• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Preconditioner for Solving Weighted Toeplitz Least Squares Problems

    2020-01-10 05:49:04CHENGGuo程國(guó)LIJicheng李繼成
    應(yīng)用數(shù)學(xué) 2020年1期

    CHENG Guo(程國(guó)),LI Jicheng(李繼成)

    ( 1.School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an 710049,China; 2.School of Mathematics and Computer Application,Shangluo University,Shangluo 726000,China)

    Abstract: In this paper,we study a fast algorithm for solving the weighted Toeplitz least squares problems.Firstly,on the basis of the augmented linear system,we develop a new SIMPLE-like Preconditioner for solving such linear systems.Secondly,the convergence of the iterative method is studied,and used to prove that all eigenvalues of the preconditioned matrix are real and nonunit eigenvalues are located in a positive interval.Again,we also study the eigenvector distribution and the degree of the minimal polynomial of the preconditioned matrix.Finally,related numerical experiments are carried out to show that the new preconditioner is more effective than some existing preconditioners.

    Key words: Least squares problem; Weighted Toeplitz matrix; Preconditioner; Hermitian and skew-Hermitian splitting

    1.Introduction

    In this paper,we consider the following weighted Toeplitz least squares problems

    where the rectangular coefficient matrixAand the right-hand sidebare of the forms

    HereK ∈Rm×n(m ≥n)is a Toeplitz matrix of full column rank,D ∈Rm×mis a symmetric positive definite weighting matrix,Iis an identity matrix,f ∈Rmis a given right-hand side,andμ>0 is a regularization parameter[1].

    The weighted Toeplitz least squares problems (1.1)arise in a large number of scientific and engineering applications,such as image reconstruction[2],image restoration with colored noise[3],and nonlinear image restoration[1].Owing to the problem size can be large scale and the spatially variant property of weighted Toeplitz matricesDKmay result in its displacement rank[4]to be very large,efficient preconditioners need to be further investigated to develop fast iterative methods for solving such weighted Toeplitz regularized least squares problem[5?7].

    LetW=(DTD)?1andy=DTD(f?Kx).Then,the system (1.1)is equivalently transformed into the following generalized saddle point problem[5?7]

    Clearly,both (1.1)and the augmented system (1.2)are equivalent to the following normal equation

    Especially,the augmented system (1.2)can be rewritten as an equivalent nonsymmetric generalized saddle point problem form

    Many efficient approaches have been studied in the past decades for solving the following generalized saddle point problem

    see [8]for a comprehensive survey.As we know,the traditional methods are direct methods,stationary iteration methods,null space methods,the preconditioned Krylov subspace methods and so forth,but efficient preconditioners play a key role in applying Krylov subspace methods.Some well-known preconditioners have been presented,such as block diagonal preconditioners[9?10],block triangular preconditioners[11?13],constraint preconditioners[14?16],symmetric indefinite preconditioners[17?18],Hermitian and skew-Hermitian splitting (HSS)preconditioners[19?23],and so on.

    Obviously,(1.4)is a special case of (1.5),where the Hermitian and skew-Hermitian splitting (HSS)of the coefficient matrixAis

    AsWis symmetric positive definite andμ >0,His a symmetric positive definite matrix.This meansAitself is positive definite and all the eigenvalues ofAhave positive real part[23].Therefore,Aallows the following matrix splitting

    whereα >0 is a given constant andIis the identity matrix.Similar to the alternating iteration method,a splitting iteration method was derived as follows

    From the above iteration scheme,the HSS preconditioner is then given by

    in whichαI+His symmetric positive definite andαI+Sis nonsingular.Since the factorhas no effect on the preconditioned system,we usually useto replaceThen,we get the following HSS preconditioner[5]

    Based on (1.8),LIAO and ZHANG[7]discussed a generalized new variant HSS preconditioner(GNHSS)

    where

    andα,β >0.Ifα=β,the GNHSS preconditioner reduces to the NHSS preconditioner[6].In[24-25],a class of SIMPLE-like (SL)preconditioners

    is presented for handling (1.5)withC=0.Hereα>0 andQis an approximation ofA.

    Motivated by the construction of SIMPLE-like preconditioner for the saddle point problem (1.5),similar to the SL preconditioner,we will introduce a preconditioned matrixQin this paper and propose a new SIMPLE-like precontioner (NSL)for solving (1.4).Convergence conditions of the corresponding NSL iteration method and spectral properties of the preconditioned matrix are discussed.Numerical experiments are also given to show that the preconditioner is efficient and robust.

    2.A New SIMPLE-like Preconditioner

    To get a closer approximation to the coefficient matrixA,we construct the following preconditioner

    whereQ ∈Rm×mis a positive definite matrix.In fact,the so-called NSL preconditioner can be also induced by the following matrix splitting

    which results in the following NSL iteration method.

    Method 2.1Initializeu(0)=(y(0),x(0))T∈Rm×n.Fork=0,1,2,···,computeu(k+1)=(y(k+1),x(k+1))Taccording to the following procedure

    until the iteration sequence (y(k+1),x(k+1))Tconverges to the exact solution of the linear equation (1.4).

    The update (2.3)can be rewritten as the following fixed-point form

    where

    is the iteration matrix of the NSL iteration.To facilitate discussion,the matrixPNSLis decomposed as

    It is not difficult to find that the matrixP2has a block-triangular factorization

    withB1=μI+KTQ?1K.Then,the form ofis given by

    Next,we analyze the convergence of the NSL iteration method.

    Theorem 2.1Suppose thatW,Q ∈Rm×mare symmetric positive definite matrices andK ∈Rm×n(m ≥n)is a matrix of full column rank.LetG=KT(W?1?2Q?1)K,ε=λmax(G).Then,for anyμ>max {0,ε},Method 2.1 is convergent.

    ProofBy the equations (2.2)and (2.4),we derive

    whereC1=W?1K?Q?1KB?11B2,C2=B?11B2andB2=μI+KTW?1K.The iteration matrixMNSLcan be rewritten as

    Ifλis an eigenvalue ofMNSL,thenλ=0 orλ=1?τ,whereτis an eigenvalue of the matrixC2.Therefore,there exists a vectorz≠0 such that

    namely,

    Without loss of generality,we assume||z||2=1.Sincez0,premultiplying (2.6)withwe have

    Hence,|λ|<1 if and only if

    that is

    Therefore,a sufficient condition to ensure|λ|<1 is

    This completes the whole proof.

    Corollary 2.1Suppose

    whereκ(K),λmin(W)andλmax(Q)stand for the spectral condition number ofK,the smallest and largest eigenvalue ofWandQ,respectively.Then,Method 2.1 is convergent.

    ProofFrom Theorem 1.22 in [26],we have

    and

    So,we have by the above inequalities and (2.7)that

    And by Theorem 2.1,it implies that if we takeμ >max {0,θ} withθ >0,then Method 2.1 is convergent.Ifθ ≤0,we getρ(MNSL)<1,and the condition (2.8)holds immediately.

    In practical implementation aspects,we use the NSL splitting as a preconditioner for the Krylov subspace method(e.g.GMRES).We need to solve a linear subsystem of the following form

    or equivalently,from (2.4)we can compute the vectorzvia

    wherer=(rT1,rT2)Tandz=(zT1,zT2)Twithr1,z1∈Rmandr2,z2∈Rn,respectively.Then,we have the following algorithmic version of the NSL preconditioner.

    Algorithm 2.1For a given residual vector (rT1,rT2)T,the current vector (zT1,zT2)Tin(2.9)is computed by the following steps

    1)SolveWd1=r1ford1;

    2)Solve (μI+KTQ?1K)z2=KTd1+r2forz2;

    3)SolveQd2=Kz2ford2;

    4)Computez1=d1?d2.

    From Algorithm 2.1,we can see that three linear sub-systems with the coefficient matricesW,QandμI+KTQ?1Khave to be solved at each iteration step.Compared with Algorithm 2.1,adding a linear sub-system with the coefficient matrixQneeds to be solved.However,this is not very difficult.Both of the matricesWandQare symmetric positive definite.More specifically,we can solve the two sub-systems exactly by the sparse Cholesky factorization or approximately by the conjugate gradient (CG)method.If we chooseQto be diagonal or tridiagonal approximations ofW,KTQ?1Kwill also have a sparse structure.Thus,direct methods such as LU factorization or inexact solvers like as GMRES can be used to solve the corresponding linear system.

    3.Spectral Properties of the NSL Preconditioned Matrix

    The spectral distribution of the preconditioned matrix relates closely to the convergence rate of Krylov subspace methods.The tightly clustered spectrum or positive real spectrum of the preconditioned matrix are desirable.In this section,we will derive some properties of the NSL preconditioned matrix.Here and in the sequel,we use sp(A)to represent the spectrum of the matrixA.

    Theorem 3.1Suppose thatW,Q ∈Rm×mare symmetric positive definite matrices,K ∈Rm×n(m ≥n)is a matrix of full column rank.LetPNSLbe defined in (2.1).Then the preconditioned matrixhas an eigenvalue 1 with multiplicitym,and the remaining eigenvalues are the eigenvalues of the matrix (μI+KTQ?1K)?1(μI+KTW?1K).

    ProofBy (2.7)of Theorem 2.1,we obtain

    which implies that the preconditioned matrixhas an eigenvalue 1 with multiplicitym,and the remaining eigenvalues are the same as those of the matrix (μI+KTQ?1K)?1(μI+KTW?1K).

    Remark 3.1IfQ=W,then all eigenvalues of the preconditioned matrixare 1.

    Theorem 3.2Under the assumptions in Theorem 3.1,the nonunit eigenvalues of preconditioned matrixare real and located in a interval

    whereσ1,σndenote respectively the smallest and the largest singular values of the matrixK,ω1,ωmdenote respectively the smallest and the largest eigenvalues of the matrixW,andθ1,θmdenote respectively the smallest and the largest eigenvalues of the matrixQ.

    ProofFrom (3.1),the nonunit eigenvalues of preconditioned matrixare the eigenvalues of the matrix(μI+KTQ?1K)?1(μI+KTW?1K).Since the matricesWandQare symmetric positive definite,the eigenvalues of the matrix(μI+KTQ?1K)?1(μI+KTW?1K)are real.

    Assume thatτis an eigenvalue of (μI+KTQ?1K)?1(μI+KTW?1K)and 0≠z ∈Rnis a normalized eigenvector,i.e.||z||2=1,then we have

    According to Theorem 1.22 in [24],we have

    and

    So,

    and

    As the matrix (μI+KTQ?1K)is also symmetric positive definite,we get

    and

    Therefore,the remaining eigenvalues of the preconditioned matrixare real and located in the interval

    In the following,the specific form of the eigenvectors ofwill be discussed in detail.

    Theorem 3.3LetPNSLbe defined in(2.1),then the preconditioned matrixhasm+i+j(0≤i+j ≤n)linearly independent eigenvectors.And there are

    1)meigenvectors of the form(l=1,2,··· ,m)that correspond to the eigenvalue 1,where?l(l=1,2,··· ,m)are arbitrary linearly independent vectors;

    2)i(0≤i ≤n)eigenvectors of the form(1≤l ≤i)that correspond to the eigenvalue 1,where?1lare arbitrary vectors,φ1l0 satisfy (WQ?1?I)Kφ1l=0 andi=dim {null(WQ?1?I)∩range(K)};

    3)j(0≤j ≤n)eigenvectors of the form(1≤l ≤j)that correspond to the eigenvalueλl≠1,where the vectorsφ2l≠0 satisfy the generalized eigenvalue problem(μI+KTW?1K)φ2l=λ(μI+KTQ?1K)φ2landIn addition,ifφ2l ∈null(μI),thenKT?2l=0,and vice versa.

    ProofLetλbe an eigenvalue of the preconditioned matrixandbe the corresponding eigenvector.From (2.5)we have

    It follows from (3.5)that

    Ifλ=1,then the second equation of(3.6)holds naturally,and the first equation becomes

    Whenφ=0,the above equation is always true.Hence,there aremlinearly independent eigenvectors(l=1,2,··· ,m)corresponding to the eigenvalue 1,where?l(l=1,2,··· ,m)are arbitrary linearly independent vectors.If there existsφ≠0 satisfying (3.7),then there will bei(0≤i ≤n)eigenvectors of the form(1≤l ≤i)that correspond to the eigenvalue 1,where?1lare arbitrary vectors,φ1l0 satisfying (WQ?1?I)Kφ1l=0 andi=dim {null(WQ?1?I)∩range(K)}.

    Ifλ≠1,by the first equation of (3.6)we have

    Ifφ=0,then?=0,which contradicts withbeing an eigenvector.Hence,0.Substituting (3.8)into the second equation of (3.6),we get

    If there exists0 satisfying (3.9),then there will bej(0≤j ≤n)linearly independent eigenvectors(1≤l ≤j)that correspond to eigenvaluesλl≠1.Here?2l(1≤l ≤j)satisfies (3.8)andφ2l(1≤l ≤j)satisfies (3.9).Ifφ2l ∈null(μI),then from (3.6)we haveKT?2l=0,i.e.?2l ∈null(KT).Conversely,if?2l ∈null(KT),then from (3.6)we haveμIφ2l=0,i.e.φ2l ∈null(μI).

    Next,we prove that them+i+jeigenvectors are linearly independent.Letc=[c1,c2,··· ,cm]T,c1=[c11,c12,··· ,c1i]Tandc2=[c21,c22,··· ,c2j]Tbe three vectors for any 0≤i,j ≤n.Then,we need to show that

    holds if and only if the vectorsc,c1,c2are all zero vectors,where the first matrix consists of the eigenvectors corresponding to the eigenvalue 1 for the case 1),the second matrix consists of those for the case 2),and the third matrix consists of the eigenvectors corresponding to the eigenvalue1 for the case 3).By multiplying both sides of (3.10)with,we obtain

    Then,by subtracting (3.11)from (3.10),it holds

    Because the eigenvaluesλl≠1 and(l=1,··· ,j)are linearly independent,we know thatc2l=0(l=1,··· ,j).Thus,(3.10)reduces to

    Since?l(l=1,··· ,m)are linearly independent,we havecl=0(l=1,··· ,m).Therefore,them+i+jeigenvectors are linearly independent.

    Theorem 3.4LetPNSLbe defined in (2.1),then the degree of the minimal polynomial of the preconditioned matrixis at mostn+1.

    ProofLetλi(i=1,··· ,n)be the eigenvalues of the matrixC2involved in(3.1).Then,the characteristic polynomial of the matrixis

    Let

    Then

    Sinceλi(i=1,··· ,n)be the eigenvalues of the matrixC2∈Rn×n,by the Hamilton-Cayley theorem we have ∏(C2?λiI).Therefore,the degree of the minimal polynomial of the preconditioned matrixis at mostn+1.

    4.Experiments

    In this section,we test some numerical experiments to illustrate the effectiveness of the NSL preconditioner for the weighted Toeplitz least squares problems (1.4).All experiments presented in this section were computed in double precision using MATLAB 8.3 on a PC with a 3.4 GHz 64-bit processor CPU and 8 GB memory on an Intel Core Windows 7 system.We show numerical results in terms of the numbers of iterations (IT)and CPU time (CPU)in seconds.As a comparison,we also show experimental results of the HSS[5],NHSS[6],and GNHSS[7]methods.The parametersαandβfor the GNHSS,NHSS,HSS methods are chosen as suggested in [7].The NSL,GNHSS,NHSS,and HSS methods are employed as preconditioners with GMRES.The preconditioned GMRES methods are started from the zero initial guess and terminated until the residual satisfies

    or the iteration numbers exceed the largest prescribed iterationkmax=1000 times.

    Example 4.1We consider the one-dimensional examples mentioned in [4-5],whereKis a square Toeplitz matrix defined by

    (i)K=(tij)∈Rn×nwith

    (ii)K=(tij)∈Rn×nwith

    The matrixKis well-conditioned in the first case.In the second case,we chooseσ=2 so thatKis highly ill-conditioned.And we setDto be a positive diagonal random matrix generated by MATLAB and scale its diagonal entries so that its condition number is around 100.The regularization parameterμis fixed as 0.001.Furthermore,we consider the matrixQ=diag(W)in NSL preconditioner.

    Tab.4.1 Numerical results for the case (i)of Example 4.1

    In Tabs.4.1 and 4.2,we list the parameters used in different preconditioners as well as numerical results of preconditioned GMRES methods for solving the generalized saddle point problem (1.4),where Toeplitz matrixKis given by Example 4.1 with different sizes,i.e.,256,512,1024,2048,4096 and 8192.We also employ the conjugate gradient method for solving the normal equation (1.3).In these tables,the mark “-”means that the method does not converge within the maximum iteration steps.Here,the conjugate gradient(CG)method is used to solve the linear subsystems.

    From Tabs.4.1 and 4.2,we can see that both the CG and GMRES methods converge very slowly if no preconditioning technique is used.If the HSS preconditioner,NHSS preconditioner or the GNHSS preconditioner is employed,then the preconditioned GMRES method converges very fast.Moreover,the NSL preconditioned GMRES method uses much less number of iteration and CPU time than the HSS,NHSS,GNHSS preconditioned GMRES method.This shows that our proposed NSL preconditioner outperforms the HSS,NHSS,GNHSS preconditioner in accelerating convergence speed of the GMRES method for solving the problem(1.4).

    Tab.4.2 Numerical results for the case (ii)of Example 4.1

    In Figs.4.1 and 4.2,we depict the eigenvalue distributions of the coefficient matrix in (1.4)and its corresponding preconditioned matrices for the case (i)and the case (ii)(n=1024)of Example 4.1.“Normal equation”denotes the coefficient matrixKTDTDK+μIof (1.3).“No preconditioning”denotes the coefficient matrixA,HSS,NHSS,GNHSS and NSL denote the preconditioned matrices with the HSS,NHSS,GNHSS and NSL preconditioners,respectively.From these figures,we see that the eigenvalue distributions of the NSL preconditioned matrices are more cluster than the others.This may explain why the number of iterations required by the proposed preconditioner is less than that by other preconditioners.

    Fig.4.1 Eigenvalue distributions for the case (i)(n=1024)in Example 4.1

    Fig.4.2 Eigenvalue distributions for the case (ii)(n=1024)in Example 4.1

    久久精品久久精品一区二区三区| 精品国产乱码久久久久久男人| 午夜福利视频在线观看免费| 日韩电影二区| 女人久久www免费人成看片| 久久天躁狠狠躁夜夜2o2o | 亚洲国产av影院在线观看| 国产麻豆69| 国产一区亚洲一区在线观看| 50天的宝宝边吃奶边哭怎么回事| 肉色欧美久久久久久久蜜桃| 国产在线视频一区二区| 亚洲国产精品999| 永久免费av网站大全| 制服诱惑二区| 日本猛色少妇xxxxx猛交久久| 日韩av免费高清视频| 啦啦啦在线免费观看视频4| 日本欧美国产在线视频| 日本五十路高清| 久久久久精品人妻al黑| 亚洲av国产av综合av卡| 91麻豆av在线| 最近手机中文字幕大全| 国产一级毛片在线| 亚洲国产精品999| 天天操日日干夜夜撸| 国产成人av教育| 中文字幕最新亚洲高清| 超碰成人久久| 波多野结衣av一区二区av| 捣出白浆h1v1| 中文欧美无线码| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品成人久久小说| 中国国产av一级| 欧美精品av麻豆av| 国产一区二区 视频在线| 国产精品一区二区在线不卡| 免费久久久久久久精品成人欧美视频| 大香蕉久久成人网| 天天操日日干夜夜撸| 久久性视频一级片| av福利片在线| 一区二区av电影网| 欧美日韩一级在线毛片| 色婷婷av一区二区三区视频| √禁漫天堂资源中文www| 啦啦啦视频在线资源免费观看| 国产免费一区二区三区四区乱码| 亚洲一区中文字幕在线| 一本久久精品| videos熟女内射| 在线天堂中文资源库| 亚洲精品自拍成人| 欧美国产精品一级二级三级| 亚洲欧美一区二区三区久久| 国产深夜福利视频在线观看| 久久久久精品人妻al黑| 亚洲色图 男人天堂 中文字幕| 日韩大码丰满熟妇| 久久精品国产亚洲av高清一级| 亚洲国产日韩一区二区| 久久精品aⅴ一区二区三区四区| 80岁老熟妇乱子伦牲交| 久久国产精品影院| 欧美黄色淫秽网站| 亚洲七黄色美女视频| 满18在线观看网站| 亚洲人成电影观看| 久久精品久久久久久噜噜老黄| 久久久精品国产亚洲av高清涩受| 大片电影免费在线观看免费| 9191精品国产免费久久| 午夜精品国产一区二区电影| 国产在线视频一区二区| 男人操女人黄网站| 人人妻人人添人人爽欧美一区卜| 欧美人与性动交α欧美软件| 国产无遮挡羞羞视频在线观看| 一区二区三区四区激情视频| 亚洲欧美一区二区三区国产| 日韩欧美一区视频在线观看| 满18在线观看网站| 亚洲欧洲日产国产| 欧美日韩精品网址| 一级黄片播放器| 男女无遮挡免费网站观看| 欧美激情高清一区二区三区| 十分钟在线观看高清视频www| 国产精品三级大全| 水蜜桃什么品种好| 欧美变态另类bdsm刘玥| 国产有黄有色有爽视频| 人人妻人人澡人人看| av片东京热男人的天堂| 亚洲欧洲日产国产| 亚洲av电影在线观看一区二区三区| 午夜免费观看性视频| 亚洲国产精品成人久久小说| 日本欧美国产在线视频| 国产精品免费视频内射| 免费在线观看影片大全网站 | 国产成人av教育| 欧美黄色淫秽网站| 亚洲,一卡二卡三卡| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播 | 亚洲中文av在线| 亚洲七黄色美女视频| 成人国产av品久久久| 中文字幕亚洲精品专区| 91精品三级在线观看| 欧美成狂野欧美在线观看| 久久ye,这里只有精品| 国产精品久久久久成人av| 久久久国产欧美日韩av| 国产成人精品久久久久久| 亚洲免费av在线视频| 欧美少妇被猛烈插入视频| 多毛熟女@视频| 欧美日韩精品网址| 人妻一区二区av| 最新的欧美精品一区二区| 国产精品一国产av| 欧美人与性动交α欧美精品济南到| 99热国产这里只有精品6| 美女福利国产在线| 少妇粗大呻吟视频| av有码第一页| 后天国语完整版免费观看| 超色免费av| 日韩中文字幕视频在线看片| 大片电影免费在线观看免费| 久久这里只有精品19| 亚洲精品日韩在线中文字幕| 亚洲av日韩在线播放| 大香蕉久久成人网| 免费不卡黄色视频| 久久国产精品男人的天堂亚洲| 国产在线一区二区三区精| 美女国产高潮福利片在线看| 日本91视频免费播放| av有码第一页| 在线看a的网站| 岛国毛片在线播放| 啦啦啦 在线观看视频| 精品免费久久久久久久清纯 | 成年女人毛片免费观看观看9 | 亚洲欧美精品自产自拍| 婷婷色麻豆天堂久久| 亚洲一区二区三区欧美精品| 久久女婷五月综合色啪小说| 国产伦理片在线播放av一区| 国产高清不卡午夜福利| 成年动漫av网址| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 大码成人一级视频| 日韩免费高清中文字幕av| 少妇精品久久久久久久| 大话2 男鬼变身卡| 欧美大码av| 亚洲三区欧美一区| 女性生殖器流出的白浆| 国产成人欧美在线观看 | 一级毛片女人18水好多 | 老司机影院毛片| 亚洲天堂av无毛| 一级片'在线观看视频| 别揉我奶头~嗯~啊~动态视频 | 777米奇影视久久| 亚洲 欧美一区二区三区| 老司机靠b影院| 晚上一个人看的免费电影| 好男人电影高清在线观看| 久久久国产欧美日韩av| 亚洲国产日韩一区二区| 七月丁香在线播放| 精品久久久久久电影网| 啦啦啦中文免费视频观看日本| 精品卡一卡二卡四卡免费| 欧美+亚洲+日韩+国产| 色94色欧美一区二区| 在线观看免费午夜福利视频| 又黄又粗又硬又大视频| 欧美变态另类bdsm刘玥| 国产精品.久久久| 男女床上黄色一级片免费看| 国产精品偷伦视频观看了| 又大又黄又爽视频免费| 亚洲国产欧美网| 欧美久久黑人一区二区| 国产精品偷伦视频观看了| 久久精品国产a三级三级三级| 中文字幕av电影在线播放| 国产人伦9x9x在线观看| 日韩伦理黄色片| 亚洲国产中文字幕在线视频| 啦啦啦视频在线资源免费观看| e午夜精品久久久久久久| xxx大片免费视频| 中文字幕精品免费在线观看视频| 两个人免费观看高清视频| 最黄视频免费看| 国产成人精品久久二区二区免费| 亚洲av综合色区一区| 亚洲中文av在线| 各种免费的搞黄视频| 欧美精品亚洲一区二区| 午夜福利乱码中文字幕| 亚洲一区二区三区欧美精品| 两个人看的免费小视频| 韩国精品一区二区三区| 纵有疾风起免费观看全集完整版| 亚洲免费av在线视频| 又黄又粗又硬又大视频| 中文字幕人妻丝袜一区二区| 免费不卡黄色视频| 五月天丁香电影| av视频免费观看在线观看| 免费看十八禁软件| 成人影院久久| 精品国产超薄肉色丝袜足j| 国产精品.久久久| 成人国语在线视频| 欧美乱码精品一区二区三区| 国产主播在线观看一区二区 | 18禁黄网站禁片午夜丰满| 亚洲精品久久午夜乱码| 亚洲国产精品国产精品| 亚洲国产欧美一区二区综合| 少妇人妻久久综合中文| 狠狠婷婷综合久久久久久88av| 日本91视频免费播放| 天天躁夜夜躁狠狠躁躁| 国产午夜精品一二区理论片| 欧美黑人精品巨大| 香蕉丝袜av| 后天国语完整版免费观看| 精品欧美一区二区三区在线| 少妇的丰满在线观看| 丁香六月欧美| 中文字幕制服av| 中文字幕人妻丝袜一区二区| 亚洲国产av新网站| 老司机影院成人| 纯流量卡能插随身wifi吗| 久久亚洲精品不卡| 少妇裸体淫交视频免费看高清 | 国产成人欧美在线观看 | 亚洲av电影在线观看一区二区三区| 2021少妇久久久久久久久久久| 日韩制服丝袜自拍偷拍| 免费女性裸体啪啪无遮挡网站| 精品熟女少妇八av免费久了| 我要看黄色一级片免费的| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人澡人人爽人人夜夜| 青草久久国产| 日日摸夜夜添夜夜爱| 自线自在国产av| 美女高潮到喷水免费观看| 久久性视频一级片| 国产免费一区二区三区四区乱码| 丝袜喷水一区| 只有这里有精品99| 国产成人a∨麻豆精品| 91成人精品电影| 免费观看人在逋| 亚洲国产精品一区三区| 丁香六月天网| 国产精品一国产av| av国产久精品久网站免费入址| 无遮挡黄片免费观看| 一级,二级,三级黄色视频| 亚洲精品久久午夜乱码| 日韩视频在线欧美| 后天国语完整版免费观看| 国产精品久久久久成人av| 18禁国产床啪视频网站| 亚洲免费av在线视频| 97精品久久久久久久久久精品| 亚洲精品久久成人aⅴ小说| videosex国产| 日本猛色少妇xxxxx猛交久久| 手机成人av网站| 精品亚洲成a人片在线观看| 亚洲九九香蕉| 国产高清国产精品国产三级| videos熟女内射| 色精品久久人妻99蜜桃| 在线观看免费高清a一片| 欧美av亚洲av综合av国产av| 久久精品亚洲av国产电影网| 天天躁日日躁夜夜躁夜夜| 国产午夜精品一二区理论片| cao死你这个sao货| 啦啦啦视频在线资源免费观看| 国产精品香港三级国产av潘金莲 | 中文字幕制服av| 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 人妻 亚洲 视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲 国产 在线| 男女之事视频高清在线观看 | 日韩欧美一区视频在线观看| 日本黄色日本黄色录像| 欧美成狂野欧美在线观看| 老司机深夜福利视频在线观看 | 精品一品国产午夜福利视频| 国产精品av久久久久免费| 国产男人的电影天堂91| 自线自在国产av| 大陆偷拍与自拍| 满18在线观看网站| xxxhd国产人妻xxx| 欧美老熟妇乱子伦牲交| 亚洲免费av在线视频| 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩综合在线一区二区| 两性夫妻黄色片| av电影中文网址| 91精品三级在线观看| 国产麻豆69| 97精品久久久久久久久久精品| 尾随美女入室| 最新在线观看一区二区三区 | 免费一级毛片在线播放高清视频 | 亚洲av综合色区一区| 亚洲国产精品一区二区三区在线| 中文字幕色久视频| 每晚都被弄得嗷嗷叫到高潮| 国产福利在线免费观看视频| 少妇猛男粗大的猛烈进出视频| 韩国高清视频一区二区三区| 母亲3免费完整高清在线观看| 亚洲国产欧美一区二区综合| 欧美 亚洲 国产 日韩一| 亚洲精品美女久久av网站| 日本猛色少妇xxxxx猛交久久| 亚洲欧美中文字幕日韩二区| 国产男女超爽视频在线观看| 亚洲国产最新在线播放| 国产精品99久久99久久久不卡| 亚洲国产欧美网| 午夜视频精品福利| 亚洲人成77777在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久ye,这里只有精品| 欧美国产精品va在线观看不卡| 一区福利在线观看| 日本wwww免费看| 国产日韩欧美视频二区| 色94色欧美一区二区| 成人18禁高潮啪啪吃奶动态图| 久久狼人影院| 国产男女内射视频| 一区二区日韩欧美中文字幕| 欧美精品av麻豆av| 国产精品二区激情视频| 校园人妻丝袜中文字幕| 国产在线免费精品| 9191精品国产免费久久| 肉色欧美久久久久久久蜜桃| 99国产精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 中文字幕av电影在线播放| 啦啦啦 在线观看视频| 日日夜夜操网爽| 九草在线视频观看| 午夜日韩欧美国产| 中文字幕另类日韩欧美亚洲嫩草| 王馨瑶露胸无遮挡在线观看| 成在线人永久免费视频| 欧美性长视频在线观看| 国产女主播在线喷水免费视频网站| 丰满少妇做爰视频| 黄频高清免费视频| 黄色视频在线播放观看不卡| 国产黄色免费在线视频| 亚洲av综合色区一区| 免费观看a级毛片全部| 午夜视频精品福利| 亚洲伊人久久精品综合| 天天躁狠狠躁夜夜躁狠狠躁| 免费久久久久久久精品成人欧美视频| 国产精品香港三级国产av潘金莲 | 精品亚洲成a人片在线观看| 亚洲免费av在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜久久久在线观看| 久久精品熟女亚洲av麻豆精品| 久久久久国产一级毛片高清牌| 免费黄频网站在线观看国产| 大片电影免费在线观看免费| kizo精华| 黄色怎么调成土黄色| 看免费成人av毛片| 咕卡用的链子| 永久免费av网站大全| 九色亚洲精品在线播放| 大香蕉久久成人网| 黄色 视频免费看| 欧美人与性动交α欧美精品济南到| 婷婷色av中文字幕| 日本色播在线视频| 精品亚洲乱码少妇综合久久| 日韩中文字幕视频在线看片| 考比视频在线观看| 黄色怎么调成土黄色| 黄色一级大片看看| 午夜91福利影院| 免费观看av网站的网址| 欧美精品亚洲一区二区| 国产一区二区三区av在线| 999精品在线视频| 国产欧美日韩综合在线一区二区| 伊人久久大香线蕉亚洲五| 女人精品久久久久毛片| 亚洲精品久久成人aⅴ小说| 成人影院久久| 国产一区二区激情短视频 | 嫩草影视91久久| 国产97色在线日韩免费| 日韩欧美一区视频在线观看| 黄色a级毛片大全视频| 成年人免费黄色播放视频| 大片免费播放器 马上看| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 亚洲精品成人av观看孕妇| 久久99精品国语久久久| 亚洲 国产 在线| 首页视频小说图片口味搜索 | cao死你这个sao货| 手机成人av网站| 免费高清在线观看视频在线观看| 97精品久久久久久久久久精品| 男女边摸边吃奶| 热re99久久精品国产66热6| 国产熟女午夜一区二区三区| 亚洲伊人色综图| 狂野欧美激情性xxxx| 人妻 亚洲 视频| 天堂8中文在线网| 国产在线免费精品| 不卡av一区二区三区| 亚洲精品自拍成人| 三上悠亚av全集在线观看| 一级毛片 在线播放| 国产精品香港三级国产av潘金莲 | 欧美激情极品国产一区二区三区| 色播在线永久视频| 亚洲国产精品一区二区三区在线| 狂野欧美激情性bbbbbb| 后天国语完整版免费观看| 亚洲精品一区蜜桃| 午夜久久久在线观看| 欧美黑人欧美精品刺激| 欧美乱码精品一区二区三区| 色精品久久人妻99蜜桃| 亚洲国产成人一精品久久久| 国产一区亚洲一区在线观看| 亚洲第一青青草原| 精品卡一卡二卡四卡免费| 最近最新中文字幕大全免费视频 | 制服诱惑二区| 午夜免费成人在线视频| av又黄又爽大尺度在线免费看| 午夜福利视频在线观看免费| 一级毛片电影观看| 啦啦啦 在线观看视频| 婷婷色综合www| 电影成人av| 亚洲国产欧美日韩在线播放| 各种免费的搞黄视频| 国产欧美日韩一区二区三 | 午夜91福利影院| 亚洲av欧美aⅴ国产| 亚洲av综合色区一区| 免费不卡黄色视频| 另类亚洲欧美激情| 日日爽夜夜爽网站| 国产福利在线免费观看视频| 亚洲精品国产区一区二| 一本—道久久a久久精品蜜桃钙片| 巨乳人妻的诱惑在线观看| 久久热在线av| 国产精品av久久久久免费| 亚洲专区国产一区二区| 人人妻人人澡人人看| 美女中出高潮动态图| 欧美久久黑人一区二区| 90打野战视频偷拍视频| 欧美日韩精品网址| 美女主播在线视频| 欧美在线黄色| 脱女人内裤的视频| 高清黄色对白视频在线免费看| 欧美日韩av久久| 69精品国产乱码久久久| 欧美在线黄色| 国产精品一区二区免费欧美 | 亚洲国产看品久久| 日韩制服骚丝袜av| 丝袜在线中文字幕| 男人操女人黄网站| 另类精品久久| 国产精品成人在线| 国产亚洲一区二区精品| 欧美亚洲 丝袜 人妻 在线| 97精品久久久久久久久久精品| 免费高清在线观看日韩| 久久精品久久精品一区二区三区| 日韩精品免费视频一区二区三区| 欧美人与性动交α欧美精品济南到| 久久久久国产精品人妻一区二区| videosex国产| 在线观看免费高清a一片| 在线精品无人区一区二区三| 欧美精品av麻豆av| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| av欧美777| √禁漫天堂资源中文www| 亚洲精品久久成人aⅴ小说| 亚洲色图综合在线观看| 狠狠婷婷综合久久久久久88av| a 毛片基地| 美女主播在线视频| 国产淫语在线视频| 国产1区2区3区精品| 永久免费av网站大全| 久久久久久久大尺度免费视频| 99热网站在线观看| 黄片小视频在线播放| 精品国产国语对白av| 婷婷色麻豆天堂久久| 人人妻,人人澡人人爽秒播 | 黑人巨大精品欧美一区二区蜜桃| 国产亚洲欧美精品永久| 亚洲精品美女久久久久99蜜臀 | 国产女主播在线喷水免费视频网站| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 少妇被粗大的猛进出69影院| 午夜日韩欧美国产| 国产成人影院久久av| 女人高潮潮喷娇喘18禁视频| 久久人人爽av亚洲精品天堂| 中文字幕另类日韩欧美亚洲嫩草| 777久久人妻少妇嫩草av网站| 亚洲熟女精品中文字幕| 国产一级毛片在线| 欧美日韩福利视频一区二区| 老司机靠b影院| 黄色片一级片一级黄色片| 亚洲少妇的诱惑av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲熟女毛片儿| 在线观看免费日韩欧美大片| 婷婷成人精品国产| 欧美日韩福利视频一区二区| 三上悠亚av全集在线观看| 少妇人妻 视频| 国产亚洲av片在线观看秒播厂| 少妇人妻久久综合中文| 亚洲欧美色中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 午夜影院在线不卡| 亚洲欧洲日产国产| 国产91精品成人一区二区三区 | 大陆偷拍与自拍| 日韩中文字幕欧美一区二区 | 热99久久久久精品小说推荐| 国语对白做爰xxxⅹ性视频网站| 又大又爽又粗| 国产亚洲av片在线观看秒播厂| 久久影院123| 亚洲七黄色美女视频| 男人舔女人的私密视频| 激情五月婷婷亚洲| 亚洲九九香蕉| 悠悠久久av| 欧美另类一区| 免费观看人在逋| 美女视频免费永久观看网站| 欧美日韩亚洲国产一区二区在线观看 | 满18在线观看网站| 嫩草影视91久久| 国产精品一区二区免费欧美 | 亚洲精品乱久久久久久| 欧美日本中文国产一区发布| 欧美日韩精品网址| 性少妇av在线| 国产精品二区激情视频| 精品福利观看| 精品一区二区三区四区五区乱码 | av又黄又爽大尺度在线免费看| 亚洲,欧美精品.| 老司机亚洲免费影院| bbb黄色大片| 亚洲,欧美精品.| 手机成人av网站| 桃花免费在线播放| 黄色视频不卡| 国产精品免费视频内射| 中文字幕色久视频| 人人妻人人澡人人爽人人夜夜| 久久人人爽人人片av|