with binuclear uranyl (U2) motifs and 3 with monomeric uranyl (U1) motifs

    Fig. S2 Experimental and simulated patterns of powder X-ray diffraction (PXRD) of compound 1

    Fig. S3 Experimental and simulated patterns of powder X-ray diffraction (PXRD) of compound 2

    Fig. S4 Experimental and simulated patterns of powder X-ray diffraction (PXRD) of compound 3

    Fig. S5 (a) A nearly planar geometry of U8 motif found in this work; (b) a non-planar U8 motif with cation-cation interactions (CCIs) reported by Loiseau,[1]

    Fig. S6 (a-b) Eight-connected U8 motif with four oxalate (Ox) and fourXyl-BPy4CA (L) moieties extends from four dire-ctions through oxalate ligands (a), which thus connecting four adjacent ones with each oxalate ligand going together with a U-shaped bidentateXyl-BPy4CA linker (b); (c) U8-based uranyl-oxalate 2D network (enlarged diagram: a minimum rho-mbic loop); (d) U8-based uranyl-oxalate 2D network with all the cross-linkingXyl-BPy4CA linkers omitted for clarity (enlar-ged diagram: a minimum rhombic loop in size of 1.193 nm× 1.077 nm)

    Fig. S7 Each U8 motif displays a different overall orientation from that of its adjacent U8 with an angle of inclination of 36.6(4)° (a), resulting in a distortion of the rhombic loop (b)

    Fig. S8 Hydrogen bonds between double loops and two nitrate anions

    Fig. S9 Two ‘U’-shaped bidentate-Xyl-BPy4CA ligands located in the cavity of rhombic loop crosslink all the four U8 motifs through coordination bonds and hydrogen bonds (bottom) where one-Xyl-BPy4CA ligand points upwards (top left) and the other points downwards from the opposite direction (top right)

    Fig. S10 Hydrogen bonds between adjacent layers of 2D sheets through U8 motifs that interact with neighbouredXyl-BPy4CA from another sheet orXyl-BPy4CA interacting with neighboured uranyl group from another sheet

    Fig. S11 Some examples of high-nuclear uranyl motif based on nonlinear multi-topic organic ligands, as suggested by the cases of pentanuclear (U5), hexanuclear (U6) and octanuclear (U8) uranyl motifs derived from sulfobenzoate precursors[2],-position or-position aromatic/heteroaromatic dicarboxylate[3-4],calixarene ligand[3]and U-shaped linkers used in this work

    Fig. S12 Different molecular conformation of-Xyl-BPy4CA linker in 1 and 2 demonstrating its flexibility in molecular conformation

    Fig. S13 Thermogravimetric analysis (TGA) of compounds 1, where 1 starts to decompose at ~295 ℃, and finally transforms to U3O8with residual weight of 69.31% (theoretical value: 70.25%)

    Fig. S14 Thermogravimetric analysis (TGA) of compounds 2, where 2 starts to decompose at ~233 ℃, and finally transforms to U3O8with residual weight of 40.95% (theoretical value: 40.20%)

    Fig. S15 Fourier transform infrared (IR) spectra of com-pounds 1 (U8 motif, blue line), 2 (U2 motif, red line) and 3 (U1 motif, black line) with characteristic symmetric1vibrations at 915, 911 and 910 nm, respectively

    Fig. S16 The Raman spectra of compounds s 1 (U8 motif) and 3 (U1 motif) with characteristic asymmetric ν3 vibrations (1: 833 and 863 cm-1; 3: 829 and 860 cm-1)

    Fig. S17 Solid-state fluorescence spectra of compound 1 and 2 as compared to that of uranyl nitrate (UO2(NO3)2): 1, a broad peak ranging from 530 to 550 nm; 2, five main emission bands located at 499, 520, 543, 568 and 596 nm; UO2(NO3)2, 488, 511, 534, 561 and 589 nm

    Fig. S181H NMR of [-Xyl-BPy4CEt]Br2(500 MHz, 298 K, D2O)

    S3. Tables

    Table S1 Selected bond distances related to uranyl centers in compounds 1, 2 and 3

    Compound 1 BondDistance/nmBondDistance/nm U(1)-O(1)0.1748(17)U(2)-O(3)0.1752(15) U(1)-O(2)0.1770(2)U(2)-O(4)0.1751(15) U(1)-O(9)0.2208(13)U(2)-O(9)0.2275(12) U(1)-O(12)0.2327(15)U(2)-O(10)0.2193(14) U(1)-O(13)0.2506(14)U(2)-O(15)0.2466(14) U(1)-O(14)0.2440(18)U(2)-O(16)0.2578(14) U(1)-O(18)0.2426(16)U(2)-O(17)0.2380(17) U(3)-O(5)0.1746(17)U(4)-O(7)0.165(3) U(3)-O(6)0.178(2)U(4)-O(8)0.171(2) U(3)-O(9)0.2344(14)U(4)-O(10)0.2200(14) U(3)-O(10)0.2237(14)U(4)-O(11)0.242(2) U(3)-O(11c)0.248(2)U(4)-O(11c)0.2461(14) U(3)-O(12)0.2349(17)U(4)-O(16)0.249(2) U(3)-O(19a)0.2439(16)U(4)-O(20d)0.2399(16) Compound 2 BondDistance/nmBondDistance/nm U(1)-O(1)0.1776(2)U(1)-O(4)0.2364(2) U(1)-O(2)0.1784(2)U(1)-O(5a)0.2358(2) U(1)-O(7)0.2325(2)U(1)-O(7a)0.2339(2) U(1)-O(1W)0.2576(2) Compound 3 BondDistance/nmBondDistance/nm U(1)-O(1)0.182(3)U(1)-O(4b)0.244(2) U(1)-O(1a)0.182(3)U(1)-O(5)0.237(2) U(1)-O(2)0.240(2)U(1)-O(6)0.2307(18) U(1)-O(3)0.2397(19)

    Table S2 Distances and angles for hydrogen bonds observed in compounds 1 and 2

    Compound 1 Hydrogen bondD–H/nmH··A/nmD··A/nmAngle/(°) C6-H6···O60.0930.2150.305165 C17-H17···O10.0930.2430.316135 C18-H18···O130.0930.2420.330159 C15-H15···O50.0930.2450.322141 C16-H16A···O30.0970.2420.321138 Compound2 Hydrogen bondD-H/nmH···A/nmD···A/nmAngle/(°) O7-H7···O100.0730.2160.285161 C16-H16···O100.0930.2580.324128 C15-H16···O90.0930.2980.358123

    Table S3 Crystal data and structure refinement for compounds 1, 2 and 3

    Compound 1Compound 2Compound 3 FormulaC22H16N2O20U4C40H38N6O22U2C8H5NO8U Formula weight1580.491430.82481.16 Crystal systemmonoclinictriclinicorthorhombic Space groupP21/cP-1Ibam a/nm1.15944(14)0.98277(3)2.6039(4) b/nm1.9854(3)1.05830(4)1.17462(13) c/nm1.5002(2)1.15097(4)0.91646(17) α/(o)9082.951(2)90 β/(o)105.390(3)88.168(2)90 γ/(o)9066.735(2)90 V/nm33.3296(8)1.09126(7)2.8031(7) Z418 T/K296297293 F(000)27606801728 Dc/(g·cm–3)3.1532.1772.280 μ/mm–1a 19.480b 7.507c32.914 Rint0.0730.0280.088 R1, wR2 (all data)0.0646, 0.15360.0227, 0.04910.0755, 0.2833

    a, bMo K: 0.071073 nm;cCu K: 0.154184 nm

    [1] MIHALCEA I, HENRY N, CLAVIER N,. Occurence of an octanuclear motif of uranyl isophthalate with cation–cation intera-ctions through edge-sharing connection mode., 2011, 50(13): 6243–6249.

    [2] THU RY P. Sulfonate complexes of actinide ions: structural diversity in uranyl complexes with 2-sulfobenzoate., 2013, 52(1): 435–447.

    [3] ZHENG Y Z, TONG M L, CHEN X M,. Synthesis, structure and photoluminescent studies of two novel layered uranium coordination polymers constructed from UO (OH) polyhedra and pyridinedicarboxylates., 2005, (20): 4109–4117.

    [4] THU RY P, NIERLICH M, SOULEY B,. Complexation of a hexameric uranium (VI) cluster by p-benzylcalix [7] arene., 1999, (15): 2589– 2594.

    [5] SINDELAR V, MOON K, KAIFER A E,. Binding selectivity of cucurbit[7]uril:? bis(pyridinium)-1,4-xylylene versus 4,4¢- bip-yridinium guest sites., 2004, 6(16): 2665– 2668.

    [6] HUANG F, SLEBODNICK C, MAHAN E J,. [3]Pseudor-otaxanes based on the cryptand/monopyridinium salt recognition motif., 2007, 63(13): 2875–2881.

    [7] MEI L, WANG L, YUAN L Y,. Supramolecular inclusion- based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks., 2015, 51(60): 11990–11993.

    TQ174

    A

    1000-324X(2020)02-0243-07

    10.15541/jim20190118

    2019-03-21;

    2019-04-27

    National Natural Science Foundation of China (21671191, 21577144, 11405186)

    WU Si (1993–), female, Master candidate. E-mail: wusi@ihep.ac.cn

    吳思(1993–), 女, 碩士研究生. E-mail: wusi@ihep.ac.cn

    SHI Wei-Qun, professor. E-mail: shiwq@ihep.ac.cn; NIE Chang-Ming, professor. E-mail: niecm196132@163.com

    石偉群, 教授. E-mail: shiwq@ihep.ac.cn; 聶長明, 教授. E-mail: niecm196132@163.com

    猜你喜歡
    鈾酰草酸配位
    鈾酰礦物研究進展(2014—2021)
    鈾礦地質(2022年6期)2022-11-21 13:15:34
    [Zn(Hcpic)·(H2O)]n配位聚合物的結構與熒光性能
    一種鈾酰配合物的合成及其光催化降解性能研究
    德不配位 必有災殃
    當代陜西(2019年6期)2019-04-17 05:04:10
    電噴霧串聯(lián)質譜快速鑒別水溶液中鈾酰形態(tài)及在檸檬酸鈾酰形態(tài)研究的應用
    分析化學(2019年3期)2019-03-30 10:59:24
    草酸鈷制備中的形貌繼承性初探
    飲食科學(2016年3期)2016-07-04 15:12:40
    飲食科學(2016年3期)2016-07-04 15:12:27
    鈾酰-Salophen與環(huán)己烯酮的作用模式
    右旋糖酐對草酸脫羧酶的修飾研究
    av超薄肉色丝袜交足视频| 在线观看日韩欧美| 男人的好看免费观看在线视频 | 亚洲五月婷婷丁香| 黄片大片在线免费观看| 欧美成狂野欧美在线观看| 又大又爽又粗| 给我免费播放毛片高清在线观看| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一小说| tocl精华| 99riav亚洲国产免费| 日韩av在线大香蕉| 这个男人来自地球电影免费观看| 中亚洲国语对白在线视频| 午夜福利在线观看吧| 亚洲五月天丁香| 满18在线观看网站| 淫秽高清视频在线观看| 欧美日韩亚洲综合一区二区三区_| 黄频高清免费视频| 亚洲人成77777在线视频| 免费看美女性在线毛片视频| 嫩草影院精品99| 叶爱在线成人免费视频播放| 欧美在线一区亚洲| 日韩大码丰满熟妇| 亚洲成av人片免费观看| 国产极品粉嫩免费观看在线| 性欧美人与动物交配| 亚洲国产中文字幕在线视频| √禁漫天堂资源中文www| 欧美久久黑人一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产片内射在线| 欧美最黄视频在线播放免费| 精品久久久久久久人妻蜜臀av| 亚洲自偷自拍图片 自拍| 一级a爱视频在线免费观看| 一进一出抽搐gif免费好疼| 国产精品久久久久久亚洲av鲁大| 亚洲欧美日韩无卡精品| 国产av在哪里看| 国产精品香港三级国产av潘金莲| 91成人精品电影| 国产成人系列免费观看| 日韩欧美一区视频在线观看| 亚洲精品色激情综合| 女性生殖器流出的白浆| a级毛片a级免费在线| 免费高清在线观看日韩| 51午夜福利影视在线观看| 嫁个100分男人电影在线观看| 欧美日韩福利视频一区二区| 国产成人一区二区三区免费视频网站| 免费在线观看成人毛片| 99精品久久久久人妻精品| 99riav亚洲国产免费| 99精品久久久久人妻精品| 少妇的丰满在线观看| 母亲3免费完整高清在线观看| 欧美zozozo另类| 国产精品日韩av在线免费观看| 久久99热这里只有精品18| 亚洲第一av免费看| 久久亚洲精品不卡| 国产av在哪里看| 91字幕亚洲| 久久精品91蜜桃| 亚洲国产精品合色在线| 久久精品国产综合久久久| 亚洲 欧美一区二区三区| 最近最新中文字幕大全电影3 | 亚洲国产精品999在线| 国产午夜福利久久久久久| 久久国产精品影院| 久久久久久九九精品二区国产 | 一级毛片精品| 亚洲 欧美一区二区三区| 亚洲第一电影网av| 91麻豆av在线| 国内精品久久久久久久电影| 日韩有码中文字幕| 国产成人啪精品午夜网站| e午夜精品久久久久久久| 操出白浆在线播放| 亚洲精品中文字幕一二三四区| 一区二区日韩欧美中文字幕| 亚洲国产精品sss在线观看| 亚洲精品中文字幕在线视频| 色婷婷久久久亚洲欧美| 亚洲人成网站高清观看| 欧美中文日本在线观看视频| 成年女人毛片免费观看观看9| 国产成人精品久久二区二区91| 一级黄色大片毛片| 熟妇人妻久久中文字幕3abv| 美女扒开内裤让男人捅视频| 青草久久国产| 欧美乱妇无乱码| av视频在线观看入口| 大型av网站在线播放| 亚洲精品久久国产高清桃花| 国产精品九九99| 啦啦啦 在线观看视频| 亚洲无线在线观看| 深夜精品福利| 日本免费一区二区三区高清不卡| 在线观看66精品国产| 午夜视频精品福利| 丰满的人妻完整版| 嫩草影视91久久| 午夜福利在线在线| 国产三级在线视频| 一进一出抽搐gif免费好疼| 亚洲人成伊人成综合网2020| 变态另类丝袜制服| 最好的美女福利视频网| 亚洲全国av大片| 欧美av亚洲av综合av国产av| 在线观看一区二区三区| 99热只有精品国产| 18禁国产床啪视频网站| 亚洲国产精品999在线| 1024香蕉在线观看| 久久久国产精品麻豆| videosex国产| 女性生殖器流出的白浆| 国产一区二区三区在线臀色熟女| 免费高清视频大片| 亚洲av日韩精品久久久久久密| a级毛片a级免费在线| 中文字幕另类日韩欧美亚洲嫩草| 免费观看人在逋| 日本免费a在线| 国产三级黄色录像| 日韩视频一区二区在线观看| 精品国产美女av久久久久小说| 午夜免费观看网址| 亚洲精品国产精品久久久不卡| 90打野战视频偷拍视频| 午夜福利免费观看在线| 色综合亚洲欧美另类图片| 亚洲熟妇熟女久久| 男女之事视频高清在线观看| 黄色视频,在线免费观看| 丝袜美腿诱惑在线| 精品国产乱码久久久久久男人| 久久人人精品亚洲av| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av香蕉五月| 午夜福利欧美成人| 伊人久久大香线蕉亚洲五| 两个人免费观看高清视频| 久久久水蜜桃国产精品网| 国产免费av片在线观看野外av| 亚洲专区中文字幕在线| 在线观看66精品国产| 亚洲电影在线观看av| 韩国精品一区二区三区| 久久精品aⅴ一区二区三区四区| 男女做爰动态图高潮gif福利片| 国产av一区二区精品久久| 国产欧美日韩精品亚洲av| 哪里可以看免费的av片| 香蕉av资源在线| 日韩欧美免费精品| 哪里可以看免费的av片| 国产精品自产拍在线观看55亚洲| 99久久无色码亚洲精品果冻| 夜夜夜夜夜久久久久| 欧美黄色淫秽网站| 日韩欧美在线二视频| 欧美日韩精品网址| 丁香欧美五月| 国产91精品成人一区二区三区| 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| 日韩欧美在线二视频| 亚洲专区字幕在线| 国产黄片美女视频| 此物有八面人人有两片| 免费看a级黄色片| 国产亚洲欧美在线一区二区| 久久久久久久精品吃奶| 国产精品久久久久久人妻精品电影| 亚洲av电影不卡..在线观看| 脱女人内裤的视频| 不卡av一区二区三区| av欧美777| 变态另类丝袜制服| 亚洲五月天丁香| av福利片在线| 国产精品亚洲av一区麻豆| 波多野结衣巨乳人妻| 亚洲国产日韩欧美精品在线观看 | 精品久久久久久久人妻蜜臀av| АⅤ资源中文在线天堂| 免费搜索国产男女视频| 久久天堂一区二区三区四区| 国产熟女午夜一区二区三区| 淫妇啪啪啪对白视频| av有码第一页| 丁香欧美五月| 国产又爽黄色视频| 久久精品国产清高在天天线| 国产亚洲欧美在线一区二区| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 在线十欧美十亚洲十日本专区| 精品国内亚洲2022精品成人| 一本大道久久a久久精品| 三级毛片av免费| 久久久国产精品麻豆| 国产精品爽爽va在线观看网站 | 自线自在国产av| 男人舔女人的私密视频| 91老司机精品| 欧美日本视频| 狂野欧美激情性xxxx| 成年人黄色毛片网站| 99国产极品粉嫩在线观看| 一进一出抽搐gif免费好疼| 国产亚洲精品第一综合不卡| 午夜福利免费观看在线| 老鸭窝网址在线观看| 老司机福利观看| 国产日本99.免费观看| 一级毛片女人18水好多| 性欧美人与动物交配| 国产激情久久老熟女| 午夜久久久久精精品| 搡老熟女国产l中国老女人| 日本一本二区三区精品| 成年版毛片免费区| 少妇粗大呻吟视频| 大型黄色视频在线免费观看| 一本综合久久免费| 国产欧美日韩一区二区精品| 黄色毛片三级朝国网站| 自线自在国产av| 伦理电影免费视频| 亚洲人成网站高清观看| 高潮久久久久久久久久久不卡| 最新在线观看一区二区三区| 精品免费久久久久久久清纯| 中文字幕人妻熟女乱码| 黄网站色视频无遮挡免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 最近最新免费中文字幕在线| 国产麻豆成人av免费视频| 日本一区二区免费在线视频| 国语自产精品视频在线第100页| 好男人电影高清在线观看| 一级a爱视频在线免费观看| 天堂√8在线中文| 69av精品久久久久久| 久久精品国产亚洲av高清一级| a在线观看视频网站| 99久久国产精品久久久| 脱女人内裤的视频| 亚洲熟女毛片儿| 成人三级黄色视频| 亚洲性夜色夜夜综合| 99在线视频只有这里精品首页| 他把我摸到了高潮在线观看| 男女床上黄色一级片免费看| 日韩 欧美 亚洲 中文字幕| 欧美日韩精品网址| 人妻久久中文字幕网| 黄片播放在线免费| 国产私拍福利视频在线观看| 免费电影在线观看免费观看| 国产精品爽爽va在线观看网站 | 2021天堂中文幕一二区在线观 | 俺也久久电影网| 桃红色精品国产亚洲av| 91av网站免费观看| 国产区一区二久久| av超薄肉色丝袜交足视频| 丝袜美腿诱惑在线| 欧美日韩一级在线毛片| 老鸭窝网址在线观看| 午夜精品久久久久久毛片777| 级片在线观看| 国产精品亚洲美女久久久| 精品国产一区二区三区四区第35| 91成人精品电影| 久热这里只有精品99| 俺也久久电影网| 久久狼人影院| 日日干狠狠操夜夜爽| 老司机午夜福利在线观看视频| 成年女人毛片免费观看观看9| 日日爽夜夜爽网站| 国产99久久九九免费精品| 欧美另类亚洲清纯唯美| 国产熟女xx| 精品无人区乱码1区二区| 精品国产乱子伦一区二区三区| 黄片播放在线免费| 中文字幕久久专区| 欧美乱码精品一区二区三区| 女人被狂操c到高潮| 亚洲精品国产一区二区精华液| 在线观看舔阴道视频| 少妇 在线观看| 欧美黄色片欧美黄色片| 午夜福利免费观看在线| 亚洲精华国产精华精| 免费在线观看成人毛片| 欧美性长视频在线观看| 亚洲 欧美一区二区三区| 又黄又爽又免费观看的视频| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清 | 十分钟在线观看高清视频www| 国产免费男女视频| 欧美+亚洲+日韩+国产| 嫩草影视91久久| 国产一卡二卡三卡精品| 国产亚洲精品一区二区www| 国产主播在线观看一区二区| 18禁美女被吸乳视频| 视频区欧美日本亚洲| 国产v大片淫在线免费观看| 观看免费一级毛片| 欧美日韩乱码在线| 国产单亲对白刺激| 禁无遮挡网站| 久久久久免费精品人妻一区二区 | 一夜夜www| 成人手机av| 成人国语在线视频| 看黄色毛片网站| 国产乱人伦免费视频| 亚洲av片天天在线观看| 国产激情欧美一区二区| 男男h啪啪无遮挡| 97碰自拍视频| 啦啦啦 在线观看视频| 99热只有精品国产| 国产av一区二区精品久久| 俄罗斯特黄特色一大片| 天堂动漫精品| 国产色视频综合| 亚洲一码二码三码区别大吗| 18禁裸乳无遮挡免费网站照片 | 男女床上黄色一级片免费看| 国产精品日韩av在线免费观看| 最近最新免费中文字幕在线| 黄片大片在线免费观看| 91大片在线观看| 国产亚洲欧美98| 我的亚洲天堂| 欧美乱色亚洲激情| 精品人妻1区二区| 成人国语在线视频| 搡老熟女国产l中国老女人| 亚洲一区二区三区色噜噜| 久久精品91蜜桃| 国产主播在线观看一区二区| 禁无遮挡网站| 非洲黑人性xxxx精品又粗又长| 久久国产精品人妻蜜桃| 成人三级做爰电影| 午夜激情av网站| 黄色 视频免费看| 日韩国内少妇激情av| 最好的美女福利视频网| 美女高潮到喷水免费观看| 成人三级黄色视频| 俄罗斯特黄特色一大片| 精品久久久久久久末码| 国产精品亚洲美女久久久| 在线观看免费视频日本深夜| 国产一卡二卡三卡精品| 欧美日韩乱码在线| 老司机福利观看| 亚洲 国产 在线| 亚洲国产精品合色在线| 男人舔女人下体高潮全视频| 岛国视频午夜一区免费看| 国产真实乱freesex| 观看免费一级毛片| 老司机靠b影院| 99国产综合亚洲精品| 成人手机av| 国内精品久久久久久久电影| 国产又黄又爽又无遮挡在线| 国产精品免费视频内射| 亚洲国产精品sss在线观看| 亚洲精品国产精品久久久不卡| 成人三级黄色视频| 一个人观看的视频www高清免费观看 | 亚洲精品中文字幕在线视频| 亚洲精品在线观看二区| 久久久久亚洲av毛片大全| 国产黄a三级三级三级人| 亚洲国产欧美一区二区综合| 91国产中文字幕| 亚洲精品国产一区二区精华液| 国产97色在线日韩免费| 一区二区三区国产精品乱码| 精品卡一卡二卡四卡免费| 欧美日韩黄片免| www日本黄色视频网| 在线观看免费午夜福利视频| 天天一区二区日本电影三级| 欧美中文日本在线观看视频| 国产精品亚洲美女久久久| 岛国视频午夜一区免费看| 日韩精品青青久久久久久| 中亚洲国语对白在线视频| 两个人看的免费小视频| 好男人在线观看高清免费视频 | 午夜精品在线福利| 日韩三级视频一区二区三区| 99国产精品一区二区蜜桃av| 久久久久久大精品| 大香蕉久久成人网| 国产精品 国内视频| 午夜免费成人在线视频| 免费在线观看完整版高清| 大香蕉久久成人网| 亚洲成人免费电影在线观看| 十八禁网站免费在线| 嫩草影院精品99| 国产极品粉嫩免费观看在线| 国产片内射在线| 国产精品日韩av在线免费观看| 色精品久久人妻99蜜桃| 香蕉丝袜av| 久99久视频精品免费| 老司机深夜福利视频在线观看| 久久 成人 亚洲| 麻豆成人av在线观看| 亚洲国产中文字幕在线视频| 久久国产精品影院| www日本在线高清视频| 久久久久久大精品| 视频区欧美日本亚洲| xxx96com| 麻豆国产av国片精品| 中文字幕精品免费在线观看视频| 国产精品99久久99久久久不卡| 亚洲国产毛片av蜜桃av| 丝袜人妻中文字幕| x7x7x7水蜜桃| 成人av一区二区三区在线看| 18美女黄网站色大片免费观看| 最近最新中文字幕大全免费视频| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美精品济南到| 精品熟女少妇八av免费久了| 我的亚洲天堂| 亚洲真实伦在线观看| 香蕉丝袜av| 国产一区二区三区在线臀色熟女| 老司机在亚洲福利影院| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频 | 神马国产精品三级电影在线观看 | 欧美激情高清一区二区三区| 精品午夜福利视频在线观看一区| 久久久久免费精品人妻一区二区 | 伊人久久大香线蕉亚洲五| 亚洲精品久久国产高清桃花| 欧美性长视频在线观看| 999久久久国产精品视频| 色综合亚洲欧美另类图片| www.精华液| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 可以在线观看毛片的网站| 日韩欧美 国产精品| 日韩欧美免费精品| 亚洲精品久久成人aⅴ小说| 制服丝袜大香蕉在线| 一本精品99久久精品77| 亚洲全国av大片| 国产国语露脸激情在线看| 在线观看午夜福利视频| 777久久人妻少妇嫩草av网站| 99久久无色码亚洲精品果冻| 欧美日韩亚洲国产一区二区在线观看| www日本黄色视频网| 女人被狂操c到高潮| 欧美+亚洲+日韩+国产| 日韩av在线大香蕉| 黑人操中国人逼视频| 免费av毛片视频| 日日干狠狠操夜夜爽| 亚洲欧美精品综合久久99| 日本三级黄在线观看| 午夜福利欧美成人| 午夜福利成人在线免费观看| 国产在线观看jvid| 欧美黑人欧美精品刺激| cao死你这个sao货| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久 | 国产乱人伦免费视频| 日韩精品免费视频一区二区三区| 久久久精品欧美日韩精品| 成人午夜高清在线视频 | 九色国产91popny在线| 亚洲片人在线观看| 日韩一卡2卡3卡4卡2021年| 精品福利观看| 国产精品亚洲一级av第二区| av在线天堂中文字幕| 最近最新中文字幕大全电影3 | 久久精品人妻少妇| 夜夜爽天天搞| 在线观看免费午夜福利视频| 亚洲熟女毛片儿| 亚洲九九香蕉| 日韩三级视频一区二区三区| 制服丝袜大香蕉在线| 国产麻豆成人av免费视频| 一级黄色大片毛片| 麻豆av在线久日| 一本综合久久免费| 美女高潮喷水抽搐中文字幕| 丰满人妻熟妇乱又伦精品不卡| 黄片小视频在线播放| 黄色a级毛片大全视频| 成人av一区二区三区在线看| 91成年电影在线观看| 99精品在免费线老司机午夜| 视频区欧美日本亚洲| 日本三级黄在线观看| 日韩欧美 国产精品| www.www免费av| 国产亚洲av高清不卡| 国产又色又爽无遮挡免费看| 可以在线观看的亚洲视频| 99精品在免费线老司机午夜| 精品国产美女av久久久久小说| 免费高清视频大片| 久久午夜综合久久蜜桃| 美女大奶头视频| 精品无人区乱码1区二区| 好男人在线观看高清免费视频 | 国产午夜福利久久久久久| 俄罗斯特黄特色一大片| 岛国在线观看网站| 国产黄a三级三级三级人| 中出人妻视频一区二区| 婷婷六月久久综合丁香| 最近最新中文字幕大全电影3 | 国产真人三级小视频在线观看| av超薄肉色丝袜交足视频| 中文亚洲av片在线观看爽| 久久香蕉激情| 侵犯人妻中文字幕一二三四区| 天天添夜夜摸| 国产精品野战在线观看| 久久中文看片网| 欧美黄色淫秽网站| 一区福利在线观看| 久久国产精品人妻蜜桃| 日韩精品免费视频一区二区三区| 国产精品久久久久久人妻精品电影| 午夜日韩欧美国产| 亚洲国产中文字幕在线视频| 黄网站色视频无遮挡免费观看| 亚洲性夜色夜夜综合| 男女那种视频在线观看| 欧美精品啪啪一区二区三区| 女性生殖器流出的白浆| 日本一区二区免费在线视频| 久久欧美精品欧美久久欧美| 香蕉国产在线看| 日韩免费av在线播放| 日韩大码丰满熟妇| 国产99久久九九免费精品| 国产一卡二卡三卡精品| 成人手机av| 亚洲自偷自拍图片 自拍| 国产真人三级小视频在线观看| 亚洲av成人不卡在线观看播放网| 18美女黄网站色大片免费观看| 亚洲国产欧美网| 2021天堂中文幕一二区在线观 | 麻豆成人av在线观看| 国产高清有码在线观看视频 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜理论影院| 免费在线观看影片大全网站| 99re在线观看精品视频| 大香蕉久久成人网| 中文字幕久久专区| 国产精品av久久久久免费| 久久久久久大精品| 美女国产高潮福利片在线看| 黄色视频,在线免费观看| 中文字幕人妻熟女乱码| 最好的美女福利视频网| 免费在线观看完整版高清| 国产高清videossex| 免费在线观看完整版高清| 色综合欧美亚洲国产小说| 无人区码免费观看不卡| ponron亚洲| 一级片免费观看大全| 亚洲国产日韩欧美精品在线观看 | 黑丝袜美女国产一区| 亚洲中文日韩欧美视频| 午夜福利免费观看在线| 丁香六月欧美| 欧美激情高清一区二区三区| 99精品在免费线老司机午夜| 国产91精品成人一区二区三区|