• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Powder Characteristics on the Rheological Performance of Resin-based Zirconia Suspension for Stereolithography

    2020-03-09 01:01:08LIXingBangZHONGHeZHANGJingXianDUANYuSenJIANGDongLiang
    無機(jī)材料學(xué)報(bào) 2020年2期
    關(guān)鍵詞:興邦氧化鋯光固化

    LI Xing-Bang, ZHONG He, ZHANG Jing-Xian,3, DUAN Yu-Sen, JIANG Dong-Liang

    Powder Characteristics on the Rheological Performance of Resin-based Zirconia Suspension for Stereolithography

    LI Xing-Bang1,2, ZHONG He1, ZHANG Jing-Xian1,3, DUAN Yu-Sen1,2, JIANG Dong-Liang1

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Suzhou Institute of SICCAS (Shanghai Institute of Ceramics, Chinese Academy of Sciences), Taicang 215499, China)

    As for ceramic stereolithography technique, the preparation of suitable resin-based ceramic slurry is of primary importance. In this study, the effects of powder characteristics such as specific surface area, particle size and distribution, particle morphology on the rheological behavior of zirconia resin-based suspensions were investigated intensively. Results show that the specific surface area of the powder is the most important factor affecting slurry viscosity. Choosing low specific surface area and quasi-spherical shaped powder is more likely to obtain low viscosity slurries. In addition, the influence of solid loading on the flow behavior were also studied using Krieger-Dougherty model. Zirconia samples with the relative density of (97.83±0.33)% were obtained after sintering at 1550 ℃. No obvious abnormal grain growth in the microstructure of the sintered body is observed. Results indicate that after the optimization of the processing parameters with the help of rheology characterization, complex-shaped high-quality zirconia parts can be obtained using the stereolithography technique.

    zirconia; ceramic stereolithography; slurry; rheological properties

    Ceramic parts are difficult to be shaped and processed due to their extreme hardness and brittleness. Although the conventional colloidal processing is an ideal way to achieve homogeneous microstructure for the green bodies, the post machining causes high cost in time and money and thus limits its applications. As one of the additive manufacturing techniques, ceramic stereolithography has drawn much attention because it can be used to fabricate high-precision complex-shaped ceramic green components without using mold, as compared with traditional ceramic shaping and processing method. To date, researchers have applied ceramic stereolithography to make piezoceramic transducer array[1-2], cutting tool[3], integrally cored ceramic mold[4], YSZ electrolyte[5-6], and so on.

    To obtain dense ceramic parts with less defects, preparation of suspension with high solid loading, low viscosity is essential. In general, most of the current ceramic stereolithography suspensions can be divided into two groups: aqueous acrylamide-based system and non-aqueous resin-based system, depending on the matrix solutions used for preparing the slurries[7]. For the acrylamide-based system, acrylamide (AM) and,’-methylenebisacrylamide(MBAM) usually act as organic monomer and cross-linker, respectively, similar to ordinary gelcasting[3,8-9]. However, the strength of the cured ceramic green body made from aqueous suspension are much lower than that made from resin-based suspension. On the other hand, for some oxide ceramic particles (such as zirconia, alumina and silica), the existence of many hydroxy groups on surface makes these particles hydrophilic, thus accounts for the difficulty to disperse them efficiently in nonpolar UV-curable resins[10]. Previous researches concerning the impact on the dispersion and rheological behavior of slurries focused on these aspects including the dispersant choice and its optimum addition[10-11], different solid contents and tem-perature[12], the composition and properties of monomers[13], and so on. The research of intrinsic relationship between powder characteristics and dispersion behavior of ceramic/resin suspension is relatively rare, although the ceramic powder is the major part of suspension.

    The present study focuses on the rheological characterization of zirconia dispersions in mildly polar commercially available UV curable resin. The effects of powder characteristics, such as specific surface area, particle size and distribution, morphology as well as solid loading on the slurry rheological behavior were investigated.

    1 Experimental procedure

    1.1 Materials and slurry preparation

    A series of 3mol% yttria-stabilized zirconia (3YSZ) powders used in this work are shown in Table 1 with the information of their respective product name and supplier. All powders were used as received without any purification. A commercially available photocurable resin (SprintRay Inc., USA) was chosen as the organic binder to connect ceramic particles. The resin used in this work is a mixture of one or more acrylate-based oligomers and monomers, and a photoinitiator which can form radicals to initiate the photopolymerization reaction of acrylates under certain radiation with wavelength ranging from 355 nm to 405 nm. Other details about the formulation of the resin has not been revealed by manufacturer to the public yet. VARIQUAT? CC 42 NS (Evonik, Germany) was used to disperse zirconia particles in all non-aqueous slurries with the concentration of 3wt% relative to the powder weight. This dispersant is a polypropoxy quaternary ammonium chloride from the manufacturer’s specifications.

    The ceramic-resin suspensions were prepared by roll milling at a low speed of 60 r/min. The low-speed does not change the particle size and distribution distinctly, as shown in Table 2 with No. 9 powder as the example. Firstly, the moderate amounts of YTZ? milling media (Nikkato Corp., Osaka, Japan) with a diameter of 5 mm were added into polyethylene bottles. The photosensitive resin was then added with the dispersant. The mixture was subsequently roll milled for about 30 min to dissolve the dispersant. Zirconia powders were added and the suspensions were blended for at least one day by roll milling.

    Table 1 Basic information of the raw powders used in this work

    Table 2 Particle size and distribution of No. 9 powder before and after ball milling

    1.2 Characterization

    The specific surface areas and particle size distributions of powders were measured in the absence of dispersant, using ASAP2010 (Micromeritics, USA) and BI-XDC (Brookhaven, USA) respectively. Rheological measurements of the freshly prepared zirconia slurries were conducted on a plate-plate rotational rheometer MCR 301 (Anton Paar, Austria) at 25 ℃. The parallel plate diameter used was 25 mm, and the gap between the plates was 1 mm. The experiments carried out by ascending and descending shear rate ranged from 10–3s–1to 103s–1and from 103s–1to 10–3s–1, with 10 points of data collected at each order of magnitude and duration of 2 s for each testing point. The morphologies of the powders were observed by using scanning electron microscopy (S-4800, Hitachi, Japan).

    2 Results and discussion

    Fig. 1 shows the rheological curves of 35vol% slurries with the same dispersant (VARIQUAT? CC 42 NS, 3wt% on a dry weight basis of ceramic powders), using different powders as the filler respectively. It can be seen that the suspensions show great difference in terms of rheological behavior, which can be attributed to different powders’ characteristics. The particle size distributions and BET specific surface areas of the raw powders are shown in Table 3, in order of viscosity value measured at a low shear rate of 1 s–1corresponding to the dotted line in Fig. 1. The viscosities of slurries prepared from powders with high specific surface area such as No. 1, 3 and 4 are much higher than those with low BET surface area like No. 7, 8 and 9. To the best of the authors’ knowledge, it is difficult to obtain highly concentrated dispersions using powders with high specific surface area. Because this kind of powder need more liquid phase to wet the surface compared with others in the same case, which can cause the relative decrease of free liquid phase amount in suspension and therefore increases the frictional resistance resulting from relative motion between particles. In addition, serious particle agglomeration takes place more easily in the process of slurry preparation using powder with high specific surface area because of its higher surface energy.

    Fig. 1 Viscosity as a function of shear rate for 35vol% dispersions with different powders

    Table 3 Particle size distribution and BET specific surface area of raw powders

    As can be seen in Table 3, No. 4, 8 and 9 powders have similar particle size distributions but different BET specific surface areas, and No. 5, 6 and 7 powders are the exact opposite. Fig. 2(a) shows the viscosites of slurry 4, 8 and 9 as function of shear rate. Slurry 4 shows higher viscosity value in the full shear rates range due to its high specific surface area (17.521 m2/g) compared with slurry 8 and 9, and exhibits shear-thickening behavior above the shear rate of 10 s–1. This phenomenon can be explained by the destruction of slurry original microstructure when the shear rate exceeds a certain value. Shear-thickening behavior should be avoided because it is difficult for the scraper to spread the slurry evenly. As shown in Table 3, the specific surface area of powder 6 (9.236 m2/g) is quite close to that of powder 7 (9.18 m2/g), which can account for the considerable overlap between the rheo-logical curves (Fig. 2(b)). The viscosity of slurry 5 is slightly higher than that of slurry 7 after 1 s–1in spite of their close specific surface areas, which may derive from the morphological differences of two powders. It can be seen in Fig. 3 that powder 7 has the regular near-spherical shape whereas the morphology of powder 5 is more angular. The spherical shapes of powder 7 and 9 decrease the frictional resistance among particles and thus increase the chances of achieving a high solid loading[14-15].

    On the basis of the above analysis, No. 9 powder was chosen as the ceramic filler in the following study. Highly concentrated slurry is in favor of achieving the densification of sintering body, thus it is necessary to study the influence of solid loading on rheological behavior. Fig. 4 shows the rheological curves of slurries with solid loading varying from 35vol% to 44vol%. It can be observed that the higher the solid loading, the higher the slurry viscosity is. The 35vol% and 40vol% suspensions exhibited significant shear-thinning behavior over the whole shear rate ranging from 0.01 s–1to 200 s–1, whereas the flow behavior of 42vol% and 44vol% suspensions change to dilatancy for shear rates higher than approx. 60 and 30 s–1respectively. High solid content results in small interparticle spacing, which may increase flow resistance greatly.

    Fig. 2 Rheological curves of slurries using powders with (a) similar particle size distribution and (b) similar specific surface area

    Fig. 3 SEM images of (a) No. 7 powder, (b) No. 5 powder and (c) No. 9 powder

    Figure 5 shows the relative viscosity at 30 s–1as a function of ceramic volume fraction, for the suspensions with the same dispersant (VARIQUAT? CC 42 NS, 3wt% on a dry weight basis of ceramic powders). The relative viscosity increases slowly as the zirconia loading increases from 0 to 40vol%, however it undergoes a sharp rise above 40vol%. The Krieger-Dougherty model[16]can be used to give a good estimation of this relationship:

    where ηr is the relative viscosity, η is the viscosity of the suspension, η0 is the viscosity of the medium, Ф is the volume fraction of the ceramic powder, Фm is the maximum volume fraction of particles in slurry, and [η] is the intrinsic viscosity of the suspension. In this work, the fitting parameter Фm is 0.528 and the R-square value is 0.9994.

    Fig. 5 Relative viscosity of slurries as a function of solid loading at the shear rate of 30 s–1

    Fig. 6 Optical pictures of green (a) and sintered (b) zirconia parts fabricated by stereolithography

    Fig. 7 SEM image of the fracture surface of the sintered part

    Fig. 6 shows the optical pictures of complex-shaped zirconia green and sintered parts, derived from the suspension with a solid loading of 40vol%. These parts were printed by a DLP-based stereolithography apparatus (ADMAFLEX 130, ADMATEC Europe BV, The Netherlands) and heat-treated at 1550 ℃ with holding time of 1 h. Finally, zirconia samples with the relative density of (97.83±0.33)% were obtained after sintering at 1550 ℃. The sintering shrinkage in length, width and height were (23.15±0.13)%, (23.47±0.02)% and (23.80±0.09)% resp-ectively. No obvious abnormal grain growth in the microstructure of the sintered body was observed in Fig. 7. Results indicated that after the optimization of the processing parameters with the help of rheology characterization, complex-shaped high-quality zirconia parts can be obtained using the stereolithography technique.

    3 Conclusions

    In this work, the rheological behavior of photocurable zirconia resin-based slurries prepared from different powders was studied. Results showed that the powders’ characteristics have a noticeable effect on the slurry rheology, and the specific surface area of the powder is the major factor. The suspension containing the selected TZ-3YSE powder exhibits the lowest viscosity at shear rates ranging from 0.1 s–1to 10 s–1, owing to its low specific surface area and spherical morphology. The Krieger- Dougherty model can be used to explain the relationship between solid loading and slurry viscosity. Results shown in this study are applicable for preparing high solid loading, low viscosity zirconia or other structural ceramic photosensitive slurries used for stereolithography applications.

    [1] CHEN WEI-CEN, WANG FANG-FANG, YAN KANG,. Micro- stereolithography of KNN-based lead-free piezoceramics., 2019, 45(4): 4880–4885.

    [2] CHEN YAN, BAO XIU-LAN, WONG CHI-MAN,. PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application., 2018, 44(18): 22725–22730.

    [3] ZHOU MAO-PENG, LIU WEI, WU HAI-DONG,. Preparation of a defect-free alumina cutting tooladditive manufacturingbased on stereolithography–optimization of the drying and debinding processes., 2016, 42(10): 11598–11602.

    [4] BAE CHANG-JUN, KIM DANIEL, HALLORAN JOHN W. Mechanical and kinetic studies on the refractory fused silica of integrally cored ceramic mold fabricated by additive manufacturing., 2019, 39(2): 618–623.

    [5] MASCIANDARO S, TORRELL M, LEONE P,. Three- di-mensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications., 2019, 39(1): 9–16.

    [6] WEI LU-YANG, ZHANG JIN-JIN, YU FANG-YONG,. A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique., 2019, 44(12): 6182–6191.

    [7] ZHOU WEI-ZHAO, LI DI-CHEN, WANG HUI. A novel aqueous ceramic suspension for ceramic stereolithography., 2010, 16(1): 29–35.

    [8] WU HAI-DONG, CHENG YAN-LING, LIU WEI,. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography., 2016, 42(15): 17290–17294.

    [9] WU HAI-DONG, LIU WEI, HE RONG-XUAN,. Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing., 2017, 43(1): 968–972.

    [10] ZHANG SHUAI, SHA NA, ZHAO ZHE. Surface modification of-Al2O3with dicarboxylic acids for the preparation of UV-curable ceramic suspensions., 2017, 37(4): 1607–1616.

    [11] SONG SE-YEON, PARK MIN-SOO, LEE JUNG-WOO,. A study on the rheological and mechanical properties of photo-curable ceramic/polymer composites with different silane coupling agents for SLA 3D printing technology., 2018, 8(2): 93–104.

    [12] WOZNIAK MACIEJ, DE HAZAN YORAM, GRAULE THOMAS,. Rheology of UV curable colloidal silica dispersions for rapid prototyping applications., 2011, 31(13): 2221–2229.

    [13] ADAKE CHANDRASHEKHAR V, BHARGAVA PARAG, GANDHI PRASANNA. Effect of surfactant on dispersion of alumina in pho-topolymerizable monomers and their UV curing behavior for microstereolithography., 2015, 41(4): 5301–5308.

    [14] ZHANG KE-QIANG, XIE CHEN, WANG GANG,. High solid loading, low viscosity photosensitive Al2O3slurry for stereolithography based additive manufacturing., 2019, 45(1): 203–208.

    [15] WU XIANG-QUAN, LIAN QIN, LI DI-CHEN,. Influence of boundary masks on dimensions and surface roughness using segmented exposure in ceramic 3D printing., 2019, 45(3): 3687–3697.

    [16] KRIEGER IRVIN M, DOUGHERTY THOMAS J. A mechanism for non-newtonian flow in suspensions of rigid spheres., 1959, 3(1): 137–152.

    粉體性質(zhì)對(duì)樹脂基氧化鋯光固化漿料流變行為的影響

    李興邦1,2, 仲鶴1, 張景賢1,3, 段于森1,2, 江東亮1

    (1. 中國(guó)科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國(guó)科學(xué)院大學(xué), 北京 100049; 3. 中國(guó)科學(xué)院 上海硅酸鹽研究所, 蘇州研究院, 太倉(cāng) 215499)

    合適的樹脂基陶瓷漿料的制備對(duì)陶瓷光固化成型技術(shù)而言至關(guān)重要。本文研究了氧化鋯粉體的性質(zhì), 包括比表面積、粒度與粒徑分布、顆粒形貌等因素對(duì)樹脂基漿料流變行為的影響。研究發(fā)現(xiàn): 粉體的比表面積是影響漿料粘度的最主要因素。選擇低比表面積、形貌接近球形的粉體更容易制備出低粘度的漿料。利用Krieger-Dougherty模型研究了粉體固含量對(duì)漿料流變行為的影響。在1550 ℃燒結(jié)得到了相對(duì)密度為(97.83±0.33)%的氧化鋯陶瓷, 未發(fā)現(xiàn)明顯的晶粒異常長(zhǎng)大, 表明基于流變學(xué)表征方法對(duì)漿料制備參數(shù)進(jìn)行優(yōu)化后, 采用光固化技術(shù)可以制備出復(fù)雜結(jié)構(gòu)、高質(zhì)量的氧化鋯陶瓷。

    氧化鋯; 陶瓷光固化成型; 漿料; 流變性質(zhì)

    TQ174

    A

    2019-03-01;

    2019-04-15

    National Key Research and Development Program of China (2017YFB0310400); National Natural Science Foundation of China (51572277, 51702340); Shanghai Sailing Program (17YF1428800); Natural Science Foundation of Shanghai (17ZR1434800)

    LI Xing-Bang (1994–), male, Master candidate. E-mail: 455104949@qq.com

    李興邦(1994–), 男, 碩士研究生. E-mail: 455104949@qq.com

    ZHANG Jing-Xian, professor. E-mail: jxzhang@mail.sic.ac.cn

    張景賢, 研究員. E-mail: jxzhang@mail.sic.ac.cn

    1000-324X(2020)02-0231-05

    10.15541/jim20190091

    猜你喜歡
    興邦氧化鋯光固化
    沉痛悼念石興邦先生
    考古與文物(2022年6期)2022-08-04 01:19:14
    光固化3D打印中光敏樹脂的研究進(jìn)展
    山東陶瓷(2021年5期)2022-01-17 02:35:46
    Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state
    在乳牙齲齒充填中應(yīng)用光固化復(fù)合樹脂、粘接劑結(jié)合治療臨床療效觀察
    百十初心不忘 樹人扶農(nóng)興邦
    ——華南農(nóng)業(yè)大學(xué)建校110周年歷史回眸
    百十初心不忘 樹人扶農(nóng)興邦
    ——華南農(nóng)業(yè)大學(xué)建校110周年輝煌成就
    光固化3D打印軟組織材料的性能研究進(jìn)展
    氧化鋯陶瓷及其制備方法
    佛山陶瓷(2017年7期)2017-09-06 06:17:00
    氧化鋯的表面處理與粘接
    光固化含氟丙烯酸酯的制備及應(yīng)用研究
    夜夜爽夜夜爽视频| 美女大奶头视频| 两个人的视频大全免费| 少妇熟女欧美另类| 国产在线一区二区三区精 | 亚洲天堂国产精品一区在线| 国产探花在线观看一区二区| 99久久精品一区二区三区| 不卡视频在线观看欧美| 国产精品综合久久久久久久免费| 热99在线观看视频| 久久久精品欧美日韩精品| 国产黄色小视频在线观看| 亚洲内射少妇av| 激情 狠狠 欧美| 免费搜索国产男女视频| 在线免费观看不下载黄p国产| 青春草国产在线视频| 欧美高清性xxxxhd video| 亚洲精品一区蜜桃| 91狼人影院| 黄色一级大片看看| 蜜臀久久99精品久久宅男| 精品国产三级普通话版| 在线免费观看的www视频| 一级毛片电影观看 | 亚洲成人久久爱视频| 欧美3d第一页| 女的被弄到高潮叫床怎么办| 久久久久久久久中文| 免费av观看视频| 岛国毛片在线播放| 欧美又色又爽又黄视频| 久久精品国产自在天天线| 99在线人妻在线中文字幕| 日本免费a在线| 亚洲精品国产av成人精品| 99久久人妻综合| 黄色配什么色好看| 国产精品福利在线免费观看| 欧美性感艳星| 欧美成人免费av一区二区三区| 麻豆成人av视频| 国产精品国产三级专区第一集| 亚洲欧洲日产国产| 国产69精品久久久久777片| 亚洲人成网站在线观看播放| 国产女主播在线喷水免费视频网站 | 大又大粗又爽又黄少妇毛片口| 日本黄色视频三级网站网址| 精品一区二区免费观看| 亚洲高清免费不卡视频| 丝袜喷水一区| 亚洲国产高清在线一区二区三| 91午夜精品亚洲一区二区三区| 免费播放大片免费观看视频在线观看 | 亚洲伊人久久精品综合 | or卡值多少钱| 99九九线精品视频在线观看视频| 性插视频无遮挡在线免费观看| 久久久久网色| 人妻系列 视频| 蜜桃久久精品国产亚洲av| 蜜桃亚洲精品一区二区三区| 久久久精品大字幕| 夫妻性生交免费视频一级片| 日产精品乱码卡一卡2卡三| 美女黄网站色视频| 国产高清有码在线观看视频| 日本欧美国产在线视频| 简卡轻食公司| 国产日韩欧美在线精品| 熟妇人妻久久中文字幕3abv| 婷婷色麻豆天堂久久 | 亚洲人与动物交配视频| 晚上一个人看的免费电影| 韩国高清视频一区二区三区| 国产伦精品一区二区三区四那| 伦理电影大哥的女人| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 亚洲一级一片aⅴ在线观看| 国产av不卡久久| 少妇裸体淫交视频免费看高清| 麻豆成人午夜福利视频| 国产av一区在线观看免费| 国产成人午夜福利电影在线观看| 国产午夜福利久久久久久| 国产一区二区在线观看日韩| 激情 狠狠 欧美| 一本一本综合久久| 99久久成人亚洲精品观看| 成人欧美大片| 亚洲天堂国产精品一区在线| 99久久成人亚洲精品观看| 少妇人妻精品综合一区二区| 最近手机中文字幕大全| 18禁在线播放成人免费| 亚洲av福利一区| 精品久久久久久久久亚洲| 2022亚洲国产成人精品| 日韩欧美 国产精品| 色网站视频免费| 黄色一级大片看看| 久久鲁丝午夜福利片| 午夜免费男女啪啪视频观看| 日韩在线高清观看一区二区三区| 午夜久久久久精精品| 26uuu在线亚洲综合色| 亚洲精品日韩在线中文字幕| 三级国产精品欧美在线观看| 日韩视频在线欧美| 99久久成人亚洲精品观看| 九九爱精品视频在线观看| 午夜久久久久精精品| 久久久久久久久久成人| 午夜福利高清视频| 国国产精品蜜臀av免费| 午夜爱爱视频在线播放| 国产黄色视频一区二区在线观看 | 亚洲不卡免费看| 国产精品人妻久久久久久| 亚洲电影在线观看av| 国产不卡一卡二| 亚洲av电影在线观看一区二区三区 | 99久久精品热视频| 免费搜索国产男女视频| 特大巨黑吊av在线直播| 精品久久久久久成人av| 人妻制服诱惑在线中文字幕| 久久99精品国语久久久| 九色成人免费人妻av| 亚洲精品国产av成人精品| 亚洲成人久久爱视频| 午夜久久久久精精品| 国产精品.久久久| 神马国产精品三级电影在线观看| 国产亚洲一区二区精品| 中文字幕人妻熟人妻熟丝袜美| 中文字幕久久专区| 99视频精品全部免费 在线| 91精品国产九色| 亚洲在线观看片| 精品人妻一区二区三区麻豆| 三级经典国产精品| 亚洲欧美成人综合另类久久久 | 国产91av在线免费观看| 国产探花极品一区二区| 国产一区二区三区av在线| 一级毛片电影观看 | 免费人成在线观看视频色| 网址你懂的国产日韩在线| 亚洲欧美精品专区久久| 国国产精品蜜臀av免费| 日韩一区二区三区影片| 成人二区视频| 91精品一卡2卡3卡4卡| 成人毛片a级毛片在线播放| 丰满人妻一区二区三区视频av| 69av精品久久久久久| 女人被狂操c到高潮| 欧美变态另类bdsm刘玥| 欧美日本亚洲视频在线播放| 国产亚洲午夜精品一区二区久久 | 久久久久久久国产电影| 欧美最新免费一区二区三区| 国产精品久久久久久精品电影| 国产淫片久久久久久久久| 国产精品久久久久久久电影| 日本与韩国留学比较| 精品久久久久久久久av| 99久久人妻综合| 亚洲精品aⅴ在线观看| 欧美性感艳星| 丝袜喷水一区| 日韩中字成人| 久99久视频精品免费| 免费看光身美女| 久久久久久伊人网av| 简卡轻食公司| 亚洲成人av在线免费| 色综合站精品国产| 99久久成人亚洲精品观看| 日韩人妻高清精品专区| 日日干狠狠操夜夜爽| 久久人妻av系列| 亚洲精品自拍成人| 日韩欧美精品免费久久| 不卡视频在线观看欧美| 五月玫瑰六月丁香| 欧美成人午夜免费资源| 日日啪夜夜撸| 好男人视频免费观看在线| 尤物成人国产欧美一区二区三区| 99热精品在线国产| 乱系列少妇在线播放| 亚洲不卡免费看| 97超碰精品成人国产| 人体艺术视频欧美日本| 精品久久久久久久久亚洲| 乱人视频在线观看| 水蜜桃什么品种好| 久久精品熟女亚洲av麻豆精品 | 午夜激情欧美在线| 老女人水多毛片| 久久鲁丝午夜福利片| 久久精品国产自在天天线| 美女xxoo啪啪120秒动态图| 午夜福利视频1000在线观看| 久久精品国产亚洲av天美| 白带黄色成豆腐渣| av又黄又爽大尺度在线免费看 | 22中文网久久字幕| 亚洲国产最新在线播放| 国产探花极品一区二区| 91久久精品国产一区二区三区| 精品久久久久久成人av| 中文欧美无线码| 2021少妇久久久久久久久久久| 国产午夜精品论理片| 国产精品一及| 九九爱精品视频在线观看| 又粗又爽又猛毛片免费看| 男女视频在线观看网站免费| 亚洲国产精品国产精品| 中文字幕精品亚洲无线码一区| 久久6这里有精品| 国语自产精品视频在线第100页| 麻豆成人av视频| 国产三级中文精品| 精品人妻视频免费看| 国产极品精品免费视频能看的| 国产高清三级在线| 国产精品99久久久久久久久| 欧美日韩综合久久久久久| 国产精品久久久久久久电影| 一级黄色大片毛片| 亚洲国产高清在线一区二区三| 天堂中文最新版在线下载 | or卡值多少钱| 亚洲四区av| 亚洲欧美精品综合久久99| 赤兔流量卡办理| 两个人的视频大全免费| 国产伦精品一区二区三区视频9| 中文字幕熟女人妻在线| 美女xxoo啪啪120秒动态图| 99国产精品一区二区蜜桃av| 精品欧美国产一区二区三| 欧美丝袜亚洲另类| 久99久视频精品免费| 中文字幕免费在线视频6| 白带黄色成豆腐渣| 又粗又硬又长又爽又黄的视频| 人妻系列 视频| 国产探花极品一区二区| 亚洲乱码一区二区免费版| 精品久久久久久久久亚洲| 亚洲18禁久久av| 熟女人妻精品中文字幕| 精品熟女少妇av免费看| 69人妻影院| 免费人成在线观看视频色| 国产不卡一卡二| 久久人人爽人人片av| 全区人妻精品视频| 91精品伊人久久大香线蕉| 国产精品电影一区二区三区| 色吧在线观看| 蜜桃久久精品国产亚洲av| 亚洲精品乱码久久久久久按摩| 九九久久精品国产亚洲av麻豆| www.色视频.com| 亚洲国产欧美在线一区| 99久久无色码亚洲精品果冻| 久久精品夜色国产| 午夜福利在线观看免费完整高清在| 一个人免费在线观看电影| 天堂网av新在线| 在线观看一区二区三区| 成人鲁丝片一二三区免费| 午夜福利高清视频| 亚洲最大成人手机在线| 色网站视频免费| 在线观看美女被高潮喷水网站| 午夜精品一区二区三区免费看| 久久久久精品久久久久真实原创| 日本黄色片子视频| 汤姆久久久久久久影院中文字幕 | 国产不卡一卡二| 精品久久久久久久久亚洲| 我的女老师完整版在线观看| 免费看美女性在线毛片视频| 午夜精品在线福利| 久久精品国产鲁丝片午夜精品| 两性午夜刺激爽爽歪歪视频在线观看| 91午夜精品亚洲一区二区三区| 99久久精品热视频| 91在线精品国自产拍蜜月| 欧美丝袜亚洲另类| 又黄又爽又刺激的免费视频.| 精品99又大又爽又粗少妇毛片| 国产伦在线观看视频一区| 人人妻人人澡欧美一区二区| 淫秽高清视频在线观看| 亚洲人与动物交配视频| 久久久久久久久中文| 色吧在线观看| 国产黄色视频一区二区在线观看 | 99热精品在线国产| 国产综合懂色| 欧美激情国产日韩精品一区| 91aial.com中文字幕在线观看| 国产亚洲精品久久久com| 日韩国内少妇激情av| 嫩草影院精品99| 日韩视频在线欧美| 日韩三级伦理在线观看| 乱码一卡2卡4卡精品| 国产不卡一卡二| 干丝袜人妻中文字幕| 天天躁夜夜躁狠狠久久av| 国产精品熟女久久久久浪| 国产黄片美女视频| 色播亚洲综合网| 91狼人影院| 床上黄色一级片| 真实男女啪啪啪动态图| 高清日韩中文字幕在线| 别揉我奶头 嗯啊视频| 国产 一区精品| 日韩 亚洲 欧美在线| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 国产精品国产高清国产av| 久久综合国产亚洲精品| 内射极品少妇av片p| 最近视频中文字幕2019在线8| 午夜视频国产福利| 久久久精品94久久精品| av专区在线播放| 亚洲av免费在线观看| 国产乱人偷精品视频| 少妇人妻一区二区三区视频| 麻豆av噜噜一区二区三区| 纵有疾风起免费观看全集完整版 | 亚洲精品影视一区二区三区av| 一个人看视频在线观看www免费| 嫩草影院精品99| av专区在线播放| 国产精品久久久久久久电影| 国产69精品久久久久777片| 搞女人的毛片| 久久久久精品久久久久真实原创| 国产精华一区二区三区| 中文字幕av在线有码专区| 日韩欧美精品v在线| 午夜免费激情av| 国产午夜精品论理片| 国产精品一及| 非洲黑人性xxxx精品又粗又长| 国内少妇人妻偷人精品xxx网站| 男人和女人高潮做爰伦理| 在线天堂最新版资源| videossex国产| 一级黄色大片毛片| 国产亚洲av嫩草精品影院| 欧美日韩一区二区视频在线观看视频在线 | videossex国产| 看十八女毛片水多多多| 狠狠狠狠99中文字幕| 91精品一卡2卡3卡4卡| 亚洲最大成人av| 久久这里有精品视频免费| 久久人人爽人人爽人人片va| 可以在线观看毛片的网站| АⅤ资源中文在线天堂| 成人午夜精彩视频在线观看| 日韩强制内射视频| 久久午夜福利片| 久久久久久久久久久免费av| 亚洲国产最新在线播放| 亚洲国产高清在线一区二区三| 春色校园在线视频观看| 寂寞人妻少妇视频99o| 久久国内精品自在自线图片| 成年女人看的毛片在线观看| 亚洲欧美中文字幕日韩二区| 中文字幕av成人在线电影| 熟女人妻精品中文字幕| 自拍偷自拍亚洲精品老妇| 超碰97精品在线观看| 欧美日韩在线观看h| 干丝袜人妻中文字幕| 97人妻精品一区二区三区麻豆| 超碰97精品在线观看| 亚洲精品成人久久久久久| 久热久热在线精品观看| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 久久国产乱子免费精品| 午夜精品国产一区二区电影 | 伦理电影大哥的女人| 亚洲国产精品成人综合色| 成年版毛片免费区| 性色avwww在线观看| 亚洲中文字幕日韩| 国语对白做爰xxxⅹ性视频网站| 亚洲第一区二区三区不卡| 国产淫片久久久久久久久| 中文天堂在线官网| 成人性生交大片免费视频hd| 波多野结衣高清无吗| 成人鲁丝片一二三区免费| 黄片wwwwww| 内地一区二区视频在线| 色吧在线观看| 亚洲av中文字字幕乱码综合| 日本免费a在线| 少妇熟女aⅴ在线视频| 日韩av在线大香蕉| 成年女人看的毛片在线观看| 三级毛片av免费| 日本五十路高清| 成人二区视频| 国内揄拍国产精品人妻在线| 亚洲在线自拍视频| 中文字幕熟女人妻在线| 精品酒店卫生间| 18禁在线无遮挡免费观看视频| 99视频精品全部免费 在线| 国产精华一区二区三区| 男人舔奶头视频| 欧美3d第一页| 搡女人真爽免费视频火全软件| 国产乱人偷精品视频| 亚洲熟妇中文字幕五十中出| 国产又色又爽无遮挡免| 日本av手机在线免费观看| 少妇高潮的动态图| 国产亚洲av嫩草精品影院| 国产乱人视频| 晚上一个人看的免费电影| 日韩制服骚丝袜av| 欧美一级a爱片免费观看看| 淫秽高清视频在线观看| 国产精品一区二区三区四区免费观看| 午夜老司机福利剧场| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美中文字幕日韩二区| 少妇人妻一区二区三区视频| 中文字幕人妻熟人妻熟丝袜美| 国产成年人精品一区二区| 国产欧美日韩精品一区二区| 亚洲欧美日韩东京热| 舔av片在线| 欧美日韩国产亚洲二区| 日韩av在线大香蕉| 三级国产精品欧美在线观看| 在线免费观看不下载黄p国产| 日产精品乱码卡一卡2卡三| 日本黄色片子视频| 久久99精品国语久久久| 中文乱码字字幕精品一区二区三区 | 国产v大片淫在线免费观看| 只有这里有精品99| 精品无人区乱码1区二区| 三级国产精品欧美在线观看| 欧美成人a在线观看| 亚洲在久久综合| 国产亚洲最大av| 99久久成人亚洲精品观看| 国产 一区精品| 国产精品一二三区在线看| 纵有疾风起免费观看全集完整版 | 久久久精品94久久精品| 内地一区二区视频在线| 欧美激情国产日韩精品一区| 99久久九九国产精品国产免费| 91aial.com中文字幕在线观看| 国产亚洲av嫩草精品影院| 色网站视频免费| 免费观看性生交大片5| 国产精品人妻久久久久久| 久久99蜜桃精品久久| 日韩精品有码人妻一区| 麻豆乱淫一区二区| 永久网站在线| 性插视频无遮挡在线免费观看| 97超碰精品成人国产| 天堂√8在线中文| 尤物成人国产欧美一区二区三区| 亚洲av成人精品一二三区| 欧美3d第一页| 中文欧美无线码| 51国产日韩欧美| 九色成人免费人妻av| 在线播放无遮挡| 亚洲国产精品成人综合色| 麻豆久久精品国产亚洲av| 韩国av在线不卡| 少妇被粗大猛烈的视频| 国产亚洲av片在线观看秒播厂 | 久久久久久伊人网av| 秋霞伦理黄片| 国产高清有码在线观看视频| 欧美三级亚洲精品| 建设人人有责人人尽责人人享有的 | 日本av手机在线免费观看| 在线观看66精品国产| 成人性生交大片免费视频hd| 色噜噜av男人的天堂激情| av黄色大香蕉| a级毛片免费高清观看在线播放| 九九热线精品视视频播放| 看免费成人av毛片| 日韩欧美精品免费久久| ponron亚洲| 中文字幕精品亚洲无线码一区| 男女啪啪激烈高潮av片| 久99久视频精品免费| 国产精品一区二区性色av| 国产老妇伦熟女老妇高清| 欧美日韩综合久久久久久| 一区二区三区免费毛片| 看免费成人av毛片| 亚洲av熟女| 少妇高潮的动态图| 午夜老司机福利剧场| 在线免费观看不下载黄p国产| 日本免费在线观看一区| 免费观看的影片在线观看| 在线天堂最新版资源| 国产在视频线精品| 国产老妇女一区| 亚洲va在线va天堂va国产| 熟女电影av网| 国内精品宾馆在线| 纵有疾风起免费观看全集完整版 | 国产白丝娇喘喷水9色精品| 一个人观看的视频www高清免费观看| 久久久久久久久久久免费av| 国模一区二区三区四区视频| 天堂中文最新版在线下载 | 精品熟女少妇av免费看| 老司机影院成人| 久久热精品热| 欧美3d第一页| av国产免费在线观看| 欧美高清性xxxxhd video| 国产伦精品一区二区三区视频9| 又黄又爽又刺激的免费视频.| 97超视频在线观看视频| 久久久精品大字幕| 亚洲国产欧美人成| 亚洲国产日韩欧美精品在线观看| 亚洲av一区综合| 国产精品国产高清国产av| 日韩高清综合在线| 国产精品一区二区性色av| 麻豆乱淫一区二区| 国产一区二区三区av在线| 亚洲国产精品久久男人天堂| 亚洲综合色惰| 男女那种视频在线观看| 国产精品人妻久久久影院| 国产探花在线观看一区二区| 青春草亚洲视频在线观看| 欧美人与善性xxx| 99国产精品一区二区蜜桃av| 国产老妇女一区| 国产精品美女特级片免费视频播放器| 男人舔奶头视频| 如何舔出高潮| 久久精品久久久久久噜噜老黄 | 99热网站在线观看| 十八禁国产超污无遮挡网站| 天堂√8在线中文| 高清视频免费观看一区二区 | 亚洲精品国产av成人精品| 三级国产精品欧美在线观看| 久久久久性生活片| 日韩中字成人| 国产 一区 欧美 日韩| 亚州av有码| 人人妻人人看人人澡| 免费观看人在逋| 国产老妇女一区| 1024手机看黄色片| 91久久精品电影网| 一本一本综合久久| 久久欧美精品欧美久久欧美| 久久精品久久久久久久性| 婷婷六月久久综合丁香| 欧美潮喷喷水| 欧美一区二区亚洲| 黄色日韩在线| 99在线视频只有这里精品首页| 亚洲精品,欧美精品| 成年av动漫网址| 最近最新中文字幕免费大全7| 亚洲av中文字字幕乱码综合| 免费观看性生交大片5| 日韩在线高清观看一区二区三区| 青春草亚洲视频在线观看| h日本视频在线播放| 天美传媒精品一区二区| 精品国产一区二区三区久久久樱花 | 国产私拍福利视频在线观看| 可以在线观看毛片的网站| 99九九线精品视频在线观看视频| 国产精品国产高清国产av| 久久久久九九精品影院| 亚洲精品日韩在线中文字幕| 免费看日本二区|