• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Different Types of Solutions for Nonlinear Fractional Integral Boundary Value Problems with Two Parameters

    2020-01-10 05:48:52WANGWenxia王文霞MIFang米芳
    應(yīng)用數(shù)學(xué) 2020年1期

    WANG Wenxia(王文霞),MI Fang(米芳)

    (Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China)

    Abstract: This paper is concerned with the existence of different types of solutions for a class of nonlinear fractional differential equations with two parameters in integral boundary conditions.By using a fixed point theorem and analytic technique,we divide the range of these parameters for the existence of positive solutions,negative solutions and sign-changing solutions for the boundary value problem and obtain some new results.

    Key words: Fractional integral boundary value problem; Parameter; Positive solution;Negative solution; Sign-changing solution

    1.Introduction and Preliminaries

    Fractional differential equations,as excellent mathematical models to study various actual problems with memory and hereditary properties,have attracted considerable attention in the last ten years.[1?2,3?7]

    Recently,some authors studied fractional integral boundary value problems with disturbance parameters in the boundary conditions,and obtained some interesting results.[8?9]By using the upper and lower solutions method and fixed point index theory.JIA et al.[8]discussed the existence of positive solutions for the following problem with a disturbance parameter

    where 1<α ≤2,f ∈C([0,1]×R+,R+),mi,ni ≥0,m2i+n2i >0,i=1,2,k ∈C(R+,R+),μ∈R+.It is interesting to point out that such a disturbance parameterμis always inevitable to exist in applying the differential equation theory to solve the actual problems.In addition,another kind of fractional boundary value problems has also attracted the attention of some researchers.For example,by using fixed point index theory,ZHANG et al.[10]studied the existence of positive solutions for the fractional differential equations

    where 3< α ≤4,0< η ≤1 and 0≤<1.By applying a fixed-point theorem in cone and the Leray-Schauder nonlinear alternative,HE[11]investigated the existence of positive solutions for the following integral boundary value problem

    WANG et al.[12]applied the Guo-Krasnoselskii fixed point theorem to discuss the existence of positive solutions for the following problem

    We observe thatξin the above-mentioned boundary value problems is actually a constant such that the corresponding Green’s function is nonnegative,not a parameter.Indeed,whenξis a parameter,the sign of the corresponding Green’s function will change with the change of the parameter value,which will inevitably affect the properties of solutions for the boundary value problem.So,it is very significant to investigate the impact of such a parameterξon properties of solutions.However,few papers have reported on this topic.

    Motivated by[8-12],in this paper we will investigate the fractional boundary value problem (BVP)with two parametersξandμas follows:

    whereCDα0+is the Caputo fractional derivative of orderα,1< α <2,f ∈C([0,1]×R,R+),R+=[0,+∞),ξ >0 andμ≥0 .

    Letxbe a solution of boundary value problem (1.1),xis called a positive solution ifx(t)≥0 andx(t)0 fort ∈[0,1];xis called a negative solution ifx(t)≤0 andx(t)0 fort ∈[0,1];xis called a non-negative solution(non-positive solution)ifx(t)≥0(x(t)≤0)fort ∈[0,1]; andxis called a sign-changing solution if there existt1,t1∈[0,1]such thatx(t1)x(t2)<0.

    The purpose of this paper is to discuss the impact of parametersξandμon the existence of positive solutions,negative solutions and sign-changing solutions for boundary value problem (1.1)by using the nonlinear alternative of Leray-Schauder type (Lemma 1.3)and analytic technique.

    The paper is organized as follows.In Section 2,we present Green’s function associated with the boundary value problem (1.1)and discuss some properties of Green’s function.

    Moreover,we establish an operator equation equivalent to the boundary value problem (1.1).In Section 3,we divide the range of parametersξandμon the existence of at least one positive solution,one negative solution and one sign-changing solution for the problem (1.1).These results show that the influence of two parametersξandμon the existence of different types of solutions for the boundary value problem.In Section 4,we give two examples to illustrate our main results.

    In the rest of this section,we present some basic notations and results.

    Definition 1.1[1?2]Letx:(0,+∞)→R be a function andα >0.The Riemann-Liouville fractional integral of orderαofxis defined by

    provided that the integral exists.

    Definition 1.2[1?2]Letx:(0,+∞)→R be a function andα >0.The Caputo fractional derivative of orderαofxis defined by

    provided that the right side is pointwise defined on(0,+∞),wheren=[α]+1,n?1<α

    wherenis the smallest integer greater than or equal toα.

    Lemma 1.2[1?2]Letα>0 andx ∈C[0,1],then

    Lemma 1.3[12]LetEbe a Banach space,Xa convex set ofE,?a relatively open subset ofX,andp ∈?.Suppose thatT:is a continuous and compact map,then either (i)Thas a fixed point in,or (ii)there existu ∈??andλ ∈(0,1)such thatu=λTu+(1?λ)p.

    2.Equivalent Operator Equation

    In this section,we shall present the corresponding Green’s function and its properties;moreover,we present the operator equation which is equivalent to boundary value problem(1.1).This is important for our research.

    Fory ∈C[0,1],consider the linear fractional boundary value problem

    whereξ >0 andμ≥0.

    Lemma 2.1Forξ≠1,BVP(2.1)has a unique solution which is given by

    where

    and

    ProofFrom Lemma 1.1 we get

    Noticing thatx′(0)=0 andthenc1=0 andμ.This means that

    Moreover,we have

    Substituting the value into (2.5)we can obtain that

    On the other hand,ifxsatisfies (2.2),then

    Hence,it follows from Lemma 1.2 that(t)=?y(t).Moreover,we easily check thatxis a solution of BVP(2.1).The proof is complete.

    Lemma 2.2G(t,s)is continuous on [0,1]×[0,1],and monotone decreasing intfor everys ∈[0,1].In addition,the following properties are satisfied:

    (i)When 0< ξ <1,0≤fort,s ∈[0,1],and

    (ii)When 1< ξ ≤α,fort,s ∈[0,1],and

    (iii)Whenξ >α,G(0,0)=and

    ProofIt follows from (2.3)and (2.4)that

    Obviously,

    where

    It is obvious thatG(t,s)is continuous on[0,1]×[0,1],and monotone decreasing intfor everys ∈[0,1].Next to show properties (i),(ii)and (iii).

    (i)When 0<ξ <1,the property (i)follows from (2.7).

    (ii)When 1<ξ ≤α,it is easy to see that

    This together with (2.7)leads to the property (ii).

    (iii)Whenξ >α,we haveG(0,0)=Arguing similarly to the property (ii)we can obtain

    This completes the proof.

    SetE=C[0,1].The Banach space of all continuous functions on [0,1]with the norm||x||=max {|x(t)| | t ∈[0,1]}.LetP= {x ∈C[0,1]| x(t)≥0,t ∈[0,1]},thenPand?Pare cones inE.

    Forξ≠1,define the operatorT(ξ,μ)by

    then,it follows from Lemma 2.2 thatT(ξ,μ):C[0,1]→C[0,1],

    Moreover,forξ≠1,it is clear by Lemma 2.1 thatxis a solution of BVP(1.1)?xis a solution of the operator equationT(ξ,μ)x=xinE.

    Lemma 2.3The operatorT(ξ,μ):E→Eis completely continuous forξ ∈(0,1)∪(1,+∞)andμ∈[0,+∞).

    ProofThe proof is similar to that of Lemma 2.2 in [9].

    Throughout this paper,we always use the following denotations

    for a positive constantr.

    3.Existence of Various Types of Solutions

    In this section,we give some results on the existence of solutions and non-zero solutions for BVP (1.1).Furthermore,we discuss the impact of parametersξandμon various types of solutions.

    Lemma 3.1Ifx(ξ,μ)is a solution of BVP(1.1)forξ ∈(0,1)∪(1,+∞)andμ∈[0,+∞),thenx(ξ,μ)(t)is decreasing int ∈[0,1].

    ProofIt follows from (2.6)and (2.8)that

    Moreover,

    which implies that the solutionx(ξ,μ)(t)is decreasing int ∈[0,1].This ends the proof.

    The following conditions will be needed:

    (H1)There exist nonnegative functionsa,b ∈L[0,1]satisfyingand nonnegative nondecreasing functionψ ∈C[0,+∞)satisfyingsuch that

    (H3)f(t,0)0 on [0,1].

    Firstly,we discuss the existence of solutions and the impact of parametersξandμon non-negative solutions,non-positive solutions and possible sign-changing solutions.

    Theorem 3.1Suppose that(H1)holds.Then BVP(1.1)has at least one solutionx(ξ,μ)forξ ∈(0,1)∪(1,+∞)andμ∈[0,+∞).In particular,

    (i)x(ξ,μ)is a non-negative solution for (ξ,μ)∈(0,1)×[0,+∞);

    (ii)x(ξ,μ)is a non-positive solution for (ξ,μ)∈(1,α]×[0,+∞);

    (iii)x(ξ,μ)is a possible sign-changing solution withx(ξ,μ)(1)≤0 for (ξ,μ)∈(α,+∞)×[0,+∞).

    ProofLetξ ∈(0,1)∪(1,+∞)andμ∈[0,+∞)be given.It follows from Lemma 2.2 that

    Set

    Suppose,in the contrary,that there existx0∈??Randλ0∈(0,1)such that

    that is,

    Then,

    This implies that

    which contradicts(3.1).Therefore,applying Lemma 1.3 we obtain that BVP(1.1)has at least one solutionx(ξ,μ)in,and conclusions (i)and (ii)follow from (2.9).Note that

    This,together with(2.8)and Lemma 3.1,leads to the conclusion(iii).The proof is complete.

    Theorem 3.2Suppose that(H2)holds.Then BVP(1.1)has at least one solutionx(ξ,μ)forξ ∈(0,1)∪(1,+∞)andμ∈[0,+∞).In particular,

    (i)x(ξ,μ)is a non-negative solution for (ξ,μ)∈(0,1)×[0,+∞);

    (ii)x(ξ,μ)is a non-positive solution for (ξ,μ)∈(1,α]×[0,+∞);

    (iii)x(ξ,μ)is a possible sign-changing solution withx(ξ,μ)(1)≤0 for (ξ,μ)∈(α,+∞)×[0,+∞).

    ProofWe prove all statements by three steps.

    (i)Let (ξ,μ)∈(0,1)×[0,+∞)be given.According to (2.9),we only need to find a fixed point ofT(ξ,μ)inP.From (H2)there existsl1>0 such that

    We assert that there existsR1>0 such that

    In order to prove the assert we consider two cases.

    Case 1fis bounded on [0,1]×[0,+∞),that is,there existsM1>0 such thatf(t,x)≤M1for (t,x)∈[0,1]×[0,+∞).TakeR1>thenwhich meansSuppose,in the contrary,that there existx1∈P ∩??R1andλ1∈(0,1)such that

    that is,

    Moreover,

    which impliesR1

    Case 2fis unbounded on[0,1]×[0,+∞).In this case,we takesuch that

    that is,

    This,together with (3.3)and (3.4),gives

    which implies a contradictionR1

    (ii)Let (ξ,μ)∈(1,α]×[0,+∞)be given.From (2.9)we only need to find a fixed point ofT(ξ,μ)in?P.It follows from (H2)that there existsl2>0 such that

    By similar argument as the above (i),we can takeR2as follows:If there existsM2>0 such thatf(t,x)≤M2for (t,x)∈[0,1]×(?∞,0],we takeIffis unbounded on [0,1]×(?∞,0],we takesuch that

    (iii)Let (ξ,μ)∈(α,+∞)×[0,+∞)be given.Similarly,there existsl3>0 such that

    By similar argument as the above (i),we can takeR3as follows:If there existsM3>0 such thatf(t,x)≤M3for (t,x)∈[0,1]×(?∞,+∞),we takeR3>Iff(t,x)is unbounded on [0,1]×(?∞,+∞),we takesuch that

    In the sequence,we discuss the existence of non-zero solutions and the impact of parametersξandμon positive solutions,negative solutions and sign-changing solutions.

    For the convenience,for givenx ∈C[0,1]we set

    whereI=(α,+∞)×[0,+∞)andI0=(α,+∞)×(0,+∞).

    Lemma 3.2Suppose that (H3)holds.Ifx(ξ,μ)is a solution of BVP(1.1)forξ ∈(0,1)∪(1,+∞)andμ ∈[0,+∞),thenx(ξ,μ)(t)0 on [0,1],and satisfies the following properties:

    (i)x(ξ,μ)is a positive solution for (ξ,μ)∈(0,1)×[0,+∞);

    (ii)x(ξ,μ)is a negative solution for (ξ,μ)∈(1,α]×[0,+∞);

    (iii)x(ξ,μ)is a sign-changing solution and negative solution for (ξ,μ)∈Λ(x(ξ,μ))and(ξ,μ)∈IΛ(x(ξ,μ)),respectively.

    ProofSuppose,in the contrary,thatx(ξ,μ)(t)≡0 on [0,1],then

    which implies that

    SinceG(0,s)?G(1,s)=(1?s)α?1fors ∈[0,1],

    This implies thatf(t,0)≡0 on [0,1],which contradicts (H3).Therefore,x(ξ,μ)is a non-zero solution of BVP(1.1).This,together with (2.9),leads to properties (i)and (ii).

    Next to show property (iii).For (ξ,μ)∈(α,+∞)×[0,+∞)=I,there are two cases to be considered.

    Case 1 (ξ,μ)∈Λ(x(ξ,μ)).Noting that

    then

    which implies thatx(ξ,μ)(0)>0.In addition,it follows from (3.2)thatx(ξ,μ)(1)<0.Thus,we obtain thatx(ξ,μ)is a sign-changing solution.

    Case 2 (ξ,μ)∈IΛ(x(ξ,μ)).From (3.5),we havex(ξ,μ)(0)≤0,which together with Lemma 3.1 yields thatx(ξ,μ)(s)≤0 fort ∈[0,1].Sincex(ξ,μ)(t)0 on [0,1],x(ξ,μ)is a negative solution.The proof is complete.

    Lemma 3.3Ifx(ξ,μ)is a solution of BVP(1.1)forξ ∈(0,1)∪(1,+∞)andμ∈(0,+∞),thenx(ξ,μ)(t)0 on [0,1],and satisfies the following properties:

    (i)x(ξ,μ)is a positive solution for (ξ,μ)∈(0,1)×(0,+∞);

    (ii)x(ξ,μ)is a negative solution for (ξ,μ)∈(1,α]×(0,+∞);

    (iii)x(ξ,μ)is a sign-changing solution and a negative solution for (ξ,μ)∈Λ0(x(ξ,μ))and(ξ,μ)∈I0Λ0(x(ξ,μ)),respectively.

    ProofIn order to show thatx(ξ,μ)(t)0 on [0,1],We consider two cases off(t,0).

    Iff(t,0)0 on [0,1],then the condition (H3)holds.It follows from Lemma 3.2 thatx(ξ,μ)(t)0 on [0,1].

    Iff(t,0)0 on [0,1],then it follows from (2.8)andμ >0 thatx(ξ,μ)(t)0 for anyt ∈[0,1].

    In addition,arguing similarly to Lemma 3.2,we can finish proofs of properties (i),(ii)and (iii).Thus,the proof is complete.

    According to Theorem 3.1,3.2 and Lemma 3.2,we can obtain the following result.

    Theorem 3.3Suppose that (H1)and (H3)hold.Then BVP(1.1)has at least one non-zero solutionx(ξ,μ)forξ ∈(0,1)∪(1,+∞)andμ∈[0,+∞).Furthermore,

    (i)x(ξ,μ)is a positive solution for (ξ,μ)∈(0,1)×[0,+∞);

    (ii)x(ξ,μ)is a negative solution for (ξ,μ)∈(1,α]×[0,+∞);

    (iii)x(ξ,μ)is a sign-changing solution and a negative solution for (ξ,μ)∈Λ(x(ξ,μ))and(ξ,μ)∈IΛ(x(ξ,μ)),respectively.

    Theorem 3.4Suppose that (H2)and (H3)hold.Then BVP(1.1)has at least one non-zero solutionx(ξ,μ)forξ ∈(0,1)∪(1,+∞)andμ∈[0,+∞).Furthermore,

    (i)x(ξ,μ)is a positive solution for (ξ,μ)∈(0,1)×[0,+∞);

    (ii)x(ξ,μ)is a negative solution for (ξ,μ)∈(1,α]×[0,+∞);

    (iii)x(ξ,μ)is a sign-changing solution and a negative solution for (ξ,μ)∈Λ(x(ξ,μ))and(ξ,μ)∈IΛ(x(ξ,μ)),respectively.

    In virtue of Theorems 3.1,3.2 and Lemma 3.3,we can obtain the following results.

    Theorem 3.5Suppose that (H1)holds.Then BVP(1.1)has at least one non-zero solutionx(ξ,μ)forξ ∈(0,1)∪(1,+∞)andμ∈(0,+∞).Furthermore,

    (i)x(ξ,μ)is a positive solution for (ξ,μ)∈(0,1)×(0,+∞);

    (ii)x(ξ,μ)is a negative solution for (ξ,μ)∈(1,α]×(0,+∞);

    (iii)x(ξ,μ)is a sign-changing solution and a negative solution for (ξ,μ)∈Λ0(x(ξ,μ))and(ξ,μ)∈I0Λ0(x(ξ,μ)),respectively.

    Theorem 3.6Suppose that (H2)holds.Then BVP(1.1)has at least one non-zero solutionx(ξ,μ)forξ ∈(0,1)∪(1,+∞)andμ∈(0,+∞).Furthermore,

    (i)x(ξ,μ)is a positive solution for (ξ,μ)∈(0,1)×(0,+∞);

    (ii)x(ξ,μ)is a negative solution for (ξ,μ)∈(1,α]×(0,+∞);

    (iii)x(ξ,μ)is a sign-changing solution and a negative solution for (ξ,μ)∈Λ0(x(ξ,μ))and(ξ,μ)∈I0Λ0(x(ξ,μ)),respectively.

    4.Examples

    To illustrate how our main results can be used in practice we present some examples.

    Example 4.1In BVP(1.1),let 1<α<2 andf(t,x)=etg(x)+te?tfort ∈[0,1]andx ∈(?∞,+∞),where

    Then (H2)and (H3)are satisfied.Therefore,applying Theorem 3.4 we obtain that BVP(1.1)has at least one non-zero solutionx(ξ,μ)forξ ∈(0,1)∪(1,+∞)andμ∈[0,+∞),furthermore,x(ξ,μ)is a positive solution,a negative solution,and a sign-changing solution for (ξ,μ)∈(0,1)×[0,+∞),(ξ,μ)∈((1,α]×[0,+∞))∪(IΛ(x(ξ,μ))),and(ξ,μ)∈Λ(x(ξ,μ)),respectively.

    Example 4.2In BVP(1.1),let 1< α <2 andf(t,x)=φ(t)|x|qfort ∈[0,1]andx ∈(?∞,+∞),where 0≤q <1 andφ ∈C[0,1]withφ(t)≥0 andφ(t)≡0 fort ∈[0,1].It is easy to check that (H2)is satisfied.Applying Theorem 3.6 we obtain that BVP(1.1)has at least one non-zero solutionx(ξ,μ)forξ ∈(0,1)∪(1,+∞)andμ∈(0,+∞),furthermore,x(ξ,μ)is a positive solution,a negative solution and a sign-changing solution for(ξ,μ)∈(0,1)×(0,+∞),(ξ,μ)∈((1,α]×(0,+∞))∪(I0Λ0(x(ξ,μ)))and (ξ,μ)∈Λ0(x(ξ,μ)),respectively.

    黄色 视频免费看| 午夜激情久久久久久久| 曰老女人黄片| 亚洲精品自拍成人| 欧美最新免费一区二区三区| 亚洲性久久影院| 欧美激情 高清一区二区三区| 丰满饥渴人妻一区二区三| 欧美 亚洲 国产 日韩一| 美女福利国产在线| 久久韩国三级中文字幕| 男女国产视频网站| 爱豆传媒免费全集在线观看| 久久精品国产自在天天线| 亚洲精品,欧美精品| 久久av网站| 赤兔流量卡办理| 一个人免费看片子| 自线自在国产av| 五月天丁香电影| 最后的刺客免费高清国语| 久久青草综合色| 亚洲av电影在线观看一区二区三区| 夫妻午夜视频| 亚洲综合色惰| 波多野结衣一区麻豆| 在线天堂中文资源库| 免费黄网站久久成人精品| 亚洲精品中文字幕在线视频| 女性被躁到高潮视频| 成人无遮挡网站| 日本vs欧美在线观看视频| 91午夜精品亚洲一区二区三区| 最近最新中文字幕大全免费视频 | 国产亚洲欧美精品永久| 国产成人91sexporn| av免费在线看不卡| 日本vs欧美在线观看视频| 啦啦啦在线观看免费高清www| 极品人妻少妇av视频| 亚洲av男天堂| 亚洲国产欧美在线一区| 国产精品免费大片| 丰满乱子伦码专区| 欧美另类一区| 黑人欧美特级aaaaaa片| 人人妻人人添人人爽欧美一区卜| 免费观看无遮挡的男女| 久久精品久久精品一区二区三区| 免费观看性生交大片5| 久久97久久精品| 国产av国产精品国产| 最后的刺客免费高清国语| 丝袜脚勾引网站| 亚洲精品456在线播放app| 国产精品久久久久久久久免| 18禁动态无遮挡网站| 亚洲伊人色综图| 又黄又爽又刺激的免费视频.| 亚洲第一av免费看| 成年动漫av网址| 国产又色又爽无遮挡免| 国产成人一区二区在线| www.av在线官网国产| 十八禁网站网址无遮挡| 成人亚洲精品一区在线观看| 国产在线免费精品| 最近中文字幕2019免费版| 插逼视频在线观看| 你懂的网址亚洲精品在线观看| 交换朋友夫妻互换小说| 欧美精品一区二区大全| 视频在线观看一区二区三区| av在线观看视频网站免费| 日韩中字成人| 99热网站在线观看| 日韩三级伦理在线观看| 男女国产视频网站| 成人影院久久| 久久 成人 亚洲| 国语对白做爰xxxⅹ性视频网站| a级毛片黄视频| 国产精品一二三区在线看| 亚洲av综合色区一区| 如何舔出高潮| 日本91视频免费播放| 免费看不卡的av| 99国产精品免费福利视频| 国产男女超爽视频在线观看| 亚洲一码二码三码区别大吗| 这个男人来自地球电影免费观看 | 国产精品久久久久久精品古装| 欧美日韩亚洲高清精品| 国产色爽女视频免费观看| 精品一品国产午夜福利视频| 性高湖久久久久久久久免费观看| 九草在线视频观看| 欧美激情极品国产一区二区三区 | 亚洲高清免费不卡视频| 99久国产av精品国产电影| 国产女主播在线喷水免费视频网站| 亚洲av日韩在线播放| 91aial.com中文字幕在线观看| 精品一区二区三区四区五区乱码 | 少妇被粗大猛烈的视频| 一级毛片 在线播放| 亚洲精品国产色婷婷电影| 91精品国产国语对白视频| av电影中文网址| 水蜜桃什么品种好| 亚洲精品国产av蜜桃| 极品少妇高潮喷水抽搐| 午夜福利乱码中文字幕| 免费在线观看完整版高清| 五月开心婷婷网| 大话2 男鬼变身卡| 两性夫妻黄色片 | 9191精品国产免费久久| 黄色视频在线播放观看不卡| 亚洲成人一二三区av| 国产色婷婷99| 久久精品国产亚洲av涩爱| 99视频精品全部免费 在线| 亚洲av欧美aⅴ国产| a级毛片在线看网站| 日本免费在线观看一区| 国产永久视频网站| 免费人妻精品一区二区三区视频| videosex国产| 亚洲人成77777在线视频| 久久久精品免费免费高清| 精品酒店卫生间| 日本黄大片高清| 蜜臀久久99精品久久宅男| 婷婷色综合大香蕉| 亚洲国产欧美在线一区| 两个人看的免费小视频| 国产免费一区二区三区四区乱码| 春色校园在线视频观看| 久久久精品区二区三区| 欧美精品高潮呻吟av久久| 亚洲性久久影院| 欧美xxⅹ黑人| av在线观看视频网站免费| 桃花免费在线播放| 成人影院久久| 欧美人与性动交α欧美软件 | 男女下面插进去视频免费观看 | 国产日韩欧美视频二区| 亚洲伊人色综图| 熟女av电影| 色网站视频免费| 国产成人欧美| 又黄又爽又刺激的免费视频.| 黄色配什么色好看| 国产免费一级a男人的天堂| 国产 一区精品| 国产男人的电影天堂91| xxxhd国产人妻xxx| 国产精品熟女久久久久浪| 欧美亚洲日本最大视频资源| 在线观看免费视频网站a站| 欧美激情极品国产一区二区三区 | 亚洲四区av| 欧美3d第一页| 国产成人精品一,二区| 亚洲精品美女久久av网站| 大话2 男鬼变身卡| 免费播放大片免费观看视频在线观看| 一级a做视频免费观看| 午夜福利视频精品| 97人妻天天添夜夜摸| 老熟女久久久| 人人妻人人爽人人添夜夜欢视频| 精品熟女少妇av免费看| 国产欧美日韩综合在线一区二区| 黑人猛操日本美女一级片| 午夜福利影视在线免费观看| 亚洲精品中文字幕在线视频| 欧美97在线视频| 亚洲经典国产精华液单| 国产精品成人在线| 少妇的丰满在线观看| 免费观看无遮挡的男女| 欧美xxxx性猛交bbbb| 久久精品国产亚洲av天美| 日韩一区二区视频免费看| 在线天堂最新版资源| 国产欧美日韩综合在线一区二区| 欧美日韩视频高清一区二区三区二| av卡一久久| 欧美bdsm另类| 免费观看性生交大片5| 亚洲伊人色综图| 国产成人精品久久久久久| 日韩中字成人| 王馨瑶露胸无遮挡在线观看| 一本久久精品| 97在线人人人人妻| 免费观看av网站的网址| 国产成人免费观看mmmm| 欧美日韩国产mv在线观看视频| 男女午夜视频在线观看 | 中国国产av一级| 女的被弄到高潮叫床怎么办| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片| 午夜免费鲁丝| 色婷婷久久久亚洲欧美| 久久人人97超碰香蕉20202| 五月开心婷婷网| 日本wwww免费看| 婷婷色综合www| 在线观看一区二区三区激情| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 最后的刺客免费高清国语| 亚洲三级黄色毛片| a级毛片在线看网站| 青春草亚洲视频在线观看| 另类精品久久| 国产一区二区激情短视频 | 男女下面插进去视频免费观看 | 宅男免费午夜| 天天操日日干夜夜撸| 九色成人免费人妻av| 黄色视频在线播放观看不卡| 人妻一区二区av| 国产黄色免费在线视频| 国产精品女同一区二区软件| 黄网站色视频无遮挡免费观看| 亚洲人成网站在线观看播放| 国产精品国产三级专区第一集| 制服人妻中文乱码| 免费看av在线观看网站| 在线精品无人区一区二区三| 国产欧美日韩综合在线一区二区| 热re99久久国产66热| 男人舔女人的私密视频| 深夜精品福利| 最黄视频免费看| 在线观看三级黄色| 亚洲色图综合在线观看| 久久精品国产亚洲av天美| 久久久国产精品麻豆| 99香蕉大伊视频| 一级毛片电影观看| 18禁在线无遮挡免费观看视频| 我要看黄色一级片免费的| 国产欧美日韩一区二区三区在线| 少妇高潮的动态图| 又大又黄又爽视频免费| 校园人妻丝袜中文字幕| 飞空精品影院首页| 99国产综合亚洲精品| 久久人人爽人人爽人人片va| a级毛色黄片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久人妻| 久久久久久久久久久免费av| 爱豆传媒免费全集在线观看| 激情视频va一区二区三区| 亚洲精品美女久久av网站| 又大又黄又爽视频免费| 亚洲成人手机| 亚洲第一av免费看| 这个男人来自地球电影免费观看 | 男女边摸边吃奶| 人人澡人人妻人| 性色av一级| 在线天堂最新版资源| 国国产精品蜜臀av免费| 一边摸一边做爽爽视频免费| av有码第一页| 黑人高潮一二区| 丰满饥渴人妻一区二区三| 欧美最新免费一区二区三区| 国产成人精品婷婷| 在线观看www视频免费| 看免费成人av毛片| 国产精品人妻久久久影院| 韩国高清视频一区二区三区| 少妇高潮的动态图| 各种免费的搞黄视频| a级毛片黄视频| 亚洲,欧美精品.| 欧美日韩视频精品一区| 国产免费视频播放在线视频| 久久精品国产a三级三级三级| 国产av码专区亚洲av| 免费久久久久久久精品成人欧美视频 | 中文字幕人妻熟女乱码| 亚洲高清免费不卡视频| 欧美精品高潮呻吟av久久| 边亲边吃奶的免费视频| 久久久久人妻精品一区果冻| 内地一区二区视频在线| 中文天堂在线官网| 精品少妇久久久久久888优播| 蜜桃国产av成人99| 久久久久久久久久成人| 日本与韩国留学比较| 久久影院123| a级毛色黄片| 国产毛片在线视频| 国产精品成人在线| 久久人人爽av亚洲精品天堂| 国产乱来视频区| 久久这里有精品视频免费| 欧美亚洲 丝袜 人妻 在线| 9191精品国产免费久久| 亚洲丝袜综合中文字幕| 免费观看a级毛片全部| 嫩草影院入口| 精品99又大又爽又粗少妇毛片| 免费观看在线日韩| 免费久久久久久久精品成人欧美视频 | 国产精品99久久99久久久不卡 | 亚洲高清免费不卡视频| 久热这里只有精品99| 国产熟女午夜一区二区三区| 久久午夜福利片| 精品视频人人做人人爽| 亚洲丝袜综合中文字幕| 大陆偷拍与自拍| 国产国拍精品亚洲av在线观看| 丝袜脚勾引网站| 亚洲在久久综合| 欧美精品国产亚洲| 熟妇人妻不卡中文字幕| 美女大奶头黄色视频| 人人澡人人妻人| 免费黄频网站在线观看国产| 日韩免费高清中文字幕av| 精品一品国产午夜福利视频| 免费观看a级毛片全部| 一本大道久久a久久精品| 久久久久精品人妻al黑| 男女边吃奶边做爰视频| 精品人妻一区二区三区麻豆| 制服诱惑二区| av电影中文网址| 伦精品一区二区三区| 2018国产大陆天天弄谢| 三上悠亚av全集在线观看| 久久免费观看电影| 亚洲成人手机| 色5月婷婷丁香| 一本色道久久久久久精品综合| 另类精品久久| 中文天堂在线官网| av国产久精品久网站免费入址| 午夜福利,免费看| 国产精品国产三级国产av玫瑰| 婷婷色av中文字幕| 国产av码专区亚洲av| 免费观看无遮挡的男女| 午夜视频国产福利| 免费播放大片免费观看视频在线观看| 亚洲五月色婷婷综合| 免费观看在线日韩| 久久人人爽av亚洲精品天堂| 巨乳人妻的诱惑在线观看| 久久精品久久久久久噜噜老黄| 国产乱来视频区| 成人毛片60女人毛片免费| 毛片一级片免费看久久久久| 男人添女人高潮全过程视频| 日本wwww免费看| 青春草国产在线视频| 国产高清不卡午夜福利| 一级a做视频免费观看| 在线观看www视频免费| 在线天堂最新版资源| 视频中文字幕在线观看| 一个人免费看片子| 亚洲av电影在线进入| 99久久中文字幕三级久久日本| 久久久久久久大尺度免费视频| 伊人亚洲综合成人网| 91在线精品国自产拍蜜月| 麻豆乱淫一区二区| 亚洲,欧美,日韩| 美女国产视频在线观看| 亚洲高清免费不卡视频| 日韩精品免费视频一区二区三区 | 亚洲国产av影院在线观看| 麻豆乱淫一区二区| 精品国产一区二区三区久久久樱花| 色哟哟·www| 国产乱人偷精品视频| 一级片免费观看大全| 一本大道久久a久久精品| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 国产欧美亚洲国产| 97在线视频观看| 国产精品一二三区在线看| 美女视频免费永久观看网站| 老司机影院毛片| 久久 成人 亚洲| 国产免费又黄又爽又色| 一级毛片黄色毛片免费观看视频| 卡戴珊不雅视频在线播放| 97超碰精品成人国产| 一本—道久久a久久精品蜜桃钙片| 18禁动态无遮挡网站| 1024视频免费在线观看| 精品久久久精品久久久| 岛国毛片在线播放| 久久久久视频综合| 爱豆传媒免费全集在线观看| 老司机亚洲免费影院| 热99久久久久精品小说推荐| 2018国产大陆天天弄谢| 内地一区二区视频在线| 国产精品国产三级专区第一集| 男人爽女人下面视频在线观看| 色94色欧美一区二区| 久久国产亚洲av麻豆专区| 国产毛片在线视频| 男女高潮啪啪啪动态图| av在线老鸭窝| 极品人妻少妇av视频| 99久久人妻综合| 看非洲黑人一级黄片| 国产精品熟女久久久久浪| 色网站视频免费| 精品国产国语对白av| 在线精品无人区一区二区三| 亚洲精品国产色婷婷电影| 亚洲国产毛片av蜜桃av| 伊人亚洲综合成人网| 性色avwww在线观看| 亚洲精品一二三| 最近最新中文字幕免费大全7| 亚洲av综合色区一区| 午夜福利网站1000一区二区三区| 日日爽夜夜爽网站| 亚洲精品一二三| 国产成人精品婷婷| 亚洲国产精品国产精品| 免费人妻精品一区二区三区视频| 成年人午夜在线观看视频| 亚洲国产精品一区二区三区在线| 日韩免费高清中文字幕av| 性高湖久久久久久久久免费观看| 两个人看的免费小视频| 久久婷婷青草| 国产欧美另类精品又又久久亚洲欧美| 免费黄网站久久成人精品| 日本与韩国留学比较| 亚洲欧美一区二区三区国产| 曰老女人黄片| 9色porny在线观看| 日韩精品免费视频一区二区三区 | 国产视频首页在线观看| 晚上一个人看的免费电影| 久久久久久久久久久久大奶| 最近手机中文字幕大全| 久久女婷五月综合色啪小说| 丰满迷人的少妇在线观看| 一级爰片在线观看| 国产国语露脸激情在线看| 性色av一级| 午夜日本视频在线| 成年人午夜在线观看视频| 国产有黄有色有爽视频| 亚洲婷婷狠狠爱综合网| 亚洲av电影在线进入| 99久久综合免费| av有码第一页| 久久青草综合色| 熟女av电影| 欧美精品av麻豆av| 久久狼人影院| 国产欧美另类精品又又久久亚洲欧美| av黄色大香蕉| 久久精品国产a三级三级三级| 国产精品无大码| 侵犯人妻中文字幕一二三四区| 满18在线观看网站| 最近手机中文字幕大全| 国产免费现黄频在线看| xxxhd国产人妻xxx| www.av在线官网国产| 精品卡一卡二卡四卡免费| 久久99一区二区三区| 黄网站色视频无遮挡免费观看| 免费播放大片免费观看视频在线观看| 国产xxxxx性猛交| 两个人看的免费小视频| 色网站视频免费| a 毛片基地| 免费观看a级毛片全部| 91成人精品电影| 一级毛片电影观看| 五月开心婷婷网| 在现免费观看毛片| 国产一区二区三区av在线| 十八禁高潮呻吟视频| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| videossex国产| 纵有疾风起免费观看全集完整版| 蜜桃国产av成人99| 免费不卡的大黄色大毛片视频在线观看| av视频免费观看在线观看| 日韩成人av中文字幕在线观看| 人体艺术视频欧美日本| 亚洲人与动物交配视频| 日韩精品有码人妻一区| 成年动漫av网址| xxxhd国产人妻xxx| 天堂中文最新版在线下载| 亚洲精品成人av观看孕妇| 日韩中字成人| 青春草视频在线免费观看| 在线观看国产h片| 90打野战视频偷拍视频| 久久久久精品性色| av福利片在线| 国产又爽黄色视频| 成人漫画全彩无遮挡| 夫妻性生交免费视频一级片| 少妇 在线观看| 亚洲av成人精品一二三区| 在线观看免费视频网站a站| av国产精品久久久久影院| 永久网站在线| 亚洲精品456在线播放app| 18禁裸乳无遮挡动漫免费视频| 熟女av电影| 日韩欧美精品免费久久| 汤姆久久久久久久影院中文字幕| 日日啪夜夜爽| 制服人妻中文乱码| 人体艺术视频欧美日本| 建设人人有责人人尽责人人享有的| 国产成人91sexporn| 18+在线观看网站| 18禁在线无遮挡免费观看视频| 久久久亚洲精品成人影院| 免费黄网站久久成人精品| 又粗又硬又长又爽又黄的视频| 久久久久久久久久成人| 国内精品宾馆在线| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 日韩中字成人| 国产成人精品一,二区| 日本av手机在线免费观看| 免费观看在线日韩| 国产成人欧美| 国产男女内射视频| 欧美激情极品国产一区二区三区 | 街头女战士在线观看网站| 日本91视频免费播放| 久久人人爽av亚洲精品天堂| 成年美女黄网站色视频大全免费| 另类精品久久| 国产亚洲欧美精品永久| 日韩在线高清观看一区二区三区| xxxhd国产人妻xxx| 久久久久久久久久久免费av| 午夜久久久在线观看| 国产成人a∨麻豆精品| 久久久欧美国产精品| 欧美另类一区| 午夜免费观看性视频| 夫妻午夜视频| 国产午夜精品一二区理论片| 青春草亚洲视频在线观看| 国产在线视频一区二区| 国产综合精华液| 成年人免费黄色播放视频| 99九九在线精品视频| 熟女电影av网| 色婷婷久久久亚洲欧美| 精品人妻偷拍中文字幕| 麻豆精品久久久久久蜜桃| 少妇被粗大猛烈的视频| 亚洲国产成人一精品久久久| 日韩不卡一区二区三区视频在线| 亚洲美女搞黄在线观看| 亚洲av男天堂| 美女中出高潮动态图| 欧美精品av麻豆av| 91精品三级在线观看| 国产免费视频播放在线视频| 插逼视频在线观看| 国产精品一区www在线观看| 欧美日韩成人在线一区二区| 如何舔出高潮| 国产一区二区在线观看av| 精品一区二区三卡| 亚洲精品乱码久久久久久按摩| 美女内射精品一级片tv| av有码第一页| 国产精品嫩草影院av在线观看| av在线观看视频网站免费| 熟妇人妻不卡中文字幕| av免费在线看不卡| 巨乳人妻的诱惑在线观看| 欧美国产精品一级二级三级| 亚洲国产精品999| 黄色怎么调成土黄色| 夫妻性生交免费视频一级片| 亚洲国产色片| 黄片无遮挡物在线观看| 韩国精品一区二区三区 | 狠狠精品人妻久久久久久综合| 国产欧美另类精品又又久久亚洲欧美| 少妇被粗大的猛进出69影院 | 97在线人人人人妻|