• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial Stress Analysis on Skutterudite-based Thermoelectric Joints under Service Conditions

    2020-03-09 01:01:32SHAOXiaoLIURuiHengWANGLiangCHUJingBAIGuangHuiBAIShengQiangGUMingZHANGLiNaMAWeiCHENLiDong
    無機材料學(xué)報 2020年2期
    關(guān)鍵詞:阻擋層熱電元件

    SHAO Xiao, LIU Rui-Heng, WANG Liang, CHU Jing, BAI Guang-Hui, BAI Sheng-Qiang, GU Ming, ZHANG Li-Na, MA Wei, CHEN Li-Dong

    Interfacial Stress Analysis on Skutterudite-based Thermoelectric Joints under Service Conditions

    SHAO Xiao1,2, LIU Rui-Heng1,3, WANG Liang1, CHU Jing1,2, BAI Guang-Hui4, BAI Sheng-Qiang1,3, GU Ming1, ZHANG Li-Na4, MA Wei4, CHEN Li-Dong1,3

    (1. The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4. Science and Technology on Space Physics Laboratory, Beijing 100076, China)

    In thermoelectric (TE) devices, the interfacial reliability greatly influenced devices’ durability and power output. For skutterudites (SKD) devices, TE legs and electrodes are bonded together with diffusion barrier layer (DBL). At elevated temperatures, DBL react with SKD matrix or electrode to generate complex interfacial microstructures, which often accompanies evolutions of the thermal, electrical and mechanical properties at the interfaces. In this work, a finite element model containing the interfacial microstructure characteristics based on the experimental results was built to analyze the interfacial stress state in the skutterudite-based TE joints. A single-layer model was applied to screen out the most important parameters of the coefficient of thermal expansion () and the modulus of DBL on the first principle stress. The multilayer model considering the interfacial microstructures evolution was built to quantitively simulate the stress state of the TE joints at different aging temperatures and time. The simulation results show that the reactive CoSb2layer is the weakest layer in both SKD/Nb and SKD/Zr joints. And by prolonging the aging time, the thickness of the reaction layer continuously increased, leading to a significant raising of the interfacial stress. The tensile testing results of the SKD/Nb joints match the simulation results well, consolidating accuracy and feasibility of this multilayer model. This study provides an important guidance on the design of DBL to improve the TE joints’ mechanical reliability, and a common method to precisely simulate the stress condition in other coating systems.

    thermoelectric joints; diffusion barrier layer; finite element model; tensile strength

    Thermoelectric (TE) technology has attracted great attention because it can convert heat into electric power directly with the advantages of no moving parts and long durability, especially for the applications in deep space exploration, waste heat recovery, and other special fields[1-3]. Over the past several decades, many high-per-formance TE materials and devices were develo-ped[4-8], providing great opportunities for large-scale appli-cation of TE power generation. Among them, skutterudite-based (SKD) devi-ces exhibited very high conversion efficiencies up to 12%[9], making SKD one of the most potential candidates for the practical appli-cations.

    As the SKD device steps forward to industrial application from laboratory[10], the mechanical reliability becomes the top concern since TE devices often work under harsh service conditions, such as high temperature difference, mechanical vibration with wide frequency, extremely long service time. A TE device comprises of n-, p-type TE legs and electrodes as major components. Previously, researchers paid a lot of attention to the mechanical property of SKD materials themselves[11-13], and demonstrated that the SKD materials exhibit excellent mechanical performance to bear service stress[14-15]. However, at the electrode interface, the Sb elements of skutterudites matrix diffused into electrode materials such as Cu, Ni, and Mo[16-17]or diffusion barrier layer (DBL) such as Ti, Mo, Mo-Ti, Cr80Si20, Nb, Ti100-xAl(= 3–12)[18-23]during the long-time service at high temperatures. The elemental diffusions and chemical reactions at the interface not only result in dramatical increase of the interfacial electrical and thermal resistivity[24], but also induce the mechanical injury or disability.

    Numerical analysis for residual interfacial stress in multilayer system was well studied in the past decades. It was recognized that the coefficient of thermal expansion () of the component layers plays a critical role on interfacial reliability[25]. Interface morphology should also affect interface stability in multilayer systems like thermal barrier coatings[26]. Li,[27]found that the thermal stress in segmented CoSb3/Bi2Te3device could be reduced by introducing a graded layer between CoSb3and copper electrode. However, all above researches tre-ated multilayer systems as inert (without compositional or structural change) at high temperature. Actually, in TE joints, element diffusion and reaction are inevitable during whole service life. Therefore, the interfacial com-pos-i-tions and microstructures would continuously evolve, which influence the interfacial mechanical behavior unexpectedly.

    This study reports a numerical analysis model based on finite element simulation method to investigate the dynamic interfacial stress at the SKD/DBL joint by taking the microstructure evolution into account. A single- layer model was established, and the interfacial stress in the TE joints with different DBL was calculated. Based on the experimental results on the interface observation and properties measuring of reaction layers, a multilayer model considering microstructure evolution was built to quantitively simulate the stress state of the aged TE joints. The tensile test results of SKD/Nb joints matched well with the simulation results.

    1 Finite element model and experi-me---n-tal procedure

    1.1 Governing equation of thermal-structural model

    A transient thermal-structural model is applied for stress in SKD/DBL joints to simulate the sintering- cooling process. Residual stress results from change of temperature and difference of material properties. For cooling period, the transient thermal conducting equation can be derived according to energy conservation law:

    Once temperature decreases, the difference betweenof SKD and Nb causes displacement, which can be converted to strain, and then results in stress according to generalized Hooke’s law. Thus the thermal-structural governing equation can be expressed as[28]:

    Whereandare stress and strain vectors respectively, [] is stiffness matrix,isvector, Δis the difference between present temperature and reference temperature (0). Finally, the stress distribution can be figured out.

    For a certain site in materials, stress tensor can be divided to three principle stresses:1,2,3, from large to small, respectively. According to the first strength theory, the maximum principle stress is the main reason for fracture, which coincides well with the fracture of brittle materials’ uniaxial tension. Therefore, the first principle stress1is chosen to evaluate stress intensity.

    In initial state (=0), adjacent materials are already bonded closely to form a zero-stress state. Thus, the initial temperature (960 K) is reference temperature (0) of thermal expansion. Then in cooling process, joint’s diameter is assumed to be unchanged, meanwhile upper and lower end could move vertically. Besides, model’s round side is considered as thermal insulated. On the end side surfaces, effect of cooling is also simplified as natural convection in air, in which the heat transfer coefficient was set to be 10 W·m2·K–1.

    1.2 Experimental procedures

    SKD/Nb joints were fabricated and aged for tensile test. Yb0.3Co4Sb12(SKD) powders and Nb foil ((0.025± 0.015) mm) were loaded into a graphite die with a diameter of 50 mm, and then sintered by hot pressed for 90 min at 690 ℃ and 60 MPa under Ar atmosphere. Nb foil was placed between two SKD layers to form a sandwich structure. The obtained joint (50 mm×4 mm) was then cut into small cylinders (10 mm) and sealed in quartz ampules under vacuum. The sealed ampules were aged under 600 and 650 ℃ in furnace for various time, and the aged joints were denoted as “temperature-aging time”, such as 600–10 d. The tensile strength was measured by Instron-5566 universal testing system at room temperature. The microstructures of interface and fracture surface were observed by SEM (ZEISS Spura 55). The constituents of interface were measured by EDS (Oxford Instrument).

    2 Results and discussion

    2.1 Influence of materials properties in single- layer model

    Nb, Mo, Zr, Ti were chosen as the DBL candidates for SKD[22,29]. The effect of materials properties on interfacial mechanical stability was studied by using single- layer model. Theand Young’s modulus data obtained from COMSOL database are presented in Fig. 1(a-b). The calculated1are shown in Fig. 1(c). Compared with other DBL materials, the stress intensity of SKD/Mo is extremely high, which probably results from great difference ofbetween Mo and SKD (=10.6× 10–6K–1[20]). The stress of SKD/Zr interface is the lowest (1.1 GPa), even though Zr has the larger difference ofwith SKD than that of Ti. Fig. 1(c) shows that the variation trend of interfacial stress is the same as that of Young’s modulus. It is observed that bothand Young’s modulus influence stress intensity, and large Young’s modulus induces high intensity stress. Moreover, in single-layer model, the thickness of DBL affects interfacial stress weakly. In consideration of reaction activity at high temperature[22], Nb and Zr are employed for further research.

    Fig. 1 (a) CTE, (b) Young’s modulus (E), and (c) variations of average first principle stresses with thicknesses of different DBL candidates (purple lines: CTE and E of SKD)

    2.2 Influence of thickness of layers in multilayer model

    Actually, all the SKD joints undergo the elemental diffusion and chemical reaction during long-time service at high temperature[8], which makes single-layer model inaccurate to describe the stress state of aged joints. SEM and EDS results of SKD/Nb joints after different aging time are listed in Fig. A2. No evident microcracks or micropores are observed in as-prepared joint. After aged at 600 ℃ for 5 d, NbSb2and CoSb2are detected, and micropores appear in the CoSb2layer. The thickness of NbSb2slightly increase with the increase of aging time (Fig. A2(b-d)), indicating that elevating temperature and prolonging aging time significantly aggravate diffusion and reaction. The reaction process can be described as following. At the initial stage of aging, SKD didn’t react with DBL, and there are only three layers, as the single-layer model is shown in Fig. 2(a). With aging accelerating, SKD reacted with Nb to form CoSb2and NbSb2, and micropores appeared simultaneously because of the volume change. The reaction equation can be expressed in Eq. (4):

    Thus, multilayer model was built to find out the influence of micropores and diffusion layers.

    To simplify the modeling and calculation, there’re some requisite assumptions in the model: (1) CoSb2and NbSb2layers are assumed to be totally flat; (2) Micropores are of ellipsoid shape, in whichandsemi-major axis (and) are equal to a multiple ofsemi-major axis (); (3) Micropores locate on the interface between NbSb2and CoSb2periodically; (4) Diameter of cylindrical model is reduced; (5) Materials are seen as isotropic and completely linear-elastic; (6) Part of material properties (Table A1) is treated as constant value or simple function of temperature because of lack in experimental data. Combining materials’ molar mass and density listed in Table A1, relationships of thickness of each layer can be obtained, as shown in Table 1. Thus, total volume of micropores ought to equal the volume difference between models before and after aging. Therefore, the relationship (Eq. (5)) between average micropore size and thickness of NbSb2is listed:

    Fig. 2 σ1 distributions for (a) n=0, (b) n=1, (c) n=3, and (d) n=7 (initial thickness of Nb: 25 μm)

    Whereis radius of model,NbSb2is thickness of NbSb2, Δis total volume of micropores,is the ratio of(or) to,is number of micropores at given total micropore volume. As long as micropores’ shape, numbers and positions are certain,NbSb2is expected to decide the extent of aging. Micropores’ positions are considered to uniformly distribute at the CoSb2/NbSb2interface. The number of microporeswas set as 1, 3, 7, and the distributions for each number are shown in Fig. 2(b-d).According to calculation results presented in Fig. A3, the ratio of(or) to() made little difference to stress distribution, which won’t be discussed in the next part.

    The diffusion and reaction process of SKD/Zr joint is similar with SKD/Nb, and the reaction layer is ZrSb2[22]. It can also be analyzed by using multilayer model, and the results are shown in Fig. A4.

    The evolution of the interface can be simplified descripted by 3 parameters of,DBLandNbSb2. The positions of micropores need to be set manually for each different. Whenchanges from 1 to 7, the micropore size decreases from 5.3 μm to 1.2 μm. Furthermore, to eliminate the influence of abnormal stress caused by low-quality elements mesh in much thinner barrier layer and diffusion layer, average first principle stress is applied to evaluate interfacial stress intensity. Fig. 2(a) gives the initial stress distribution of SKD/Nb interface which is the same with the single layer model. The stress concentrates on Nb layer, and the maximum principle stresses of Nb/SKD interface is 2.383 and 1.46 GPa, respectively. Fig. 2(b-d) shows the1distribution in multilayer model with different micropore numbersat the same given Δ. After aging, all stress values with increasingare much higher than the initial ones. For all cases, maximum stresses are found at the CoSb2layers. WhenNbSb2=10 μm, the maximum1are 5.83 GPa for=1 and 7.79 GPa for=7, indicating that the diffusion reaction induce large internal stress. Fig. 3 shows theDBLandNbSb2dependent1at SKD/CoSb2and CoSb2/NbSb2interfaces. The average stress of CoSb2/NbSb2interface is always the largest value for different, indicating that CoSb2/NbSb2is the most unstable interface. In Fig. 3(b, e, h), contour lines are approximately parallel toDBLaxis, which means the thickness of reactive NbSb2plays a dominate role on stress of CoSb2/NbSb2interface.

    Table 1 Relative volume changes for one interface (SKD/Nb and SKD/Zr joints)

    2.3 Tensile test results and validation of models

    SKD/Nb joints are fabricated and aged for tensile test. After fracture, bonding strength are calculated by Eq. (6):

    Wheretis tensile strength,maxis the maximum load,is base area of joints. The results are listed in Table 2. It is obvious that accelerated aging worsens interfacial bonding severely. With theNbSb2grows from 0 to 12 μm, the tensile strength decreases from 9.68 MPa to 1.46 MPa. The decreasing trend of tensile strength is consistent with the increasing trend of calculated stress. Furthermore, after tension, by comparing structures and compositions of the fracture surfaces, location of the weakest interface can be found. All of the aged joints break at CoSb2layer (Fig. 4(d-e)), while the unaged joints break at SKD/Nb interface (Fig. 4(a)). With elevated aging temperature or prolonged aging time, the proportions of CoSb2on fracture surface (SKD side, Fig. 4(d)) increases obviously (Table 2), indicating that the fracture locations tend to be the CoSb2/NbSb2interface. The fracture locations are completely consistent with calculation results. All of the experimental results verify the validity of above simulation model.

    4 Conclusion

    In this study, a single-layer model was established to calculate the interfacial stress in the TE joints with different DBL. It’s found that the DBL materials with small modulus and similarwith SKD can reduce the interfacial stress. Based on the experimental results, a multilayer model considering microstructure evolution is built to quantitively simulate the stress state of the aged TE joints. Large thickness of reaction layers and volume changes can intensify stress at interface remarkably. Both in SKD/Zr and SKD/Nb joints, the biggest first principle stress locates at CoSb2layer. Tensile test results of SKD/ Nb joints fit simulation results well, proving the feasibility of this model to simulate the stress state in multilayer system containing complex microstructures, which is helpful to design the high stability electrode interface structure for SKD TE devices.

    Fig. 3 Variations of average σ1 on each interface with thicknesses of NbSb2 and Nb

    Fig. 4 EDS mappings of (a, d) interfaces and (b, e) fracture surfaces of (a-b) unaged joint and (d-e)sample 650-10d (White line indicating the fracture surface, and white arrow indicating direction of observation in (b) or (d)); Total element data were shown in table (c) for figure (b) and in table (f) for figure (e)

    Table 2 Thicknesses of NbSb2 layer dNbSb2, average sizes of micropores c, tensile strengths σt, maximum calculated stresses Ave-σ1 and the location interfaces, compositions of tensile fracture surface for series of aging SKD/Nb joints

    Supporting materials:

    Supporting materials related to this article can be found at https://doi.org/10.15541/jim20190112.

    [1] BELL L E. Cooling, heating, generating power and recovering waste heat with thermoelectric systems., 2008, 321(5895): 1457–1461.

    [2] CHAMPIER D. Thermoelectric generators: a review of applications., 2017, 140: 167–181.

    [3] CHEN L, BAI S, ZHANG Q. Technologies and applications of thermoelectric devices: current status, challenges and prospects., 2019, 34(3): 279.

    [4] SALES B C, MANDRUS D, WILLIAMS R K. Filled skutterudite antimonides: a new class of thermoelectric materials., 1996, 272: 1325–1328.

    [5] LIU H, SHI X, XU F,Copper ion liquid-like thermoelectrics., 2012, 11(5): 422–425.

    [6] ZHAO L D, LO S H, ZHANG Y,Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals., 2014, 508(7496): 373–377.

    [7] ZHANG Q H, HUANG X Y, BAI S Q,Thermoelectric devices for power generation: recent progress and future challenges., 2016, 18(2): 194–213.

    [8] HE R, SCHIERNING G, NIELSCH K. Thermoelectric devices: a review of devices, architectures, and contact optimization., 2018, 3(4): 1700256.

    [9] ZHANG Q, LIAO J, TANG Y,Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy- loss minimized integration., 2017, 10(4): 956–963.

    [10] YAO Z, QIU P, LI X,Investigation on quick fabrication of n-type filled skutterudites., 2016, 31(12): 1375–1382.

    [11] RAVI V, FIRDOSY S, CAILLAT T,Mechanical properties of thermoelectric skutterudites., 2008, 969: 656–662.

    [12] SALVADOR J R, YANG J, SHI X,Transport and mechanical properties of Yb-filled skutterudites., 2009, 89(19): 1517–1534.

    [13] DAHAL T, KIM H S, GAHLAWAT S,Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4–CoSb12., 2016, 117: 13–22.

    [14] RUAN Z, LIU L, ZHAI P,Residual strength degradation of CoSb3skutterudite compounds under low-cycle fatigue loading., 2012, 41(6): 1487–1492.

    [15] WEN P, ZHU Y, CHEN J,The microstructure and thermoelectric properties of Yb-filled skutterudite Yb0.1Co4Sb12under cyclic thermal loading., 2016, 25(11): 4764–4768.

    [16] ZHAO D, LI X, HE L,Interfacial evolution behavior and reliability evaluation of CoSb(3)/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging., 2009, 477(1/2): 425–431.

    [17] SHI L, HUANG X, GU M,Interfacial structure and stability in Ni/SKD/Ti/Ni skutterudite thermoelements., 2016, 285: 312–317.

    [18] FAN X C, GU M, SHI X,Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo–Ti/Mo–Cu/Ni thermoelectric joints., 2015, 41(6): 7590–7595.

    [19] WOJCIECHOWSKI K T, ZYBALA R, MANIA R. High temperature CoSb3–Cu junctions., 2011, 51(7): 1198–1202.

    [20] GU M, XIA X, LI X,Microstructural evolution of the interfacial layer in the Ti–Al/Yb0.6Co4Sb12thermoelectric joints at high temperature., 2014, 610: 665–670.

    [21] TANG Y S, BAI S Q, REN D D,Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn solder., 2015, 30(3): 256–260.

    [22] GU M, BAI S, WU J,A high throughput strategy to screen interfacial diffusion barrier materials for thermoelectric modules., 2019, 34(7): 1179–1187.

    [23] CHEN L, BAI S, LIU R,Interface stability of skutterudite thermoelectric materials/Ti88Al12., 2018, 33(8): 889–894.

    [24] EL-GENK M S, SABER H H, CAILLAT T,Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples., 2006, 47(2): 174–200.

    [25] HSUEH C H. Thermal stresses in elastic multilayer systems., 2002, 418: 182–188.

    [26] HAN M, HUANG J, CHEN S. The influence of interface morphology on the stress distribution in double-ceramic-layer thermal barrier coatings., 2015, 41(3): 4312–4325.

    [27] LI Y, YANG X Q, ZHAI P C,Thermal stress simulation and optimum design of CoSb3/Bi2Te3thermoelectric unicouples with graded interlayers., 2008, 973: 297–302.

    [28] JIA X, GAO Y. Estimation of thermoelectric and mechanical performances of segmented thermoelectric generators under optimal operating conditions., 2014, 73(1): 335–342.

    [29] GU M, XIA X, HUANG X,Study on the interfacial stability of p-type Ti/CeFeCo4–Sb12thermoelectric joints at high temperature., 2016, 671: 238–244.

    服役條件下方鈷礦基熱電元件的界面應(yīng)力分析

    邵笑1,2, 劉睿恒1,3, 王亮1, 初靖1,2, 白光輝4, 柏勝強1,3, 顧明1, 張麗娜4, 馬偉4, 陳立東1,3

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點實驗室, 上海 201899; 2. 中國科學(xué)院大學(xué), 北京 100049; 3. 中國科學(xué)院大學(xué) 材料科學(xué)與光電技術(shù)學(xué)院, 北京 100049; 4. 空間物理重點實驗室, 北京, 100076)

    熱電器件中, 界面可靠性是影響整體穩(wěn)定和功率輸出的關(guān)鍵因素。對于方鈷礦(SKD)器件, 熱電臂和電極通過擴散阻擋層(DBL)連接。在高溫下, DBL與SKD、電極之間會發(fā)生反應(yīng)并生成復(fù)雜的界面結(jié)構(gòu), 導(dǎo)致界面附近的熱、電、力學(xué)性能發(fā)生變化。本研究根據(jù)實際界面結(jié)構(gòu)建立了包含微觀結(jié)構(gòu)的有限元模型, 并將其用于分析方鈷礦基元件的界面應(yīng)力狀態(tài)。采用單層模型對DBL材料參數(shù)進(jìn)行了篩選, 發(fā)現(xiàn)熱膨脹系數(shù)()和彈性模量()對第一主應(yīng)力有顯著影響。采用包含界面微結(jié)構(gòu)的多層模型定量模擬了不同老化溫度、時間下元件內(nèi)部的應(yīng)力分布, 結(jié)果表明在SKD/Zr和SKD/Nb中, CoSb2反應(yīng)層最為薄弱, 隨著老化時間的延長, 反應(yīng)層的厚度增加, 界面應(yīng)力變大。同時, 元件的拉伸試驗結(jié)果與計算結(jié)果吻合較好, 驗證了模型的準(zhǔn)確性與可行性。本研究為提升SKD/DBL元件的結(jié)構(gòu)穩(wěn)定性提供了指導(dǎo), 同時也為精確模擬多層結(jié)構(gòu)中的應(yīng)力狀態(tài)提供了研究思路。

    熱電元件; 擴散阻擋層; 有限元模型; 拉伸強度

    Supporting information:

    Interfacial Stress Analysis on Skutterudite-based Thermoelectric Joints under Service Conditions

    SHAO Xiao1,2, LIU Rui-Heng1,3, WANG Liang1, CHU Jing1,2, BAI Guang-Hui4, BAI Sheng-Qiang1,3, GU Ming1, ZHANG Li-Na4, MA Wei4, CHEN Li-Dong1,3

    (1. The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4. Science and Technology on Space Physics Laboratory, Beijing 100076, China)

    Table A1 Basic properties including molar mass, density, Young’s modulus, Poisson’s ratio, thermal conductivity, thermal expansions and heat capacity for series of materials

    MaterialSKDCoSb2NbSb2[1]ZrSb2[2]NbZr Molar Mass/(g·mol–1)424.21302.45336.43334.8292.9191.22 Density/(g·cm–3)7.80*8.368.297.628.57–8.456.5–6.4 Young’s modulus/GPa120*160186.1135.7104.8–105.797–57 Poisson’s ratio0.21[3]0.230.210.2430.382–0.3940.34 Thermal conductivity/(W·m–1·K–1)3.04–4.05*6.8–12.5[4]241055–6520–25 Thermal expansion/(×10–6, K–1)10–11[5]14–23[6]8.49.77–7.85.9–6.9 Heat capacity/(J·g–1·K–1)0.22–0.23*0.2470.2220.2230.27–0.450.28–0.34

    * Properties of Nb and Zr come from COMSOL’ s materials database; Heat capacity of CoSb2and NbSb2are calculated by Dulong-Petit law; Data of SKD are obtained by previous experimental results

    Fig. A1 (a) Finite element model of SKD/Nb joint with pores, detailed meshes of (b) NbSb2layer and (c) CoSb2layer

    Fig. A2 Interface structures and line scans of joints

    (a) As-prepared; (b) Aged at 600 ℃ for 5 d; (c) Aged at 600 ℃ for 10 d; (d) Aged at 650 ℃ for 5 d; (e) Aged at 650 ℃ for 10 d

    Fig. A3 Relationships between interface stresses and pores major axis ratios

    Fig. A4 (a) Calculated stress state of SKD/Zr joint with the Zr layer of 25 μm and the micropores numberof 3; (b) Variation of average1on SKD/CoSb2interface with thickness of ZrSb2and Zr (=3); (c) Variation of average1on CoSb2/ZrSb2interface with thickness of ZrSb2and Zr (=3); (d) Variation of average1on ZrSb2/Zr interface with thickness of ZrSb2and Zr (=3)

    [1] FAILAMANI F, BROZ P, MACCIò D,Constitution of the systems {V,Nb,Ta}-Sb and physical properties of di-antimonides {V,Nb,Ta}Sb2., 2015, 65: 94–110.

    [2] TAVASSOLI A, GRYTSIV A, FAILAMANI F,Constitution of the binary M-Sb systems (M=Ti, Zr, Hf) and physical properties of MSb2., 2018, 94: 119–132.

    [3] SALVADOR J R, YANG J, SHI X,Transport and mechanical properties of Yb-filled skutterudites., 2009, 89(19): 1517-1534.

    [4] GOTO Y, MIYAO S, KAMIHARA Y,Electrical/thermal transport and electronic structure of the binary cobalt pnictides CoPn2(Pn=As and Sb)., 2015, 5(6): 067147.

    [5] ZHAO D, LI X, JIANG W,Fabrication of CoSb3/MoCu thermoelectric joint by one-step SPS and evaluation., 2009, 24(3): 545–548.

    [6] B?RNSTEIN L. CoSb2: Crystal Structure, Physical Properties, in: Madelung U R O, Schulz M (Ed.), Non-tetrahedrally Bonded Binary Compounds ii. Berlin: Springer-Verlag, 2000.

    TQ174

    A

    1000-324X(2020)02-0224-07

    10.15541/jim20190112

    2019-03-18;

    2019-04-30

    National Key Research and Development Program of China (2018YFB0703600); National Natural Science Foundation of China (51572282, 51632010, 11572050); Youth Innovation Promotion Association CAS

    SHAO Xiao (1995–), male, Master candidate. E-mail: shaoxiao@student.sic.ac.cn

    邵笑(1995–), 男, 碩士研究生. E-mail: shaoxiao@student.sic.ac.cn

    Corresponding author:LIU Rui-Heng, associate professor. E-mail: liurh@mail.sic.ac.cn

    劉睿恒, 副研究員, E-mail: liurh@mail.sic.ac.cn

    猜你喜歡
    阻擋層熱電元件
    福州熱電兩臺660MW熱電聯(lián)產(chǎn)工程核準(zhǔn)獲批
    專利名稱:銅銦鎵硒薄膜太陽能電池銅鉬合金背電極及其制備方法
    AlCrTaTiZrMo高熵合金氮化物擴散阻擋層的制備與表征
    熱電轉(zhuǎn)換材料的開發(fā)與應(yīng)用
    電力與能源(2017年6期)2017-05-14 06:19:41
    QFN元件的返工指南
    新型熱電制冷裝置的實驗開發(fā)
    在新興產(chǎn)業(yè)看小元件如何發(fā)揮大作用
    寶馬i3高電壓元件介紹(上)
    熱泵在熱電聯(lián)產(chǎn)中的應(yīng)用
    河南科技(2015年15期)2015-03-11 16:25:52
    移去電子阻擋層對雙藍(lán)光波長LED性能的影響
    我的老师免费观看完整版| 国产精品一及| 亚洲熟妇中文字幕五十中出| 国产私拍福利视频在线观看| 亚洲精品美女久久久久99蜜臀| 国产高清视频在线观看网站| 国产成年人精品一区二区| 亚洲精品色激情综合| 欧美黑人精品巨大| 欧美午夜高清在线| av欧美777| 香蕉av资源在线| 国产精品日韩av在线免费观看| 国产欧美日韩精品亚洲av| 亚洲成人精品中文字幕电影| aaaaa片日本免费| 高清毛片免费观看视频网站| xxxwww97欧美| 高清在线国产一区| 精品久久久久久成人av| 最新美女视频免费是黄的| 50天的宝宝边吃奶边哭怎么回事| 99久久99久久久精品蜜桃| 亚洲av五月六月丁香网| 精品一区二区三区视频在线观看免费| 午夜免费成人在线视频| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜一区二区| 午夜亚洲福利在线播放| 丝袜人妻中文字幕| 黄色片一级片一级黄色片| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久免费视频了| 国产伦在线观看视频一区| 精品不卡国产一区二区三区| 999久久久国产精品视频| 亚洲美女视频黄频| 欧美性猛交黑人性爽| 国产黄a三级三级三级人| 久久久水蜜桃国产精品网| АⅤ资源中文在线天堂| 日本免费一区二区三区高清不卡| 国产精品一区二区免费欧美| 99精品在免费线老司机午夜| 欧美 亚洲 国产 日韩一| 欧美成人午夜精品| 给我免费播放毛片高清在线观看| 操出白浆在线播放| 亚洲国产精品久久男人天堂| 99热这里只有是精品50| 国产麻豆成人av免费视频| 亚洲性夜色夜夜综合| 久久人妻福利社区极品人妻图片| 久久亚洲真实| 高清毛片免费观看视频网站| 成人手机av| 国产欧美日韩一区二区精品| 亚洲成a人片在线一区二区| 制服人妻中文乱码| 黑人操中国人逼视频| 夜夜看夜夜爽夜夜摸| 搡老岳熟女国产| 亚洲精品美女久久av网站| 亚洲av第一区精品v没综合| 操出白浆在线播放| 精品欧美国产一区二区三| 五月伊人婷婷丁香| 我的老师免费观看完整版| 91麻豆av在线| 久久人妻av系列| 国产伦在线观看视频一区| 在线播放国产精品三级| 国产精品久久电影中文字幕| 午夜a级毛片| 长腿黑丝高跟| 18禁美女被吸乳视频| 这个男人来自地球电影免费观看| bbb黄色大片| 法律面前人人平等表现在哪些方面| 一区二区三区国产精品乱码| 黄色成人免费大全| 欧美+亚洲+日韩+国产| 久久精品国产清高在天天线| 国内毛片毛片毛片毛片毛片| 久久久久九九精品影院| 免费看日本二区| 国产激情欧美一区二区| 在线a可以看的网站| 美女免费视频网站| a在线观看视频网站| 久久久久久久久免费视频了| 男人舔女人的私密视频| 午夜亚洲福利在线播放| 精品第一国产精品| 日韩精品青青久久久久久| 最近视频中文字幕2019在线8| av片东京热男人的天堂| 日本熟妇午夜| 一进一出好大好爽视频| 三级毛片av免费| 搡老熟女国产l中国老女人| 欧美av亚洲av综合av国产av| 午夜福利在线观看吧| 久久午夜综合久久蜜桃| 男人舔奶头视频| 免费看美女性在线毛片视频| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲av高清不卡| 精品乱码久久久久久99久播| 日本一区二区免费在线视频| 国产精品一区二区三区四区免费观看 | 999精品在线视频| 久久久久久国产a免费观看| 99热6这里只有精品| 久久久久免费精品人妻一区二区| 99久久精品热视频| 女警被强在线播放| 婷婷亚洲欧美| 国产高清视频在线观看网站| 日韩精品免费视频一区二区三区| 国产真实乱freesex| 99久久99久久久精品蜜桃| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片| 淫妇啪啪啪对白视频| 天天躁夜夜躁狠狠躁躁| 久久久久久久精品吃奶| 成人欧美大片| 亚洲成人中文字幕在线播放| 在线观看午夜福利视频| 一区二区三区国产精品乱码| 色噜噜av男人的天堂激情| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 2021天堂中文幕一二区在线观| 最近最新中文字幕大全免费视频| 国内精品久久久久精免费| 97碰自拍视频| 国产精品 国内视频| 制服人妻中文乱码| 999久久久国产精品视频| 欧美日韩乱码在线| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品久久久久久毛片| 国产一区二区在线av高清观看| 两人在一起打扑克的视频| 欧美不卡视频在线免费观看 | 亚洲av中文字字幕乱码综合| 亚洲真实伦在线观看| av视频在线观看入口| 最近最新中文字幕大全电影3| 99久久久亚洲精品蜜臀av| 俄罗斯特黄特色一大片| 国产人伦9x9x在线观看| 午夜福利在线在线| 久久久久国内视频| 一本大道久久a久久精品| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 欧美 亚洲 国产 日韩一| 久久精品国产清高在天天线| 首页视频小说图片口味搜索| 999久久久精品免费观看国产| 精品久久久久久久毛片微露脸| 欧美成人免费av一区二区三区| 中文亚洲av片在线观看爽| 国产午夜精品久久久久久| 国产69精品久久久久777片 | 18禁国产床啪视频网站| 桃色一区二区三区在线观看| 久久久久久免费高清国产稀缺| 欧美性猛交黑人性爽| 欧美日韩亚洲国产一区二区在线观看| 伊人久久大香线蕉亚洲五| 亚洲精品中文字幕一二三四区| 精品久久久久久久久久久久久| 一进一出抽搐gif免费好疼| 香蕉丝袜av| 亚洲第一电影网av| 久久人人精品亚洲av| 色精品久久人妻99蜜桃| 国产午夜精品论理片| 久久天堂一区二区三区四区| 欧美中文日本在线观看视频| 一进一出抽搐gif免费好疼| 久久精品国产亚洲av高清一级| 欧美大码av| 国产精品影院久久| 真人一进一出gif抽搐免费| 好看av亚洲va欧美ⅴa在| 在线永久观看黄色视频| 热99re8久久精品国产| 激情在线观看视频在线高清| a级毛片a级免费在线| 99久久综合精品五月天人人| 亚洲全国av大片| 欧美成人性av电影在线观看| 黄色a级毛片大全视频| 亚洲成人精品中文字幕电影| 后天国语完整版免费观看| 国产午夜精品论理片| 午夜免费观看网址| 欧美一级毛片孕妇| 亚洲 国产 在线| 亚洲国产欧美一区二区综合| 一区二区三区国产精品乱码| 亚洲成人国产一区在线观看| 成熟少妇高潮喷水视频| 日本五十路高清| 又大又爽又粗| 亚洲自偷自拍图片 自拍| 久久久久久久久久黄片| 亚洲av电影不卡..在线观看| 男女午夜视频在线观看| 别揉我奶头~嗯~啊~动态视频| 在线十欧美十亚洲十日本专区| 亚洲精品色激情综合| 亚洲第一欧美日韩一区二区三区| 18禁观看日本| 老鸭窝网址在线观看| 丁香六月欧美| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 人人妻,人人澡人人爽秒播| 在线观看午夜福利视频| 色老头精品视频在线观看| 19禁男女啪啪无遮挡网站| 老司机福利观看| 国产爱豆传媒在线观看 | 日韩欧美 国产精品| 日韩av在线大香蕉| 搡老熟女国产l中国老女人| 88av欧美| 午夜福利成人在线免费观看| 亚洲自拍偷在线| 91国产中文字幕| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 级片在线观看| 一a级毛片在线观看| 黄色片一级片一级黄色片| 三级男女做爰猛烈吃奶摸视频| 露出奶头的视频| 国产又黄又爽又无遮挡在线| 国产精品av视频在线免费观看| 国产麻豆成人av免费视频| 日本成人三级电影网站| 日日干狠狠操夜夜爽| 成人欧美大片| 五月玫瑰六月丁香| 精品久久久久久久久久久久久| 国产三级在线视频| 国产欧美日韩一区二区精品| 亚洲熟女毛片儿| 亚洲精品中文字幕一二三四区| 国产av麻豆久久久久久久| 一区福利在线观看| 99久久综合精品五月天人人| 午夜福利18| av福利片在线| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频 | 久久久久久久久久黄片| 国产av一区在线观看免费| 国产亚洲精品第一综合不卡| 狂野欧美白嫩少妇大欣赏| 国产精品99久久99久久久不卡| 欧美性猛交黑人性爽| 久久热在线av| 一进一出好大好爽视频| 特大巨黑吊av在线直播| 精品久久久久久,| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 久久性视频一级片| 全区人妻精品视频| 国产精品久久视频播放| 特级一级黄色大片| 最新美女视频免费是黄的| 欧美在线黄色| 亚洲欧美精品综合久久99| 好男人电影高清在线观看| 黄片大片在线免费观看| 麻豆成人av在线观看| 欧美成人性av电影在线观看| 欧美日韩国产亚洲二区| 国产午夜精品久久久久久| 精品第一国产精品| 黄片小视频在线播放| 色av中文字幕| 国产成人系列免费观看| 国产成人欧美在线观看| 国产精品久久久久久亚洲av鲁大| 无人区码免费观看不卡| 男人舔女人的私密视频| 一进一出抽搐动态| 日本免费一区二区三区高清不卡| 1024手机看黄色片| 亚洲精品在线美女| 两性夫妻黄色片| 在线观看66精品国产| 久久精品国产亚洲av高清一级| netflix在线观看网站| 久久精品影院6| 两个人看的免费小视频| 国产精品免费一区二区三区在线| 欧美国产日韩亚洲一区| 国内揄拍国产精品人妻在线| 欧美日韩亚洲国产一区二区在线观看| 搡老岳熟女国产| 亚洲免费av在线视频| 久久精品91蜜桃| 男女视频在线观看网站免费 | 亚洲精品久久国产高清桃花| 午夜激情av网站| 男女之事视频高清在线观看| 亚洲国产日韩欧美精品在线观看 | 欧美黄色片欧美黄色片| 日本一本二区三区精品| 五月玫瑰六月丁香| 中文字幕久久专区| 九色成人免费人妻av| 国产又黄又爽又无遮挡在线| 黄片小视频在线播放| www.熟女人妻精品国产| 他把我摸到了高潮在线观看| 欧美国产日韩亚洲一区| 香蕉av资源在线| 国产激情久久老熟女| 久久国产乱子伦精品免费另类| 国产日本99.免费观看| 午夜福利高清视频| 久99久视频精品免费| 日本黄大片高清| 男插女下体视频免费在线播放| 国产精品98久久久久久宅男小说| 午夜福利在线观看吧| 国产黄片美女视频| 久久精品成人免费网站| 国产视频一区二区在线看| 免费人成视频x8x8入口观看| 国内精品一区二区在线观看| 成人午夜高清在线视频| 午夜激情av网站| 免费人成视频x8x8入口观看| 国产精品一区二区精品视频观看| 亚洲精华国产精华精| 欧美激情久久久久久爽电影| 色播亚洲综合网| 国产精品一区二区三区四区免费观看 | 亚洲国产精品sss在线观看| e午夜精品久久久久久久| 亚洲av成人不卡在线观看播放网| 精品无人区乱码1区二区| 成人国产一区最新在线观看| 国内精品久久久久久久电影| 亚洲美女黄片视频| 色综合欧美亚洲国产小说| 国产一区在线观看成人免费| 亚洲av电影不卡..在线观看| 久久精品国产亚洲av香蕉五月| 色综合欧美亚洲国产小说| 啦啦啦免费观看视频1| 精品欧美一区二区三区在线| 国产又色又爽无遮挡免费看| 蜜桃久久精品国产亚洲av| 在线观看一区二区三区| 99热这里只有精品一区 | 黄色视频不卡| 丁香六月欧美| 黄色视频,在线免费观看| 欧美日本视频| 最近视频中文字幕2019在线8| 亚洲午夜理论影院| 久久人妻福利社区极品人妻图片| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看日本一区| 女生性感内裤真人,穿戴方法视频| 啦啦啦韩国在线观看视频| 亚洲精品粉嫩美女一区| 久久久久久久久免费视频了| 免费看a级黄色片| 99国产综合亚洲精品| 国产高清激情床上av| 老鸭窝网址在线观看| 国内精品久久久久精免费| 巨乳人妻的诱惑在线观看| 一本一本综合久久| 不卡av一区二区三区| 波多野结衣高清作品| 人妻久久中文字幕网| 久久婷婷成人综合色麻豆| 99久久无色码亚洲精品果冻| 脱女人内裤的视频| 国产蜜桃级精品一区二区三区| 最新在线观看一区二区三区| 色哟哟哟哟哟哟| 亚洲aⅴ乱码一区二区在线播放 | 婷婷六月久久综合丁香| 夜夜夜夜夜久久久久| 老汉色∧v一级毛片| 亚洲黑人精品在线| 国产熟女xx| 亚洲精品粉嫩美女一区| 欧美大码av| 在线视频色国产色| 99热这里只有精品一区 | 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产欧美网| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 国产精品 国内视频| 午夜两性在线视频| 可以在线观看的亚洲视频| av天堂在线播放| 成年女人毛片免费观看观看9| 亚洲国产看品久久| 欧美大码av| 老汉色av国产亚洲站长工具| 国产成人精品久久二区二区免费| 少妇裸体淫交视频免费看高清 | av在线天堂中文字幕| 国产成+人综合+亚洲专区| 狠狠狠狠99中文字幕| 国产精品免费视频内射| 99在线视频只有这里精品首页| 18禁观看日本| 亚洲第一欧美日韩一区二区三区| 丰满的人妻完整版| 国产激情欧美一区二区| 制服丝袜大香蕉在线| 欧美日韩精品网址| 欧美乱妇无乱码| 亚洲全国av大片| 成人国语在线视频| 日韩欧美一区二区三区在线观看| 久久久精品大字幕| 久久久精品欧美日韩精品| 天天一区二区日本电影三级| 亚洲精品av麻豆狂野| 麻豆国产97在线/欧美 | 两个人视频免费观看高清| 亚洲一区中文字幕在线| 日本一二三区视频观看| www.自偷自拍.com| 老司机午夜十八禁免费视频| 身体一侧抽搐| 制服丝袜大香蕉在线| 亚洲欧美日韩高清专用| 国产黄片美女视频| 日日干狠狠操夜夜爽| 国产午夜精品论理片| 色综合站精品国产| 最近最新中文字幕大全电影3| 色噜噜av男人的天堂激情| 老司机午夜福利在线观看视频| 国产av在哪里看| 校园春色视频在线观看| 五月玫瑰六月丁香| 亚洲一区二区三区不卡视频| 最近最新免费中文字幕在线| 久久婷婷成人综合色麻豆| 国产日本99.免费观看| 在线观看一区二区三区| 精品国产乱子伦一区二区三区| a级毛片a级免费在线| 757午夜福利合集在线观看| 十八禁人妻一区二区| 亚洲全国av大片| 免费看日本二区| 在线永久观看黄色视频| 亚洲av中文字字幕乱码综合| 亚洲aⅴ乱码一区二区在线播放 | 成人手机av| 久久久久亚洲av毛片大全| 成人三级做爰电影| 五月玫瑰六月丁香| 亚洲专区字幕在线| 免费搜索国产男女视频| 亚洲成人久久性| 国产成人欧美在线观看| 亚洲,欧美精品.| 天堂av国产一区二区熟女人妻 | 亚洲国产欧美网| 亚洲aⅴ乱码一区二区在线播放 | 国产成人影院久久av| 又紧又爽又黄一区二区| 亚洲精品国产精品久久久不卡| 极品教师在线免费播放| 淫妇啪啪啪对白视频| 免费av毛片视频| 蜜桃久久精品国产亚洲av| 美女大奶头视频| 国产精品影院久久| 欧美日韩一级在线毛片| 国产精品综合久久久久久久免费| 色综合欧美亚洲国产小说| 欧美黄色片欧美黄色片| 亚洲一区二区三区不卡视频| 国产精品久久视频播放| 国产三级中文精品| 亚洲欧美精品综合久久99| 黄片小视频在线播放| 国产亚洲精品av在线| a级毛片在线看网站| 亚洲成人久久性| 成年女人毛片免费观看观看9| 宅男免费午夜| 亚洲国产日韩欧美精品在线观看 | 久久精品夜夜夜夜夜久久蜜豆 | 少妇被粗大的猛进出69影院| 国产av麻豆久久久久久久| 久久精品国产亚洲av高清一级| 精品国产亚洲在线| 欧美3d第一页| 亚洲成人国产一区在线观看| 欧美乱码精品一区二区三区| 十八禁人妻一区二区| 午夜免费成人在线视频| 中文在线观看免费www的网站 | 国产乱人伦免费视频| 欧美日韩福利视频一区二区| 日韩精品免费视频一区二区三区| 一级毛片精品| 国产精品久久久久久人妻精品电影| 国产高清视频在线播放一区| 亚洲avbb在线观看| 琪琪午夜伦伦电影理论片6080| 成年版毛片免费区| 黄色片一级片一级黄色片| 久久亚洲精品不卡| 99国产精品99久久久久| 国产精品久久视频播放| 精品人妻1区二区| 伦理电影免费视频| 久久中文字幕人妻熟女| 亚洲人成网站在线播放欧美日韩| 久久这里只有精品19| 亚洲美女视频黄频| 亚洲国产欧美网| 日韩高清综合在线| 欧美日本亚洲视频在线播放| 91老司机精品| 国产黄色小视频在线观看| 亚洲电影在线观看av| 首页视频小说图片口味搜索| www.999成人在线观看| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩高清专用| 国产精品香港三级国产av潘金莲| 丁香六月欧美| 免费看日本二区| 亚洲国产欧洲综合997久久,| 免费在线观看视频国产中文字幕亚洲| 久久九九热精品免费| av国产免费在线观看| 91老司机精品| 久久久久久久精品吃奶| 欧美+亚洲+日韩+国产| 精品久久久久久久久久久久久| 舔av片在线| 夜夜看夜夜爽夜夜摸| 老司机午夜福利在线观看视频| 99在线人妻在线中文字幕| 欧美日韩精品网址| 亚洲欧美激情综合另类| 亚洲男人天堂网一区| 少妇熟女aⅴ在线视频| 久久香蕉激情| 久久99热这里只有精品18| 久久久久久久久中文| 黄片大片在线免费观看| 亚洲成人中文字幕在线播放| 国产精品野战在线观看| 亚洲精品久久国产高清桃花| 最好的美女福利视频网| 日韩大尺度精品在线看网址| 99国产精品一区二区蜜桃av| 成人国产一区最新在线观看| 国产aⅴ精品一区二区三区波| 一夜夜www| 少妇粗大呻吟视频| www.熟女人妻精品国产| 日本免费a在线| 一区二区三区高清视频在线| 丰满人妻熟妇乱又伦精品不卡| 国产精品av久久久久免费| 国产午夜福利久久久久久| 校园春色视频在线观看| 亚洲av电影在线进入| 日韩中文字幕欧美一区二区| 少妇的丰满在线观看| 亚洲中文av在线| 在线观看免费视频日本深夜| 久久久久国产一级毛片高清牌| 亚洲精品国产精品久久久不卡| 精品少妇一区二区三区视频日本电影| 国产单亲对白刺激| 久久香蕉国产精品| 全区人妻精品视频| 欧美另类亚洲清纯唯美| 国产精品爽爽va在线观看网站| 精品一区二区三区视频在线观看免费| 婷婷丁香在线五月| 国产一区二区三区在线臀色熟女| 欧美精品亚洲一区二区| 亚洲一区高清亚洲精品| 久久香蕉国产精品| 亚洲熟女毛片儿| 精品久久久久久成人av| 丝袜美腿诱惑在线| 12—13女人毛片做爰片一| 正在播放国产对白刺激|