• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers

    2020-03-08 14:05:54WUSiMEILeiHUKongQiuCHAIZhiFangNIEChangMingSHIWeiQun
    無機材料學報 2020年2期
    關鍵詞:鈾酰草酸配位

    WU Si, MEI Lei, HU Kong-Qiu, CHAI Zhi-Fang,3, NIE Chang-Ming, SHI Wei-Qun

    pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers

    WU Si1,2, MEI Lei2, HU Kong-Qiu2, CHAI Zhi-Fang2,3, NIE Chang-Ming1, SHI Wei-Qun2

    (1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; 2. Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3. Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China)

    In this work, we report a novel octa-nuclear uranyl (U8) motif [(UO2)8O4(μ3-OH)2(μ2-OH)2]4+embedded in a uranyl-oxalate coordination polymer (compound 1) based on a U-shaped linker with extra-long xylylene chains for stabilizing the resulting high-nuclear motif through additional cross-linking connectivity. A comparison with dimeric and monomeric uranyl compoundsobtained at different pH value from the same hydrothermal system reveals that, solution pH plays a vital role in formation of this octa-nuclear uranyl motif by promoting hydrolysis of uranyl source. Since high similarity of eight uranium centers in this nearly planar U8 motif here, overlapping and broadening of signals in fluorescence, infra-red (IR) and Raman spectra can be found.

    actinide coordination polymers; octa-nuclear uranyl; U-shaped Linker; pH effect

    Because of the great importance in nuclear fuel cycle and environmental decontamination, actinide chemistry has gained increasing attentions from chemists, geolo-gists and materials specialists[1-2]. As a naturally occu-rring actinide element, uranium, which is mostly featured by the form of hexavalent uranyl cation (UO22+) in ambient atmosphere, has been utilized as metal node in many uranium-based metal-organic compounds[3-6]. In close relation with the strong hydrolysis tendency of uranyl cation at varying aqueous pH values[7-9], a large variety of uranyl building units with different uranium nuclearities and/or connecting modes could be found in the large library of uranyl compounds[6]. Therefore, stru-ctural identification of uranyl compounds with diver-sified uranyl compositions in solid state can provide an alternative route to explore the solution chemistry of uranyl cation in terms of hydrolysis and speciation under different conditions. Most importantly, the well-defined structural and chemical features of these uranyl com-pounds with high-nuclear units could be helpful to get more insight on precise control of actinide hydrolysis and effective isolation of certain high-nuclear species from the actinide aqueous solution.

    While many oligomeric uranyl units as well as infinite chain-like polynuclear uranyl motifs have been chara-cterized in uranyl-organic compounds, few cases of uranyl-organic compounds with oligomeric octa-nuclear uranyl motifs[10-11]have been reported so far, though there are several octa-nuclear uranyl cage species constr-ucted through coordination-driven assembly[12-13]. The scarcity of higher nuclearity might be attributed to harsh forming conditions for them as well as their instability in molecular structure.

    Herein, a uranyl-oxalate coordination polymer con-taining a new type of oligomeric octa-nuclear uranyl motif, [(UO2)8O4-(3-OH)2(2-OH)2]4+, was isolated succ-essfully and identified with the aid of a flexible U-shaped dicarboxylate linker (Xyl-BPy4CA) with an extra-long xylylene chain.

    1 Experimental

    1.1 Synthesis

    (UO2)8O4(3-OH)2(2-OH)2(C2O4)2(C20H16N2O4)2(1) UO2(NO3)2·6H2O (200 μL, 0.10 mmol), [-Xyl- BPy4CEt]Br2(28.0 mg, 0.05 mmol), NaOH (3.2 mg, 0.08 mmol), ultrapure water (1.0 mL) was loaded into a 15 mL autoclave (the initial pH is 2.72), sealed and heated to 150 ℃ in an oven for 2 d, then automa-tically cooled to ambient temperature. Dark yellow crystals of 1 (Fig. S1) were produced, filtered off, and rinsed with ultrapure water and subjected to air-drying at room temperature to give 1 in pure phase in spite of preferred alignment of some crystal indices (Fig. S2). Yield: 14 mg (35% based on uranium).

    [(UO2)2(2-OH)2(C20H16N2O4)2(H2O)2](NO3)2(2) com-pound 2 was synthesized using the same protocol except a reducing amount of NaOH (2.4 mg, 0.06 mmol). Prism yellow-green crystals were filtered off, and rinsed with ultrapure water and subjected to air-drying at room temperature to give 2 in pure phase (Fig. S1 and S3). Yield: 22 mg (31% based on uranium).

    (UO2)(C2O4)(C6H5NO2) (3) compound 3 was synth-esized using the same protocol like 1 and 2 but without NaOH added. Stick-like yellow-green crystals of 3 can be obtained as accompanied by considerable amount of 2 and other unidentified impurities (Fig. S1 and S4).

    1.2 Characterization

    1H-NMR spectra were recorded on a Bruker AVANCE III (500 MHz, Bruker, Switzerland) with deuterium oxide (D2O) as solvent. ESI-MS spectra were obtained with a Bruker AmaZon SL ion trap mass spectrometer (Bruker, USA). Powder X-ray diffraction (PXRD) measurements were recorded on a Bruker D8 Advance diffractometer with Cu Kα radiation (=0.15406 nm) in the range 5°–60° (step size: 0.02°). Thermogravimetric analysis (TGA) was performed on a TA Q500 analyzer over the temperature range of 25–800 ℃ in air with a heating rate of 10 ℃/min. Solid-state fluorescence spectra were measured on a Hitachi F-4600 fluorescence spectrophotometer. The Four-ier transform infrared (IR) spectra were recorded from KBr pellets in the range of 4000–400 cm–1at Bruker Tensor 27 spectrometer. Raman spectra were recorded on a Thermo Fisher Scientific DXRxi Micro Raman imaging spectrometer excited at 780 nm.

    Uranyl-oxalate coordination polymer (namely comp-ound 1, Fig. 1(a)) containing a new type of oligomeric octa- nuclear uranyl motif, [(UO2)8O4-(3-OH)2(2-OH)2]4+(Fig. 1(b)), was isolated successfully and identified with the aid of a flexible U-shaped dicarboxylate linker (Xyl-BPy4CA) with an extra-long xylylene chain (Fig. 1(c-d)). By a direct comparison with another uranyl compounds (namely compound 2 and compound 3) with monomeric or dimeric uranyl nodes from the same organic ligand, factors affecting the formation of compound 1 such as aqueous pH and hydrothermal stability of organic ligand have been discussed. The physicochemical properties of compound 1 were also characterized and compared in detail.

    Fig. 1 Octa-nuclear uranyl-oxalate network reinforced by U-shaped zwitterionic dicarboxylate linkers

    (a) two-dimensional coordination network; (b) octa-nuclear uranyl (U8) motif, [(UO2)8O4(3-OH)2(2-OH)2]4+; (c) U-shaped linker in a space- filling mode overlapped with its molecular structure; (d) U-shaped linker in a stick mode

    Color codes: uranyl polyhedra in yellow; U-shaped linkers in dark or blue

    2 Results and discussion

    2.1 Structural description

    Crystallographic analysis shows that compound 1 crystallizes in the monoclinic crystal system with a space group of P21/c, and its asymmetric unit contains four unique uranium centers, a linker of-Xyl-BPy4CA ([C20H16N2O4]) and an-formed oxalate ligand ([C2O4]2–) (Fig. 2(a)). The formation of oxalate ion is more or less a little surprising in spite of several similar cases found in other heterocycle-based or labile organic ligands[13].Viewing from the exten-ding structure of the asymmetric unit, an elongated U8 motif can be found (Fig. 2(b)), among which every uranium center is in a pentagonal bipyramid (P-type) geometry with equatorial U–O bond distances in the range of 0.2193(14)–0.2578(14) nm (Table S1), and links to each other through sharing equatorial edges with other neighboring polyhedrons.Based on the bond valence sum analysis[14], the bond valence value of O(11) is 1.393, which should be assigned to μ3-hydroxo group, while the atoms of O(9) and O(10) are μ3-oxo groups (bond valence values of 1.943 and 2.20, respectively), and O(12) is μ2-hydroxo group (bond valence values of 1.137). The feature of μ3-hydroxo group for O(11)is ascribed to weak binding affinity to U(3) and U(4). Compared with the cation-cation interactions (CCIs) directed U8 motif reported previously[11], the [(UO2)8O4(3-OH)2(2-OH)2]4–motif found here represents a new type of uranyl oligomer with a nearly planar geometry (Fig. S5).

    Fig. 2 Crystal structure of compound 1

    (a) ORTEP view of compound 1 with the 30% probability level for thermal ellipsoids; (b) octa-nuclear uranyl (U8) motif in compound 1 showing detailed coordination spheres of all uranyl centers

    Color codes: uranium atoms in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms pale gray

    Each U8 motif is eight-connected with four oxalate and four-Xyl-BPy4CA moieties surrounded (Fig S6(a)). The oxalate ligands, always go together with a U-shaped bidentate-Xyl-BPy4CA, promote the extension of U8 motif from four directions through connecting four adjacent ones in a bridging mode (one side is in2-2:1mode and the other side is in2mode) (Fig. S6(b)), and subsequently lead to a 2D network with the minimum rhombic loop in size of 1.193 nm×1.077 nm (Fig. S6(c-d)). Detailed analysis reveals that, every U8 motif displays a different overall orientation from that of its adjacent U8 with an angle of inclination of 36.6(4)°, which is contributed to the distortion of the above rhombic loop (Fig. S7).

    When the amount of sodium hydroxide added to the hydrothermal system of uranyl and [-Xyl-BPy4CEt]Br2decreased gradually, another two uranyl compounds 2 and 3 emerge. Compound 2 is a molecular compound with a dimeric uranyl motif containing two equivalent uranyl centers (Fig. 3(a-b)). Each uranyl is in a pentagonal bipyramid geometry with equatorial U–O bond distances in the range of 0.2325(2)–0.2576(2) nm (Table S1). Besides two bridging hydroxyl groups and two water molecules, the uranyl dimer is coordinated by two bidentate1-mode-Xyl-BPy4CA linkers both in a head-to-tail way, and finally gives a pattern of twinned double loops (Fig.3(b)). The simple double loops interact with two nitrate anions by hydrogen bonds (Fig. S8and Table S2) and stack with each other to form the final crystal lattice of molecular compound (Fig. 3(c-d)).

    Another uranyl compound 3 with a one-dimensional (1D) chain-like topology was produced under the more acidic condition. As the case of compound 1, the-formed oxalate ligand ([C2O4]2–) is present in compound 3, indicating the frequent occurrence of oxalate ion for the hydrothermal systems of pyridine derivatives[13]such as [-Xyl-BPy4CEt]Br2used here. In the crystal structure of compound 3, not only oxalate ligands that bridge monomeric uranyl groups to form a one-dimensional chain, but also protonated isonicotinate as a ligand at both sides can be found (Fig. 4). The presence of protonated isonicotinate in compound 3 suggests the higher degrees of decom-position of [-Xyl-BPy4CEt]Br2under more acidic condition compared with that found in compound 1 and 2.

    2.2 pH-dependent regulation on the formation of U8 motif

    The distinct structural difference among compounds 1, 2 and 3 suggests the significant impact of pH on the uranyl hydrothermal systems, especially the uranyl speciation and crystallization process (Fig. 5). The strong dependence on pH of uranyl speciation is largely attributed to hydrolysis of uranyl ion in aqueous solution. Generally speaking, uranyl monomer is likely to be stable at low pH, whereas high pH of aqueous solution always induces uranyl hydrolysis and promotes its oligomerization through the olation or oxolation process. With the aid of certain organic ligands, these oligomeric uranyl species could further transfer to the solid state as poly-nuclear uranyl compounds. Resembling most uranyl systems in aqueous solution, the formation of U8 motif in compound 1 also follows a pH-regulated mechanism. As revealed by the synthesis of compound 1–3, the aqueous pH used for compound 1 (pH ~2.72) with octa-nuclear uranyl motifs is higher than that for compounds 2 (pH ~2.29) and 3 (pH ~1.35) with only dimeric or monomeric uranyl motifs. Interestingly, pH also exerts a non-negligible influence on the stabilization of organic ligands under hydrothermal conditions. In contrast to the large degree of decompo-sition of [-Xyl-BPy4CEt]Br2to simple isonicotinate linkers found in compound 3, the original zwitterionic dicarboxylate linkers still retains its main molecular skeleton with controlled hydrolysis to its acid form of-Xyl-BPy4CA during hydrothermal reaction with uranyl under less acidic conditions for the synthesis of compound 1. It can be speculated that the preservation of total skeleton of-Xyl-BPy4CA with strong coordination capability toward uranyl units as demonstrated in com-pound 1 also contributes to the formation of U8 motifs by affording additional stabilization through coordination and cross- linkage. The role of U-shaped-Xyl-BPy4CA link-ers in the stabilization of high-nuclear U8 motifs will be discussed as followed.

    Fig. 3 Crystal structure of compound 2

    (a) ORTEP view of compound 2 with the 30% probability level for thermal ellipsoids; (b) coordination environment of each uranyl center for dimeric uranyl motif; (c-d) crystal lattice stacking for compound 2 viewed foraxis (c) andaxis (d)

    Color codes: uranium atoms in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms pale gray; the U-shaped linkers in green

    Fig. 4 Crystal structure of compound 3

    (a) ORTEP view of compound 3 with the 30% probability level for thermal ellipsoids; (b) coordination environments of uranyl center; (c-d) the extended structure based on one-dimensional oxalate-bridging mono-meric uranyl chain with (c) or without (d) terminal isonicotinate ligands

    Color codes: uranium atoms or polyhedras in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms in pale gray

    Fig. 5 pH-dependent regulation of hydrothermal reactions of m-Xyl-BPy4CA linkers and uranyl

    Color codes: uranium polyhedras in yellow; oxygen atoms in red; carbon atoms in gray; nitrogen atoms in blue

    2.3 Structural stabilization of high-nuclear U8 motifs

    It is interesting to find that most of uranyl-oxalate compounds[14-20]only afford uranyl secondary building units with nuclearities of no more than 4. The difference of compound 1 from those reported previously in uranyl oligomerization suggests that there are other additional factors contributing to the stabilization of U8 motif with more uranyl units. Apparently, structural stabilization based on coordination bonds and/or chelating effects of organic ligands is one of the vital factors to promote the final crystallization of U8-bearing product as companied with the pH-induced formation of U8 motifs. TheXyl-BPy4CA linker plays dual roles in the constru-ction of U8-based compound 1, including realizing coordination saturation of uranium centers of U8 and additional structural connectivity for rhombic loop as well as crystal packing. Specifically, two bidentateXyl-BPy4CA ligands in a couple crosslink all the four U8 motifs through coordination bonds and hydrogen bonds, where oneXyl-BPy4CA ligand points upwards and the other points downwards from the opposite direction (Fig.S9). The coordination bonds in a bridgingμ-η1:1mode on both ends ofXyl-BPy4CA joint two adjacent U8 motifs through two binding patterns (lateral and terminal binding sites), while hydrogen bonds between the C-H groups on the ‘back’ of U-shaped linker and oxygen atoms from another two U8 motifs of the rhombic loop consolidate the location ofXyl-BPy4CA in the cavity. Moreover, the important role ofXyl-BPy4CA also reflects on its participation of hydrogen bonds between adjacent layers of 2D sheets through interacting with neighboured uranyl group from another sheet, which mainly contributes to the crystal packing of compound 1 in three-dimensional (3D) space (Fig. S10). In all, the participation ofXyl-BPy4CA linker increases the molecular connectivity, enhances the structural stability of high-nuclear metal clusters and thus promotes the formation of new high-nuclear uranyl motifs.

    Moreover, a comprehensive survey on the relationship between high-nuclear uranyl motifs and organic ligands used reveals that, multi-topic organic ligand with a nonlinear configuration is more likely to fit for capture, fixation and stabilization of high-nuclear uranyl motifs by coordination to uranyl units in a compact way (Fig. S11). Another important feature ofXyl-BPy4CA linker in molecular structure is its flexible conformation (Fig. S12). This U-shaped ligand could display varying mole-cular conformations in different compounds so as to be adapted to different coordination environment of uranyl motif. For example, theXyl-BPy4CA linker gives a more open conformation when located at the cavity of uranyl-oxalate network in compound 1 (angle between two pyridium groups is ~47.9°, left in Fig. S12), while it becomes more compact with two dangled pyridium groups nearly paralleled to each other (angle between two pyridium groups is ~13.8°, right in Fig. S12). As shown above, the flexibility of molecular skeleton forXyl-BPy4CA linker ensures it structural adaptivity and facilitates the formation of new U8 motif.

    2.4 Physicochemical Properties

    Characterizations of properties including thermogravi-metric analysis (TGA), Fourier transform infrared (IR) spectra, Raman spectra, and solid-state fluorescence spectra for compounds 1 and 2 in pure phase were conducted. In terms of thermal stability, compound 1 does not undergo thermal decomposition of oxalate group on the backbone of 2D network until the tem-perature increases up to ~295 ℃ (Fig. S13), which is in sharp contrast to compound 2 (Fig. S14). The good stab-ility of compound 1 is similar to the thermal behavior of uranyl oxalate[21]. IR spectrum of compound 1 (Fig. S15) shows only a weak broad signal at ~915 nm correspond-ding to the characteristic vibrations of axial U=O bonds (calculated data based on the empirical equation of [d (U=O) (pm)=10650[1(cm–1)]–2/3+57.5][22]: 0.175–0.179 nm), although there are eight uranium centers in the secondary building unit of compound 1. The asymmetric stretching vibration of axial U=O bonds for compounds 2 and 3 (911 and 910 nm, respectively) is comparable to that observed for compound 1 (Fig. S15). The Raman spectrum of compound 1 (Fig. S16) also displays only two peaks assigned to asymmetric ν3vibrations (calcu-lated data based on the empirical equation of [d (U=O) (pm) = 9141 [3(cm–1)]–2/3+ 80.4][22]: 0.175–0.178 nm), which is very similar to that observed for compound 3 with monomeric uranyl unit. A comparison of compound 1 with previously-reported CCI- mediated U8 motif[11]in IR and Raman spectra shows that the latter one gives finer signals of stretching vibrations that could be resolved well and assigned to different uranyl centers among the U8 motif, while the IR and Raman signals for different uranyl centers of U8 motif in compound 1 seem to be highly overlapped with each other. This phenomenon might be, by contrasted to CCI-based U8 motif, ascribed to the nearly planar attribute of non-CCI U8 motif, which partly offsets the differences between uranyl centers of U8 motif in compound 1. In short, difference in physicochemical properties between this type of U8 motif and that mediated by CCIs reflects the particularity of U8 found here.

    As shown in Fig. S17, solid-state fluorescence spectra of compounds 1 and 2 are more or less different as compared to that of uranyl nitrate (UO2(NO3)2). Compound 2 gives the typical vibronic progression of uranium (VI) with the five main emission bands located at 499, 520, 543, 568 and 596 nm corresponding to the S11→ S00and S10→ S0ν(ν=0?4) electronic transitions[23]. It is very similar to that for a uranyl terephthalate compound with the same dimeric uranyl units[24], and shows a large red-shift (7?11 nm) compared to that of uranyl nitrate. The large red-shift observed here should be attributed to markedly different coordination geometries and coordination modes for uranyl centers in compound 2 and UO2(NO3)2[25-28]. Interestingly, the fluorescence of compound 1 gives an unresolved broad signal with a broad peak ranging from 530 to 550 nm, and also turns to own a red-shift as well as a little attenuation in intensity compared to those of compound 2 and uranyl nitrate. Resembling the situation of IR and Raman spectra, the peak broadening might be attributed to the signal overlapping of uranium(VI) centers in the nearly planar U8 motif of compound 1[25]. Considering the complexity for figuring out complicated interactions between different uranyl units in this large octa-nuclear uranyl cluster, the precise assignment and analysis of fluorescence spectra is still difficult here, and further study on this issue with the aid of modeling methods might be needed in the near future.

    3 Conclusions

    In summary, we have successfully synthesized a uranyl- oxalate coordination polymer with a new type of octa- nuclear uranyl motif, [(UO2)8O4-(μ3-OH)2(μ2-OH)2]4+by utilizing U-shaped pyridinium-based organic ligand [-Xyl-BPy4CEt]Br2a pH-dependent regulation. The mixed ligand system of oxalateandXyl-BPy4CA formedplays important roles for stabilizing high-nuclear uranyl species by bridging coordination linkage and superimposed structural connectivity, respec-tively. The U8-bearing uranyl compound found here provides more information on uranyl hydrolysis and speciation in aqueous solution, and also facilitates the exploration of new actinide materials by employing well- designed organic linkers.

    Supporting Materials:

    Supporting Materials related to this article can be found at https://doi.org/10.15541/jim20190118

    [1] ALTMAIER M, GAONA X, FANGHANEL T,. Recent advances in aqueous actinide chemistry and thermodynamics., 2013, 113(2): 901–943.

    [2] JONES M B, GAUNT A J. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes., 2013, 113(2): 1137–1198.

    [3] WANG K X, CHEN J S. Extended structures and physicochemical properties of uranyl-organic compounds., 2011, 44(7): 531–540.

    [4] ANDREWS M B, CAHILL C L. Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures., 2013, 113(2): 1121–1136.

    [5] YANG W T, PARKER T G, SUN Z M,. Structural chemistry of uranium phosphonates., 2015, 303(1): 86–109.

    [6] LOISEAU T, MIHALCEA I, HENRY N,. The crystal chemistry of uranium carboxylates., 2014, 266(35): 69–109.

    [7] RAI D, FELMY A R, RYAN J L,. Uranium (IV) hydrolysis constants and solubility product of UO2·H2O(am)., 1990, 29(2): 260–264.

    [8] AHRLAND S. On the complex chemistry of the uranyl ion Ι. The hydrolysis of the 6-valent uranium in aqueous solutions., 1949, 3(4): 374–400.

    [9] ZANONATO P, DI BERNARDO P, BISMONDO A,. Hydrolysis of uranium (VI) at variable temperatures (10–85 ℃)., 2004, 126(17): 5515–5522.

    [10] SALMON L, THUERY P, EPHRITIKHINE M,. Crystal structure of the first octanuclear uranium (IV) complex with compartmental schiff base ligands., 2004, 23(4): 623–627.

    [11] MIHALCEA I, HENRY N, CLAVIER N,. Occurence of an octanuclear motif of uranyl isophthalate with cation-cation interactions through edge-sharing connection mode., 2011, 50(13): 6243–6249.

    [12] PASQUALE S, SATTIN S, ESCUDERO-ADAN E C,. Giant regular polyhedra from calixarene carboxylates and uranyl., 2012, 3(1): 785.

    [13] THUERY P. A highly adjustable coordination system: nanotubular and molecular cage species in uranyl ion complexes with kemp's triacid., 2014, 14(3): 901–904.

    [14] WANG L H, SHANG R, ZHENG Z,. Two systems of [DabcoH2]2+/[PipH2]2+-uranyl-oxalate showing reversible crystal-to- crystal transformations controlled by the diammonium/uranyl/ oxalate ratios in aqueous solutions ([DabcoH2]2+=1,4-diazabicyclo- [2.2.2]-octaneH2and [PipH2]2+= PiperazineH2)., 2013, 13(6): 2597–2606.

    [15] CHAPELET-ARAB B, NOWOGROCKI G, ABRAHAM E,. Crystal structure of new uranyl oxalates (NH4)2[UO2(C2O4)·2H2O] and (NH4)2–x(N2H5)[UO2(C2O4)3]·3H2O (=0 and=1). Compar-ison with other uranyl oxalates., 2005, 93(5): 279–285.

    [16] GIESTING P A, PORTER N J, BURNS P C,. A series of sheet-structured alkali metal uranyl oxalate hydrates: structures and IR spectra., 2006, 221(8): 589–599.

    [17] GIESTING P A, PORTER N J, BURNS P C,. Uranyl oxalate hydrates: structures and IR spectra., 2006, 221(4): 252–259.

    [18] DUVIEUBOURG L, NOWOGROCKI G, ABRAHAM F,. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides:- and-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2((C2O4)(OH)2(H2O)2]·H2O., 2005, 178(11): 3437–3444.

    [19] THUERY P. Reaction of uranyl nitrate with carboxylic diacids under hydrothermal conditions. Crystal structure of complexes with L(+)-tartaric and oxalic acids., 2007, 26(1): 101–106.

    [20] VOLOGZHANINA A V, SEREZHKINA L B, NEKLYUDOVA N A,. Synthesis and characterisation of a trinuclear uranyl complex: crystal structure of (CN3H6)5[(UO2)3O(OH)2(CH3COO)(C2O4)3]., 2009, 362(14): 4921–4925.

    [21] CHUGH C A, SHARMA A, SHARMA A,. Kinetics and mechanism of thermal decomposition of uranyl oxalate., 2011, 23(4): 1865–1866.

    [22] BARTLETT J R, COONEY R P,. On the determination of uranium oxygen bond lengths in dioxouranium (VI) compounds by raman-spectroscopy., 1989, 193(1): 295–300.

    [23] BRACHMANN A, GEIPEL G, BERNHARD G,. Study of uranyl (VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS)., 2002, 90(3): 147–153.

    [24] MEI L, WANG C Z, ZHU L Z,. Exploring new assembly modes of uranyl terephthalate: templated syntheses and structural regulation of a series of rare 2d→3d polycatenated frameworks., 2017, 56(14): 7694–7706.

    [25] NATRAJAN L S. Developments in the photophysics and photochemistry of actinide ions and their coordination compounds., 2012, 256(15/16): 1583–1603.

    [26] THUERY P, HARROWFIELD J. Solvent effects in solvo-hydro-thermal synthesis of uranyl ion complexes with 1,3-adamantane-diacetate., 2015, 17(21): 4006– 4018.

    [27] THUERY P, HARROWFIELD J. Structural variations in the uranyl/4,4'-biphenyldicarboxylate system. rare examples of 2d→3d polycatenated uranyl-organic networks., 2015, 54(16): 8093–8102.

    [28] THUERY P, RIVIERE E, HARROWFIELD J,. Uranyl and uranyl-3d block cation complexes with 1,3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties., 2015, 54(6): 2838–2850.

    pH調控合成U型配體介導的八核鈾酰草酸網(wǎng)絡

    吳思1,2, 梅雷2, 胡孔球2, 柴之芳2,3, 聶長明1, 石偉群2

    (1. 南華大學 化學化工學院, 衡陽 421001;2. 中國科學院 高能物理研究所 核能放射化學實驗室, 北京 100049; 3. 中國科學院 寧波材料技術與工程研究所, 先進能源材料工程實驗室, 寧波 315201)

    本工作報道了一種含新型八核鈾酰(U8)團簇單元([(UO2)8O4(μ3-OH)2(μ2-OH)2]4+)的草酸鈾酰配合物, 該化合物中, U型有機配體鏈可以增強鈾酰之間的交聯(lián)度, 具有穩(wěn)定多核鈾酰團簇的作用。通過與另外兩種含單核和雙核的鈾酰配位化合物比較, 發(fā)現(xiàn)八核鈾酰團簇單元的形成是一個pH調控的過程。理化性質分析顯示, 熒光、紅外、拉曼的信號峰都出現(xiàn)了不同程度的重疊和寬化, 表明八個鈾酰離子具有較高的相似度, 這與此多核鈾酰團簇的近平面分子構型密切相關。

    錒系配位聚合物;八核鈾酰中心;U-型鏈;pH調控

    Supporting materials:

    pH-dependent Synthesis of Octa-nuclear Uranyl-Oxalate Network Mediated by U-shaped Linkers

    WU Si1,2, MEI Lei2, HU Kong-Qiu2, CHAI Zhi-Fang2,3, NIE Chang-Ming1, SHI Wei-Qun2

    (1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; 2. Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3. Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China)

    S1. General Methods

    S1. 1 Synthesis

    1,1¢-(1,3-phenylenebis(methylene))bis(4-(ethoxycarbonyl)pyridin-1-ium) bromide ([-Xyl-BPy4CEt]Br2).[-Xyl-BPy4CEt]Br2was synthesized according to the reported procedure[5-7].A mixture of 1, 3-Bis(bromo-methyl)benzene (0.65 g, 2.46 mmol) and isonicotinate (0.83 g, 5.49 mmol) were dissolved in 50 mL of acet-onitrile and refluxed for 48 h. After cooling to room temperature, the solution was concentrated by evapor-ation in vacuum, filtered, washed with acetone, and dried under vacuum to afford the final product.Yield: 1.287 g (92.8%).1H NMR (500 MHz, D2O,ppm): 9.11 (d, 4H); 8.54 (d, 4H), 7.59–4.63 (m, 4H), 5.95 (s, 4H), 4.51 (q, 4H), 1.42 (t, 6H). MS (ESI): mass calculated for C24H26N2O42+(M2+), 406.19; m/z found, 203.11 (M2+/2).

    S1. 2 X-ray single crystal structure determination

    X-ray diffraction data of compound 1 and 2 was performed on Bruker D8 VENTURE X-ray CMOS diff-ractometer with a Mo Kα X-ray source (=0.071073 nm) at 296 K. X-ray diffraction data of compound 3 was collected on a Agilent SuperNova X-ray CCD diffra-ctometer with a Cu Kα X-ray source (=0.154184 nm) with higher diffraction capability at 293 K. Standard Agilent Crysalis software was used for the determination of the unit cells and data collection control. All the crystal structures were solved by means of direct methods and refined with full-matrix least squares on SHELXL- 2014. SIMU were used to constrain the displacement parameters of the phenyl and pyridyl groups and ISOR were used to even out the electron density associated with disordered portions of the moieties for both 1 and 3. OMIT were used to eliminate bad reflections obscured by the beamstop for all compounds. Since there is high disorder of pyridyl groups dangling aside, the pyridyl ligand was forced to be half occupied to create a chemically sensible model for 3. Solvent molecules (water) in the structure are highly disordered and impossible to be modelled as discrete atomic sites. To resolve this issue, the contribution of solvent-electron density was removed using the SQUEEZE/PLATON procedure, thereby producing a set of solvent-free diffraction intensities used for improving the structure refinements. The crystal data of both compounds are given in Table S3. Crystallographic data for the structures in this study were deposited with the Cambridge Crystallographic Data Cen-tre as supplementary publication nos. CCDC- 1510791 (1), CCDC-1898268 (2) and CCDC-1510792 (3).

    S2. Figures

    Fig. S1 Different optical morphologies of 1 with octa-nuclear uranyl (U8) motifs, 2 with binuclear uranyl (U2) motifs and 3 with monomeric uranyl (U1) motifs

    Fig. S2 Experimental and simulated patterns of powder X-ray diffraction (PXRD) of compound 1

    Fig. S3 Experimental and simulated patterns of powder X-ray diffraction (PXRD) of compound 2

    Fig. S4 Experimental and simulated patterns of powder X-ray diffraction (PXRD) of compound 3

    Fig. S5 (a) A nearly planar geometry of U8 motif found in this work; (b) a non-planar U8 motif with cation-cation interactions (CCIs) reported by Loiseau,[1]

    Fig. S6 (a-b) Eight-connected U8 motif with four oxalate (Ox) and fourXyl-BPy4CA (L) moieties extends from four dire-ctions through oxalate ligands (a), which thus connecting four adjacent ones with each oxalate ligand going together with a U-shaped bidentateXyl-BPy4CA linker (b); (c) U8-based uranyl-oxalate 2D network (enlarged diagram: a minimum rho-mbic loop); (d) U8-based uranyl-oxalate 2D network with all the cross-linkingXyl-BPy4CA linkers omitted for clarity (enlar-ged diagram: a minimum rhombic loop in size of 1.193 nm× 1.077 nm)

    Fig. S7 Each U8 motif displays a different overall orientation from that of its adjacent U8 with an angle of inclination of 36.6(4)° (a), resulting in a distortion of the rhombic loop (b)

    Fig. S8 Hydrogen bonds between double loops and two nitrate anions

    Fig. S9 Two ‘U’-shaped bidentate-Xyl-BPy4CA ligands located in the cavity of rhombic loop crosslink all the four U8 motifs through coordination bonds and hydrogen bonds (bottom) where one-Xyl-BPy4CA ligand points upwards (top left) and the other points downwards from the opposite direction (top right)

    Fig. S10 Hydrogen bonds between adjacent layers of 2D sheets through U8 motifs that interact with neighbouredXyl-BPy4CA from another sheet orXyl-BPy4CA interacting with neighboured uranyl group from another sheet

    Fig. S11 Some examples of high-nuclear uranyl motif based on nonlinear multi-topic organic ligands, as suggested by the cases of pentanuclear (U5), hexanuclear (U6) and octanuclear (U8) uranyl motifs derived from sulfobenzoate precursors[2],-position or-position aromatic/heteroaromatic dicarboxylate[3-4],calixarene ligand[3]and U-shaped linkers used in this work

    Fig. S12 Different molecular conformation of-Xyl-BPy4CA linker in 1 and 2 demonstrating its flexibility in molecular conformation

    Fig. S13 Thermogravimetric analysis (TGA) of compounds 1, where 1 starts to decompose at ~295 ℃, and finally transforms to U3O8with residual weight of 69.31% (theoretical value: 70.25%)

    Fig. S14 Thermogravimetric analysis (TGA) of compounds 2, where 2 starts to decompose at ~233 ℃, and finally transforms to U3O8with residual weight of 40.95% (theoretical value: 40.20%)

    Fig. S15 Fourier transform infrared (IR) spectra of com-pounds 1 (U8 motif, blue line), 2 (U2 motif, red line) and 3 (U1 motif, black line) with characteristic symmetric1vibrations at 915, 911 and 910 nm, respectively

    Fig. S16 The Raman spectra of compounds s 1 (U8 motif) and 3 (U1 motif) with characteristic asymmetric ν3 vibrations (1: 833 and 863 cm-1; 3: 829 and 860 cm-1)

    Fig. S17 Solid-state fluorescence spectra of compound 1 and 2 as compared to that of uranyl nitrate (UO2(NO3)2): 1, a broad peak ranging from 530 to 550 nm; 2, five main emission bands located at 499, 520, 543, 568 and 596 nm; UO2(NO3)2, 488, 511, 534, 561 and 589 nm

    Fig. S181H NMR of [-Xyl-BPy4CEt]Br2(500 MHz, 298 K, D2O)

    S3. Tables

    Table S1 Selected bond distances related to uranyl centers in compounds 1, 2 and 3

    Compound 1 BondDistance/nmBondDistance/nm U(1)-O(1)0.1748(17)U(2)-O(3)0.1752(15) U(1)-O(2)0.1770(2)U(2)-O(4)0.1751(15) U(1)-O(9)0.2208(13)U(2)-O(9)0.2275(12) U(1)-O(12)0.2327(15)U(2)-O(10)0.2193(14) U(1)-O(13)0.2506(14)U(2)-O(15)0.2466(14) U(1)-O(14)0.2440(18)U(2)-O(16)0.2578(14) U(1)-O(18)0.2426(16)U(2)-O(17)0.2380(17) U(3)-O(5)0.1746(17)U(4)-O(7)0.165(3) U(3)-O(6)0.178(2)U(4)-O(8)0.171(2) U(3)-O(9)0.2344(14)U(4)-O(10)0.2200(14) U(3)-O(10)0.2237(14)U(4)-O(11)0.242(2) U(3)-O(11c)0.248(2)U(4)-O(11c)0.2461(14) U(3)-O(12)0.2349(17)U(4)-O(16)0.249(2) U(3)-O(19a)0.2439(16)U(4)-O(20d)0.2399(16) Compound 2 BondDistance/nmBondDistance/nm U(1)-O(1)0.1776(2)U(1)-O(4)0.2364(2) U(1)-O(2)0.1784(2)U(1)-O(5a)0.2358(2) U(1)-O(7)0.2325(2)U(1)-O(7a)0.2339(2) U(1)-O(1W)0.2576(2) Compound 3 BondDistance/nmBondDistance/nm U(1)-O(1)0.182(3)U(1)-O(4b)0.244(2) U(1)-O(1a)0.182(3)U(1)-O(5)0.237(2) U(1)-O(2)0.240(2)U(1)-O(6)0.2307(18) U(1)-O(3)0.2397(19)

    Table S2 Distances and angles for hydrogen bonds observed in compounds 1 and 2

    Compound 1 Hydrogen bondD–H/nmH··A/nmD··A/nmAngle/(°) C6-H6···O60.0930.2150.305165 C17-H17···O10.0930.2430.316135 C18-H18···O130.0930.2420.330159 C15-H15···O50.0930.2450.322141 C16-H16A···O30.0970.2420.321138 Compound2 Hydrogen bondD-H/nmH···A/nmD···A/nmAngle/(°) O7-H7···O100.0730.2160.285161 C16-H16···O100.0930.2580.324128 C15-H16···O90.0930.2980.358123

    Table S3 Crystal data and structure refinement for compounds 1, 2 and 3

    Compound 1Compound 2Compound 3 FormulaC22H16N2O20U4C40H38N6O22U2C8H5NO8U Formula weight1580.491430.82481.16 Crystal systemmonoclinictriclinicorthorhombic Space groupP21/cP-1Ibam a/nm1.15944(14)0.98277(3)2.6039(4) b/nm1.9854(3)1.05830(4)1.17462(13) c/nm1.5002(2)1.15097(4)0.91646(17) α/(o)9082.951(2)90 β/(o)105.390(3)88.168(2)90 γ/(o)9066.735(2)90 V/nm33.3296(8)1.09126(7)2.8031(7) Z418 T/K296297293 F(000)27606801728 Dc/(g·cm–3)3.1532.1772.280 μ/mm–1a 19.480b 7.507c32.914 Rint0.0730.0280.088 R1, wR2 (all data)0.0646, 0.15360.0227, 0.04910.0755, 0.2833

    a, bMo K: 0.071073 nm;cCu K: 0.154184 nm

    [1] MIHALCEA I, HENRY N, CLAVIER N,. Occurence of an octanuclear motif of uranyl isophthalate with cation–cation intera-ctions through edge-sharing connection mode., 2011, 50(13): 6243–6249.

    [2] THU RY P. Sulfonate complexes of actinide ions: structural diversity in uranyl complexes with 2-sulfobenzoate., 2013, 52(1): 435–447.

    [3] ZHENG Y Z, TONG M L, CHEN X M,. Synthesis, structure and photoluminescent studies of two novel layered uranium coordination polymers constructed from UO (OH) polyhedra and pyridinedicarboxylates., 2005, (20): 4109–4117.

    [4] THU RY P, NIERLICH M, SOULEY B,. Complexation of a hexameric uranium (VI) cluster by p-benzylcalix [7] arene., 1999, (15): 2589– 2594.

    [5] SINDELAR V, MOON K, KAIFER A E,. Binding selectivity of cucurbit[7]uril:? bis(pyridinium)-1,4-xylylene versus 4,4¢- bip-yridinium guest sites., 2004, 6(16): 2665– 2668.

    [6] HUANG F, SLEBODNICK C, MAHAN E J,. [3]Pseudor-otaxanes based on the cryptand/monopyridinium salt recognition motif., 2007, 63(13): 2875–2881.

    [7] MEI L, WANG L, YUAN L Y,. Supramolecular inclusion- based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks., 2015, 51(60): 11990–11993.

    TQ174

    A

    1000-324X(2020)02-0243-07

    10.15541/jim20190118

    2019-03-21;

    2019-04-27

    National Natural Science Foundation of China (21671191, 21577144, 11405186)

    WU Si (1993–), female, Master candidate. E-mail: wusi@ihep.ac.cn

    吳思(1993–), 女, 碩士研究生. E-mail: wusi@ihep.ac.cn

    SHI Wei-Qun, professor. E-mail: shiwq@ihep.ac.cn; NIE Chang-Ming, professor. E-mail: niecm196132@163.com

    石偉群, 教授. E-mail: shiwq@ihep.ac.cn; 聶長明, 教授. E-mail: niecm196132@163.com

    猜你喜歡
    鈾酰草酸配位
    鈾酰礦物研究進展(2014—2021)
    鈾礦地質(2022年6期)2022-11-21 13:15:34
    [Zn(Hcpic)·(H2O)]n配位聚合物的結構與熒光性能
    一種鈾酰配合物的合成及其光催化降解性能研究
    德不配位 必有災殃
    當代陜西(2019年6期)2019-04-17 05:04:10
    電噴霧串聯(lián)質譜快速鑒別水溶液中鈾酰形態(tài)及在檸檬酸鈾酰形態(tài)研究的應用
    分析化學(2019年3期)2019-03-30 10:59:24
    草酸鈷制備中的形貌繼承性初探
    飲食科學(2016年3期)2016-07-04 15:12:40
    飲食科學(2016年3期)2016-07-04 15:12:27
    鈾酰-Salophen與環(huán)己烯酮的作用模式
    右旋糖酐對草酸脫羧酶的修飾研究
    国产一区二区激情短视频| 99久久精品一区二区三区| 亚洲欧美中文字幕日韩二区| 色播亚洲综合网| 午夜亚洲福利在线播放| 亚洲综合色惰| 精品久久久噜噜| 国产成人精品一,二区 | 久久精品夜夜夜夜夜久久蜜豆| 深夜a级毛片| 又粗又爽又猛毛片免费看| 黄色配什么色好看| 日本黄大片高清| 国产极品精品免费视频能看的| 成年免费大片在线观看| 国产av一区在线观看免费| 精品久久久久久久人妻蜜臀av| 亚洲av中文字字幕乱码综合| 国产成人午夜福利电影在线观看| 欧美+日韩+精品| 国产伦理片在线播放av一区 | eeuss影院久久| 中国美女看黄片| 久久精品国产清高在天天线| av天堂中文字幕网| 成人av在线播放网站| 哪里可以看免费的av片| 久久精品夜夜夜夜夜久久蜜豆| 国产高清不卡午夜福利| 欧美高清性xxxxhd video| 欧美高清性xxxxhd video| 男人狂女人下面高潮的视频| 亚洲欧美精品综合久久99| a级毛片免费高清观看在线播放| 乱码一卡2卡4卡精品| 日韩大尺度精品在线看网址| 乱码一卡2卡4卡精品| 99在线视频只有这里精品首页| 中国美女看黄片| 欧美xxxx性猛交bbbb| 亚洲成人久久爱视频| 亚洲av不卡在线观看| a级毛片a级免费在线| 国产伦理片在线播放av一区 | 老师上课跳d突然被开到最大视频| 精品欧美国产一区二区三| 午夜福利视频1000在线观看| 嘟嘟电影网在线观看| 高清在线视频一区二区三区 | 久久午夜福利片| 亚洲欧洲日产国产| 国产黄片美女视频| 最近手机中文字幕大全| 色播亚洲综合网| 激情 狠狠 欧美| 男女做爰动态图高潮gif福利片| 精品无人区乱码1区二区| 亚洲高清免费不卡视频| 日本av手机在线免费观看| 国产探花极品一区二区| 日韩欧美在线乱码| 精品久久久久久久久久免费视频| 精品人妻一区二区三区麻豆| 一个人看视频在线观看www免费| 成人一区二区视频在线观看| 午夜福利成人在线免费观看| 99热这里只有是精品在线观看| 亚洲欧美精品综合久久99| 亚洲av免费高清在线观看| 国产深夜福利视频在线观看| 三级国产精品片| 欧美日韩精品成人综合77777| 黄色欧美视频在线观看| 日韩一区二区三区影片| 制服人妻中文乱码| 搡女人真爽免费视频火全软件| 亚洲精华国产精华液的使用体验| 精品久久久噜噜| 久久狼人影院| videossex国产| 亚洲综合精品二区| 99热网站在线观看| 少妇高潮的动态图| 久久毛片免费看一区二区三区| 精品一品国产午夜福利视频| 18禁观看日本| 99热6这里只有精品| 最近中文字幕高清免费大全6| 国产黄频视频在线观看| 欧美日本中文国产一区发布| 午夜福利,免费看| 亚洲图色成人| 热re99久久国产66热| 一区在线观看完整版| 成人毛片a级毛片在线播放| 性高湖久久久久久久久免费观看| 国产成人精品一,二区| 五月玫瑰六月丁香| 久久亚洲国产成人精品v| 欧美日韩在线观看h| 久久99一区二区三区| 国产老妇伦熟女老妇高清| 啦啦啦中文免费视频观看日本| 狂野欧美激情性bbbbbb| 国产精品久久久久久久电影| 日日爽夜夜爽网站| 中国三级夫妇交换| 精品酒店卫生间| 999精品在线视频| 婷婷色综合大香蕉| 国产精品99久久99久久久不卡 | 看非洲黑人一级黄片| 国产日韩欧美在线精品| 国产成人aa在线观看| 亚洲av日韩在线播放| 久久99热6这里只有精品| 国产片内射在线| 国产精品国产av在线观看| 免费日韩欧美在线观看| 免费大片18禁| 亚洲欧美成人综合另类久久久| 国产av一区二区精品久久| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频| 欧美 亚洲 国产 日韩一| 精品亚洲成国产av| 中文字幕精品免费在线观看视频 | 亚洲av日韩在线播放| av专区在线播放| 国产亚洲精品第一综合不卡 | 黑丝袜美女国产一区| 欧美激情国产日韩精品一区| 男人添女人高潮全过程视频| 日韩大片免费观看网站| 免费播放大片免费观看视频在线观看| 亚洲精品日韩在线中文字幕| 免费高清在线观看日韩| 亚洲国产精品国产精品| 国产视频首页在线观看| 精品人妻在线不人妻| 三级国产精品片| 成人国产av品久久久| 国产免费一区二区三区四区乱码| 国产高清国产精品国产三级| 精品久久蜜臀av无| 成人午夜精彩视频在线观看| 伊人久久国产一区二区| 超碰97精品在线观看| 国产av国产精品国产| 亚洲精品乱码久久久久久按摩| 在线观看一区二区三区激情| 一级黄片播放器| 国产免费一区二区三区四区乱码| 少妇被粗大猛烈的视频| av在线观看视频网站免费| 欧美成人午夜免费资源| 狂野欧美白嫩少妇大欣赏| 日韩亚洲欧美综合| 欧美日韩国产mv在线观看视频| 精品午夜福利在线看| 最黄视频免费看| 国产精品成人在线| av有码第一页| 狂野欧美白嫩少妇大欣赏| 欧美性感艳星| 亚洲国产欧美在线一区| av在线观看视频网站免费| 久久久久久久久久久免费av| 伦精品一区二区三区| a级片在线免费高清观看视频| 午夜91福利影院| 国产综合精华液| 久久久国产一区二区| 国产男女内射视频| 久久久久久久精品精品| 成人18禁高潮啪啪吃奶动态图 | a级毛片在线看网站| 91aial.com中文字幕在线观看| 亚洲av成人精品一二三区| 久久久久精品久久久久真实原创| 少妇丰满av| 精品久久蜜臀av无| 日日摸夜夜添夜夜爱| av电影中文网址| 人妻少妇偷人精品九色| 国产精品久久久久久精品古装| 亚洲国产毛片av蜜桃av| 色5月婷婷丁香| 99精国产麻豆久久婷婷| 亚洲成色77777| 亚洲欧美日韩另类电影网站| 免费日韩欧美在线观看| 黄色视频在线播放观看不卡| 国产精品女同一区二区软件| 国产一区二区在线观看日韩| 天天躁夜夜躁狠狠久久av| 国产老妇伦熟女老妇高清| 最近最新中文字幕免费大全7| 国产精品女同一区二区软件| 亚洲欧洲精品一区二区精品久久久 | 国产亚洲av片在线观看秒播厂| 精品午夜福利在线看| 欧美日本中文国产一区发布| 免费观看在线日韩| 久久久久久久久久久免费av| 午夜福利,免费看| 99国产精品免费福利视频| 成年人免费黄色播放视频| 日韩,欧美,国产一区二区三区| av在线老鸭窝| 中文字幕免费在线视频6| 精品人妻一区二区三区麻豆| 老熟女久久久| 五月伊人婷婷丁香| 午夜日本视频在线| 欧美人与性动交α欧美精品济南到 | 永久免费av网站大全| 成年人午夜在线观看视频| 热99国产精品久久久久久7| 日本-黄色视频高清免费观看| 国产又色又爽无遮挡免| 亚洲av在线观看美女高潮| 亚洲第一av免费看| 夜夜爽夜夜爽视频| 精品视频人人做人人爽| 日韩亚洲欧美综合| 国产成人av激情在线播放 | 男女国产视频网站| 欧美日本中文国产一区发布| 蜜桃在线观看..| 免费观看的影片在线观看| 日韩三级伦理在线观看| 免费观看a级毛片全部| 亚洲av日韩在线播放| 久久久亚洲精品成人影院| 国产极品天堂在线| 91国产中文字幕| 亚洲精品日韩av片在线观看| 男女免费视频国产| 亚洲精品久久成人aⅴ小说 | 成年av动漫网址| 国产精品蜜桃在线观看| 亚洲少妇的诱惑av| 91精品国产国语对白视频| 最新的欧美精品一区二区| 中国国产av一级| 成人午夜精彩视频在线观看| 成人无遮挡网站| 少妇丰满av| 久久久国产一区二区| 久久国内精品自在自线图片| 国产欧美日韩一区二区三区在线 | 制服诱惑二区| 日韩中文字幕视频在线看片| 精品国产国语对白av| 91久久精品国产一区二区三区| 久久久久精品久久久久真实原创| 国产亚洲欧美精品永久| 久久久久久久久久久免费av| 欧美精品一区二区免费开放| 国产成人精品久久久久久| 国产毛片在线视频| 啦啦啦视频在线资源免费观看| 在线天堂最新版资源| 午夜精品国产一区二区电影| 一个人免费看片子| 在线播放无遮挡| 久久久久久久亚洲中文字幕| 少妇的逼水好多| 午夜免费男女啪啪视频观看| 久久精品国产a三级三级三级| 王馨瑶露胸无遮挡在线观看| 成人18禁高潮啪啪吃奶动态图 | 欧美3d第一页| videos熟女内射| 欧美激情极品国产一区二区三区 | 成年女人在线观看亚洲视频| 少妇被粗大的猛进出69影院 | 黑人欧美特级aaaaaa片| √禁漫天堂资源中文www| 国产成人精品婷婷| 人人妻人人添人人爽欧美一区卜| 国产黄片视频在线免费观看| 日日摸夜夜添夜夜爱| 一级毛片我不卡| 久久国内精品自在自线图片| 国产亚洲精品久久久com| xxx大片免费视频| 国产亚洲欧美精品永久| 精品久久久精品久久久| 三级国产精品片| 久久人人爽人人片av| 老女人水多毛片| 熟女av电影| 久久精品人人爽人人爽视色| 欧美精品高潮呻吟av久久| 亚洲成人手机| 亚洲精品中文字幕在线视频| 免费黄网站久久成人精品| 国产精品麻豆人妻色哟哟久久| 久久久久精品性色| 9色porny在线观看| 免费大片黄手机在线观看| 下体分泌物呈黄色| 2021少妇久久久久久久久久久| 一级毛片我不卡| 一边摸一边做爽爽视频免费| 精品亚洲乱码少妇综合久久| 人妻少妇偷人精品九色| 国内精品宾馆在线| 国产视频首页在线观看| 国产精品女同一区二区软件| 欧美日韩视频高清一区二区三区二| 高清不卡的av网站| 成人国产av品久久久| 性色av一级| 一二三四中文在线观看免费高清| 狂野欧美激情性xxxx在线观看| 亚洲av福利一区| 成人漫画全彩无遮挡| 亚洲欧美中文字幕日韩二区| 亚洲美女搞黄在线观看| 国产精品一区二区在线观看99| 大话2 男鬼变身卡| 免费人妻精品一区二区三区视频| 有码 亚洲区| 色视频在线一区二区三区| 亚洲国产精品成人久久小说| av线在线观看网站| 亚洲欧美一区二区三区黑人 | 国产精品人妻久久久影院| 国产av国产精品国产| 97超视频在线观看视频| 国产综合精华液| 亚洲精品av麻豆狂野| 欧美国产精品一级二级三级| 久久久久网色| 国产国语露脸激情在线看| 国产av国产精品国产| 最后的刺客免费高清国语| 国产精品99久久99久久久不卡 | av网站免费在线观看视频| 免费黄网站久久成人精品| 欧美激情国产日韩精品一区| 亚洲国产精品一区二区三区在线| 啦啦啦在线观看免费高清www| 国产精品一区www在线观看| 赤兔流量卡办理| 国产 一区精品| 国产av国产精品国产| 国产69精品久久久久777片| 蜜桃久久精品国产亚洲av| 最近2019中文字幕mv第一页| 另类亚洲欧美激情| 亚洲精品视频女| 青春草亚洲视频在线观看| 在线 av 中文字幕| 极品少妇高潮喷水抽搐| 免费看不卡的av| 亚洲精品美女久久av网站| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频 | 在线天堂最新版资源| 亚洲综合色网址| 欧美日韩av久久| 尾随美女入室| 26uuu在线亚洲综合色| 免费观看无遮挡的男女| 日日啪夜夜爽| 在线看a的网站| 一级毛片电影观看| 天堂俺去俺来也www色官网| 久久av网站| 久久精品久久久久久噜噜老黄| a级毛片免费高清观看在线播放| 熟女人妻精品中文字幕| 尾随美女入室| 亚洲精品乱码久久久久久按摩| 成人国产麻豆网| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| 国产精品一区二区在线观看99| 哪个播放器可以免费观看大片| 两个人免费观看高清视频| 在线天堂最新版资源| av在线观看视频网站免费| 97在线视频观看| 国产精品99久久99久久久不卡 | 国产男女内射视频| 亚洲精品国产色婷婷电影| 国产欧美日韩一区二区三区在线 | 亚洲国产精品一区二区三区在线| 18禁在线播放成人免费| 飞空精品影院首页| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | h视频一区二区三区| 精品国产一区二区三区久久久樱花| 777米奇影视久久| 精品卡一卡二卡四卡免费| 国产淫语在线视频| 亚洲一区二区三区欧美精品| 一区二区av电影网| 精品少妇内射三级| 亚洲精品中文字幕在线视频| 另类亚洲欧美激情| 亚洲精品一区蜜桃| 久久精品国产亚洲av涩爱| 中文天堂在线官网| 99热国产这里只有精品6| 久久人人爽av亚洲精品天堂| 男女高潮啪啪啪动态图| 国产av精品麻豆| av线在线观看网站| 夫妻性生交免费视频一级片| 日韩中文字幕视频在线看片| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区 | 亚洲国产日韩一区二区| 我的老师免费观看完整版| 欧美性感艳星| 高清在线视频一区二区三区| 22中文网久久字幕| 有码 亚洲区| 麻豆乱淫一区二区| 日本黄色日本黄色录像| 只有这里有精品99| 九色成人免费人妻av| 婷婷色av中文字幕| 国产白丝娇喘喷水9色精品| 亚洲精品,欧美精品| 好男人视频免费观看在线| 欧美 亚洲 国产 日韩一| 蜜桃久久精品国产亚洲av| 人人妻人人爽人人添夜夜欢视频| 午夜av观看不卡| 成年人午夜在线观看视频| 免费看光身美女| 在线观看三级黄色| 纯流量卡能插随身wifi吗| 欧美激情 高清一区二区三区| 一级,二级,三级黄色视频| 国精品久久久久久国模美| 少妇精品久久久久久久| 一级,二级,三级黄色视频| 亚洲,一卡二卡三卡| 国产免费又黄又爽又色| 99久久综合免费| 看非洲黑人一级黄片| 国产高清有码在线观看视频| 2018国产大陆天天弄谢| 少妇猛男粗大的猛烈进出视频| 丝袜喷水一区| 亚洲国产精品一区二区三区在线| √禁漫天堂资源中文www| 一本一本综合久久| 在线播放无遮挡| 又大又黄又爽视频免费| 一级毛片 在线播放| 精品国产一区二区久久| 少妇丰满av| 亚洲精品久久午夜乱码| 综合色丁香网| 一级毛片我不卡| 黄色怎么调成土黄色| 中文精品一卡2卡3卡4更新| 久久99蜜桃精品久久| 人人妻人人澡人人看| 久久综合国产亚洲精品| av线在线观看网站| 我的老师免费观看完整版| 久久久久久久精品精品| 免费看av在线观看网站| 精品熟女少妇av免费看| 搡老乐熟女国产| 亚洲精品一区蜜桃| 高清午夜精品一区二区三区| 免费高清在线观看视频在线观看| 亚洲精品久久午夜乱码| a 毛片基地| 久热这里只有精品99| 免费看光身美女| 国产成人精品无人区| 国产精品一区二区在线不卡| 日日摸夜夜添夜夜添av毛片| 亚洲伊人久久精品综合| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 少妇熟女欧美另类| 日韩av在线免费看完整版不卡| 嫩草影院入口| 色网站视频免费| videossex国产| 色5月婷婷丁香| 人人澡人人妻人| 两个人免费观看高清视频| 亚洲精品久久久久久婷婷小说| 日韩亚洲欧美综合| 熟女电影av网| 2021少妇久久久久久久久久久| 日韩,欧美,国产一区二区三区| 国产男女内射视频| 久久国产精品男人的天堂亚洲 | 在线免费观看不下载黄p国产| 蜜桃在线观看..| av天堂久久9| 久久人人爽人人爽人人片va| 男人添女人高潮全过程视频| 国产精品免费大片| 久久狼人影院| 日韩熟女老妇一区二区性免费视频| 日韩成人av中文字幕在线观看| 亚洲精品一二三| 在线观看美女被高潮喷水网站| 狠狠精品人妻久久久久久综合| 如日韩欧美国产精品一区二区三区 | 欧美+日韩+精品| av在线播放精品| 免费大片黄手机在线观看| 一级毛片电影观看| 国产伦理片在线播放av一区| 99九九线精品视频在线观看视频| 在线观看免费视频网站a站| 大香蕉久久成人网| 亚洲国产精品一区三区| 欧美激情 高清一区二区三区| 18禁在线播放成人免费| 久久久久国产网址| 一区二区三区四区激情视频| 亚洲国产精品999| 天美传媒精品一区二区| 国产精品.久久久| 男女国产视频网站| 国产白丝娇喘喷水9色精品| 久久午夜福利片| 亚洲国产欧美在线一区| videos熟女内射| 伦理电影免费视频| 伊人久久国产一区二区| 亚洲精品色激情综合| 美女中出高潮动态图| 国产片内射在线| 亚洲性久久影院| 日日摸夜夜添夜夜爱| 日本黄色日本黄色录像| 一二三四中文在线观看免费高清| 欧美精品人与动牲交sv欧美| 欧美 亚洲 国产 日韩一| 18在线观看网站| 麻豆精品久久久久久蜜桃| 中国三级夫妇交换| 一级毛片aaaaaa免费看小| 九色成人免费人妻av| 日韩电影二区| 亚洲欧洲精品一区二区精品久久久 | 日日爽夜夜爽网站| 全区人妻精品视频| 国产日韩欧美视频二区| 69精品国产乱码久久久| 亚洲不卡免费看| 国国产精品蜜臀av免费| 日韩成人伦理影院| 久久精品久久精品一区二区三区| 免费av不卡在线播放| 免费观看无遮挡的男女| av专区在线播放| 日日摸夜夜添夜夜添av毛片| 亚洲欧美成人综合另类久久久| 国产精品99久久99久久久不卡 | 一级黄片播放器| 国产成人精品久久久久久| 亚洲国产最新在线播放| 一级毛片黄色毛片免费观看视频| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 91久久精品国产一区二区三区| 青青草视频在线视频观看| 亚洲精品成人av观看孕妇| 麻豆成人av视频| 少妇人妻久久综合中文| 最近2019中文字幕mv第一页| 伊人久久精品亚洲午夜| 色哟哟·www| 国产69精品久久久久777片| 建设人人有责人人尽责人人享有的| 国产成人精品福利久久| 国产视频首页在线观看| 青春草视频在线免费观看| 97超视频在线观看视频| 久久久久久久国产电影| 亚洲国产日韩一区二区| 人体艺术视频欧美日本| 精品一区二区免费观看| 免费黄色在线免费观看| 免费观看av网站的网址| 欧美国产精品一级二级三级| 乱码一卡2卡4卡精品| 99re6热这里在线精品视频| 欧美日韩在线观看h| 久久久久网色| 五月开心婷婷网| 色吧在线观看| 特大巨黑吊av在线直播| 国产av码专区亚洲av| 99九九在线精品视频| 制服丝袜香蕉在线| 建设人人有责人人尽责人人享有的| 日韩中字成人| av黄色大香蕉| 成人国语在线视频| 人妻 亚洲 视频| 午夜免费鲁丝| 国产高清不卡午夜福利| av女优亚洲男人天堂| 日本与韩国留学比较| 亚洲精品乱码久久久v下载方式|