• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lower-Order Penalty Approach for Second-Order Cone Nonlinear Complementarity Problems

    2020-01-10 05:48:16HAOZijun郝自軍ZHANGYudong張玉棟YUGuolin余國林
    應(yīng)用數(shù)學(xué) 2020年1期

    HAO Zijun(郝自軍),ZHANG Yudong(張玉棟),YU Guolin(余國林)

    ( 1.School of Mathematics and Information Science,North Minzu University,Yinchuan 750021,China; 2.Zaozhuang Vocational College of Science and Technology,Tengzhou 277500,China)

    Abstract: Lower-order penalty approach,which is the extension of the power penalty approach,is proposed for solving second-order cone nonlinear complementarity problems(SOC-NCPs).And the SOC-NCP is converted to asymptotic nonlinear equations.The merit of this approach shows that the solution sequence of the asymptotic nonlinear equations converges to the solution of the SOC-NCP at an exponential rate when the penalty parameter tends to positive infinity under mild assumptions.Numerical results are reported to examine the efficiency of the proposed approach.

    Key words: Second-order cone; Nonlinear complementarity problem; Lower-order penalty algorithm; Exponential convergence rate

    1.Introduction

    In this paper,we consider the second-order cone nonlinear complementarity problem(SOC-NCP)[1–4],which is to find vectorx ∈Rn,such that

    whereF:Rn→Rnis continuously differentiable vector-valued function,denotes the Euclidean inner product,andK ?Rnis a Cartesian product of second-order cones (SOCs),also called Lorentz cones.In other words,

    withl,n1,··· ,nl ≥1,n1+···+nl=n,andKni ?Rni(i=1,··· ,l)being theni-dimensional SOC,i.e.,

    where||·||denotes the Euclidean norm.If someni=1,K1denotes the set of nonnegative set of real numbers R+.It is obvious thatKis a closed,convex and self-dual cone in Rn.In this paper,if there is no ambiguity,for convenience,we use semicolon to denote the concatenation of two column vectors.Therefore,(x1;x2):=(x1,xT2)Tin (1.3)and we notex=(x1;···;xl)withxi ∈Rni(i=1,··· ,l)corresponding to the structure ofK.In particular,when the mappingFis only considered as an affine function,the SOC-NCP(1.1)reduces to the secondorder cone linear complementarity problem (SOC-LCP).More over,whenn1=···=nl=1,SOC-NCP and SOC-LCP reduce to the nonlinear complementarity problem(NCP)and linear complementarity problem (LCP)in ordinary nonnegative quadrant respectively.

    For the generalized second-order cone complementarity problem (SOCCP)[1–4],which is to find vectorsu,v ∈Rnandζ ∈Rm,such that

    whereE:R2n+m→Rn+mis a continuously differentiable mapping,denotes the Euclidean inner product,andKis given by (1.2).IfE(u,v,ζ)in (1.4)does not involve the variableζand has a special formE(u,v,ζ)=v?F(u),then SOCCP (1.4)reduces to SOC-NCP (1.1).Therefore,the SOC-NCP (1.1)is a special case of the SOCCP (1.4),and it seems rather restrictive.However,for the following second-order cone programming (SOCP):

    wheref:Rs→R andg:Rs→Rt(including nonlinear functions)are continuously differentiable functions,andKis some Cartesian product of SOCs.It is worth noting that the Karush-Kuhn-Tucker (KKT)conditions of (1.5)can be written in the form of the SOC-NCP(1.1)(see the concluding remarks in [4]).Particularly,if the SOCP (1.5)is convex problem,then a pointz?is one solution of (1.5)whenever the point satisfies the KKT conditions of the SOCP under appropriate constraint qualification (CQ)[5].Therefore,SOC-NCP (1.1)is closely related to the SOCP.

    The SOCP and SOCCP have broad range of applications in engineering design,control,finance,management science,mechanics and economics etc.[6?7]During the last two decades,extensive researches have been done for them and various numerical approaches for solving them have been proposed,such as the interior-point approach[6],the smoothing Newton approach and the smoothing-regularization approach[1,4,8],the semismooth Newton approach[9],the merit function approach[10]and other approaches.[11?12]Some approaches are required for solving an associated Newton equations in whichO(n3)flops are involved,which might be inefficient when the dimension of the problem gets large[11].

    It is well-known that the penalty function approach occupies an important place in solving constrained optimization problem.Thel1penalty function and lower-order penalty functions possess many nice properties and attract much attention[13].In [14],WANG and YANG proposed a power penalty approach for solving the LCPs.By this approach,LCP can be converted to asymptotic nonlinear equations.The merit of this approach shows that the solution sequence of the asymptotic nonlinear equations converge to the solution of the LCP at an exponential rate when the penalty parameter tends to positive infinity under some mild assumptions.In [15–17],the power penalty approach has been extended to solve the NCPs,SOC-LCPs and SOC-NCPs respectively,and the solution sequence of the asymptotic nonlinear equations inherit the exponential convergence rate under some assumptions.Actually,the power penalty approach is only a kind of the lower-order penalty approach.The power in the former is only the kind of 1/k(k ∈Z+),which doesn’t represent all real numbers in (0,1]corresponding to general lower-order penalty approach.Therefore,it is very necessary to extend the power like 1/k(k ∈Z+)to any real number in (0,1].The extension was already considered for the SOC-LCPs[18].In this paper,we will consider the extension for more general SOC-NCPs (1.1).

    Under the assumption thatF(x)isξ-monotone,the unique solvability of SOC-NCP and asymptotic nonlinear equations are obtained,where the equivalence of the complementarity problem and some variational inequality play an important role.We prove that the solutions of asymptotic nonlinear equations converges to the solution of the SOC-NCP at an exponential rateO(σ?1/rξ)when the penalty parameterσ→+∞.If theξ-monotone ofF(x)is not satisfied,we still show that any limit point of solution sequence,if exist,solves the SOC-NCP(1.1)provided thatF(x)is continuous,but the convergence rate is unknown in this situation.The corresponding algorithm is constructed,and numerical examples indicate the feasibility of our approach.

    The rest of this paper is organized as follows.Some preliminary results for SOC are presented in Section 2.In Section 3,the lower-order penalty approach is proposed for solving the SOC-NCP(1.1).An algorithm based on this approach is constructed and the convergence analysis is proved.In Section 4,some numerical implementation demonstrate our theoretical findings.Finally,we give the conclusions.Throughout this paper,we use intKand bdKto denote the interior and the boundary ofKrespectively.For anyx,yin Rn,we write(or)ifx?y ∈K,and write(or)ifx?y ∈intK.Thus,0 iffx ∈K,and0 iffx ∈intK.The notation||·||pdenotes the usuallp-norm on Rnfor anyp ≥1.In particular,it is Euclidean norm||·||whenp=2.

    2.Preliminary Results

    We give some preliminary results for a single block SOC in this section,i.e.,K=Kn,since our analysis can be easily extended to the general case(1.2).For anyx=(x1;x2)∈R×Rn?1andy=(y1;y2)∈R×Rn?1,their Jordan product[6,19]is defined as

    We usex2to meanx?xand usex+yto denote the usual componentwise addition of vectors.It is easy to see that the Jordan product is commutative ande=(1,0,··· ,0)T∈Rnis the identity element.The Jordan product is not associative forn >2 in general.However,we havex ?(x ?x)=(x ?x)?xfor anyx ∈Rn.Thus,for any positive integerk,the formxkis definite.We definex0=eifx0 and recursively define the powers of element asxk=x ?xk?1for any integerk ≥1.Therefore,the equalityxm+n=xm ?xnholds for any positive integermandn.The inverse ofxis denoted byx?1,satisfyingx ?x?1=e.For any positive integerk,we definex?k=(xk)?1ifx ∈intKn.Note thatKnis not closed under the Jordan product forn>2 in general.The Jordan product (2.1)is associated withKnvia some useful facts,such as the trace and the determinant ofx ∈Rnas well as square root,absolute value vector.For more details of these concepts,we can refer to [1,3,6,19].By the properties of SOC,=0 if and only ifx ?y=0 for anyx,y ∈Kn.[1,6]Thus,the complementarity conditions can be stated by the Jordan product equivalently.

    Next,we introduce the spectral factorization of vectors in Rnassociated withKn.[1,3]

    For any vectorx=(x1;x2)∈R×Rn?1,the vector can be decomposed as

    whereλ1,λ2are the spectral values andu(1),u(2)are the associated spectral vectors.They are respectively given by

    withwbeing any unit vector in Rn?1.The decomposition (2.2)-(2.3)is unique ifx2≠0.It is obvious thate=u(1)+u(2)andλ1≤λ2.Now we give some basic properties of spectral factorization.

    Property 2.1[1]For anyx=(x1;x2)∈R×Rn?1,suppose that the spectral factorization ofxis given by (2.2)-(2.3).Then the following results hold.

    1)u(1)andu(2)are orthogonal under the Jordan product and have lengthi.e.,

    2)u(1)andu(2)are idempotent under the Jordan product,i.e.,u(i)?u(i)=u(i),i=1,2;

    3)λ1is nonnegative (positive)if and only ifx ∈Kn(x ∈intKn).

    The spectral factorization (2.2)-(2.3)and Property 2.1 provide a very useful tool for evaluating the functions defined by the powers of Jordan product.For example,we havex2=(λ1u(1)+λ2u(2))?(λ1u(1)+λ2u(2))=λ21u(1)+λ22u(2)for anyx ∈Rn.Therefore,the spectral values ofx2are nonnegative andx2∈Kn.On the contrary,for anyx ∈Knwith spectral factorization (2.2)-(2.3),we havethenw2=x.By the uniqueness of the square root,we haveThese show that squaring or taking square-root on a vector is the same as squaring or taking square-root on the spectral values,and the associated spectral vectors remain invariant.

    By using the spectral factorization (2.2)-(2.3),a scalar function:R→R can be extended to an SOC vector-valued function associated withKn(n ≥1)[1?2],which is given by

    whereλ1,λ2are the spectral values andu(1),u(2)are the associated spectral vectors(see(2.3)).

    For anyx ∈Rn,the nearest-point (in the Euclidean norm)ofxontoKn,denoted byPKn(x),is called the projection ofx,i.e.,PKn(x)∈Knand satisfying

    Clearly,the projection (2.5)reduces to [t]+=max {0,t} fort ∈R whenn=1.The following lemma shows that|x|andPKn(x)have the form (2.4)(see [1,Proposition 3.3]).

    Lemma 2.1For anyx=(x1;x2)∈R×Rn?1with spectral factorization (2.2)-(2.3),then

    1)|x|=(x2)1/2=|λ1|u(1)+|λ2|u(2);

    2)The projection ofxonKncan be written asPKn(x)=(x+|x|)/2=[λ1]+u(1)+[λ2]+u(2),where for any scalarα ∈R,[α]+=max {0,α}.

    Similar to the concept of projection onKn,define[8]

    for any vectorxwith spectral factorization(2.2)-(2.3),where[λi]?=max {0,?λi}fori=1,2.It is obvious that(x)means the projection point of?xontoKn,and it can be seen that

    3.Lower-order Penalty Algorithm and Convergence Analysis

    In this section,we propose the lower-order penalty algorithm for solving SOC-NCP(1.1),and the corresponding convergence analysis is also given.In the rest of this paper,unless otherwise specified,Kdenotes the Cartesian product of SOCs (1.2).

    Now we consider the lower-order penalty equations (LPEs):For any power parameterr ∈(0,1],findx ∈Rn,such that

    whereσ ≥1 is the penalty parameter,and (PK(z))rfor allz=(z1;···;zl)is defined as

    provided that the spectral factorization forzi ∈Rnibeingzi=μ1v(1)+μ2v(2).

    The penalty termσ(PK(?x))rin LPEs(3.1)penalizes the negative part ofxwhenx ∈Kis violated.It’s easy to see thatF(x)∈Kis always satisfied due toσ(PK(?x))r ∈K.Supposexσbeing the solution of LPEs(3.1)aboutσ.We expect the solution sequence {xσ}converges to the solution of SOC-NCP (1.1)whenσ→+∞,and the convergence rate clearly depends on the power parameterr.Thus,we convert SOC-NCP (1.1)into asymptotic LPEs.Based on this idea,an algorithm for solving SOC-NCP (1.1)is suggested as following:

    Algorithm 3.1

    Step 0 Given a continuous functionF=(F1;···;Fl)and variablex=(x1;···;xl)withFi:Rn→Rni,xi ∈Rni,i=1,··· ,lfor SOC-NCP (1.1).Set ?x=0 in Rn;

    Step 1 IfF(0)∈K,stop,and go to Step 5; else,go to Step 2;

    Step 2 Given a power parameter 01,select an initial pointwithand takewhenfor convenience.

    Step 3 For penalty parameterσand initial iteration pointx(0),solve LPEs (3.1).Suppose thatxσis the solution of this equations.Let Tol=|xTσF(xσ)|.

    Step 4 If Tol≤eps,set=xσ,stop,and go to Step 5; else,letx(0)=xσ,σ=cσ,and go to Step 3.

    Next,we discuss the theoretical properties and convergence analysis of Algorithm 3.1.We consider it in two cases,one is under monotonic assumption,and the other without monotonic assumption.Some numerical implementation of Algorithm 3.1 will be presented in next section.

    ⅠConvergence analysis under monotonic assumption

    An assumption is given first,then on the basis of this assumption,the unique solvability of the SOC-NCP (1.1)and the LPEs (3.1)are shown.Finally,the upper bound for the distance between the solution of LPEs (3.1)and that of SOC-NCP (1.1)is established.

    Assumption 3.1Fisξ-monotone on Rn,i.e.,there exist constantsα >0 andξ >1,such that

    It is obvious that strongly monotonic function must beξ-monotone function,but the inverse is not true.It is well-known that the SOC-NCP (1.1)is equivalent to the following variational inequality (VI(K,F))[7]:Findx?∈K,such that

    By Theorem 2.3.3 in [7],the VI(K,F)admits a unique solution whileF(x)is continuous andξ-monotone.Therefore,the SOC-NCP (1.1)is unique solvable under Assumption 3.1.Note that nonlinear equations being special case of variational inequality,thus,the unique solvability of LPEs (3.1)can be considered by variational inequality.By Proposition 4.1 in[17],the function (PK(z))1/kis monotone on Rnfork ≥1.Similarly,by replacing 1/kwithrin the proof,we can get (PK(z))ris also monotone on Rnfor any parameterr ∈(0,1].

    Proposition 3.1Suppose that Assumption 3.1 holds.Then,for any parametersσ ≥1 andr ∈(0,1],the LPEs (3.1)admit a unique solution.

    ProofDue to theξ-monotone ofF,there exist constantsα >0 andξ >1,such that(3.3)holds for anyx,y ∈Rn.For any parametersσ ≥1 andr ∈(0,1],by the monotonicity of (PK(·))r,we have

    This formula indicates that the functionF(x)?σ(PK(?x))risξ-monotone.Therefore,LPEs(3.1)admit a unique solution.

    Under Assumption 3.1,SOC-NCP(1.1)and LPEs(3.1)all have a unique solution.Next,we establish some upper bound for the distance between the unique solution of SOC-NCP(1.1)and that of LPEs (3.1).For convenience,the block component form ofxσ,which is the unique solution of LPEs (3.1)for any parametersσ ≥1 andr ∈(0,1],is denoted by

    Proposition 3.2For anyσ ≥1 andr ∈(0,1],the solution of LPEs (3.1)is bounded,i.e,there exists a positive constantM,independent ofxσ,σandr,such that||xσ||≤M.

    The proof is similar to Proposition 4.3 in [17]by replacing 1/kwithr,and we omit the detail.By Proposition 3.2 and the continuity ofF(x),||F(xσ)||is also bounded for anyσ ≥1 andr ∈(0,1],i.e.,there exists a positive constantL,independent ofxσ,σandr,such that

    Suppose that the vectorx?is the exact solution of SOC-NCP (1.1).We expect thatxσ→x?asσ→+∞.Notingx?∈K,we expectPK(?xσ)→0,which plays an important role in the convergence analysis.The following proposition gives an upper bound of||PK(?xσ)||.The detailed proof,which we omit,is similar to Proposition 4.4 in [17]by replacing 1/kwithr.

    Proposition 3.3For anyσ ≥1 andr ∈(0,1],there exists a positive constantC,independent ofxσandσ,such that

    Based on Propositions 3.2 and 3.3,the following theorem gives the desired result.

    Theorem 3.1For anyσ ≥1 andr ∈(0,1],there exists a positive constantC,independent ofxσandσ,such that

    ProofFollowing from (3.5),x??xσcan be decomposed as

    Now we consider the estimation of the||x??xσ||.Ifrσ=0,the inequality (3.8)is trivially satisfied due to (3.7)and (3.9).In the following,we only considerrσ≠0.Noting(?xσ)∈K,from (3.10),replacingxin VI(K,F)(3.4)by(?xσ)yields

    By left-multiplying both sides of LPEs (3.1)byrσ,we have

    Adding up (3.11)and (3.12),we get

    From (3.10)and the definition of (PK(?xσ))rin (3.2),we have

    Applying this inequality to (3.13)yieldsrTσ(F(xσ)?F(x?))≥0,i.e.,rTσ(F(x?)?F(xσ))≤0.Yetrσ=x??xσ?PK(?xσ)from (3.9),then

    From the last inequality,Assumption 3.1,the Cauchy-Schwarz inequality,triangle inequality and (3.6),there exist constantsα>0 andξ >1,such that

    By dividingαon both sides of (3.14),we get

    Finally,by Proposition 3.3,||PK(?xσ)||≤C′/σ1/rfor some constantC′.SetC:=which is obvious independent ofxσandσ.Takingξ-root on both sides of (3.15)yields (3.8).This completes the proof.

    From Theorem 3.1,we see that the solution sequence{xσ} of LPEs (3.1)converges to the solution of SOC-NCP (1.1)at an exponential rate whenσ→+∞provided thatFis continuous andξ-monotone.

    ⅡConvergence analysis without monotonic assumption

    We give the convergence analysis without monotonic Assumption 3.1 for the continuous functionF(x).For any penalty parameterσisatisfying limi→∞σi=+∞,suppose that the solution of LPEs (3.1)exists.We will show that any limit point of solution sequence solves SOC-NCP (1.1),which is given in the following theorem.

    Theorem 3.2For any power parameter 0< r ≤1,let{σi} be a sequence of positive numbers satisfyingσi >1 for anyi=1,2,···andσi→∞asi→∞.For anyσi,suppose that the solution of LPEs (3.1)exists and is denoted byxσi.IfF(x)is continuous,then any limit point of{xσi} solves SOC-NCP (1.1).

    ProofFor anyσi >1,sincexσiis the solution of LPEs (3.1)aboutσi,we have

    From (3.16),we haveF(xσi)=σi(PK(?xσi))r ∈K.By takingi→∞in this formula,from the continuity ofF(x)and the closeness ofK,we have

    Next,we prove

    Suppose to the contrary that there exists at least an indexj ∈{1,··· ,l},such that/∈Knj.By settingε:=||(PKnj(?))r||,thenε >0.Therefore,from (3.18),wheniis sufficiently large,xσij ∈/KnjandAt the same time,from (3.16),we have

    which contradicts (3.17).Thus (3.20)is true.

    Now let us show that

    By takingi→∞on both sides of (3.22)and denoting limi→∞(σi[?μ1(i)]r+)=c ≥0,we haveFj()=cv(1).Therefore,

    Three cases from above,we get ()TFj()=0 for everyj=1,··· ,l.Thus,(3.21)holds.

    Finally,it follows from (3.19),(3.20)and (3.21)thatsolves SOC-NCP (1.1).Since the limit pointis taken arbitrary,therefore,any limit point of{xσi} solves SOC-NCP (1.1).

    4.Numerical Experiments

    In this section,some numerical implementation for SOC-NCP(1.1)will be studied based on Algorithm 3.1.In the following tables of test results,IP(x0),Val,Iter and CPU(s)denote the initial points,the|xTσF(xσ)|,the iteration and the CPU time for solving problem respectively.The discrete Newton method is used to solve nonlinear equations for all examples,all the program codes are written in MATLAB and run in MATLAB7.8 environment,all numerical experiments are done at a PC with Inter(R)Core(TM)i5-2410M CPU of 2.3 GHz and RAM of 1 GB.

    First,we consider Example 4.1[4,20]by fixing a power parameterr ∈(0,1](takingr=for example)and using different initial points.

    Example 4.1Consider the SOC-NCP (1.1)onK3,the test functionF:R3→R3is given as

    It can be seen thatFisξ-monotone but not strong monotone,sinceFcomprised of cubic and constant terms and it’s JacobianF′(x)=diag(0.21x21,0.12x22,0.09x23)is only positive semidefinite.This example has a unique solutionx?=(5,3,4)T.[20]In numerical tests,we choose initialσ=1000,multiple parameterc=10 and employ|xTσF(xσ)| <1e-6 as the termination criterion.For different initial points,the test results are listed in Tab.4.1,which show that Algorithm 3.1 is insensitive for initial points.

    Tab.4.1 Numerical results for Example 4.1(r=/3)

    Tab.4.1 Numerical results for Example 4.1(r=/3)

    IP(x0)Val Iter CPU(s)(1,1,1)1.4957e-7 3 1.4?(1,1,1)1.4433e-7 3 1.4(10,10,10)1.8747e-7 3 1.4?(10,10,10)2.8094e-7 3 1.5(103,103,103)6.1152e-8 3 1.8(106,106,106)1.9472e-7 3 2.2

    Next,we consider Example 4.2[17]by fixing an initial point and using different power parametersr ∈(0,1].

    Example 4.2Consider the following SOC-NCP (1.1)onK=K4×K4:

    wherea=(10,5,?4,?8)T,c=(6,2,?3,?5)T,d=(6,3.5,?7.5,?3.5)T,b=(1,0,0,0)Tand the diagonal matrixA=diag(5/3,1,?4,2).

    This example has one solutionx?=(x?1,x?2)withx?1=(3,?2,1,2)Tandx?2=(3,1,2,?2)T.In numerical tests,we choose fixed initial point (10,··· ,10)T∈R8,initial penalty parameterσ=10,multiple parameterc=4,and employ|xTσ(F(xσ))| <1e-5 as the termination criterion.For different power parametersr ∈(0,1],the test results are listed in Tab.4.2.

    Tab.4.2 Numerical results for Example 4.2

    We see from Tab.4.2 that,with the decrease of parameterr,Algorithm 3.1 requires lesser iteration,which is coincide with the theoretical result.But meanwhile,Algorithm 3.1 requires more computing time.

    Finally,we note that the numerical performance of the power penalty approach[16]is comparable with smoothing F-B merit method(SMFM)[1].The lower-order penalty approach is the extension of the power penalty approach,in which the range of power parameters is much broader.Therefore the numerical performance of the lower-order penalty approach is at least comparable with SMFM.

    5.Conclusions

    Based on the LPEs(3.1),we extend the power penalty approach to the general lower-order penalty approach for solving SOC-NCPs(1.1).Under the assumption thatF(x)is continuous andξ-monotone,the SOC-NCP (1.1)and the LPEs (3.1)are all uniquely solvable,and the solution sequence of LPEs converges to the solution of the SOC-NCP at an exponential rate.IfF(x)is only continuous,then any limit point of solution sequence to LPEs solves the SOCNCP,but the convergence rate is unknown in this situation.The numerical examples shows the feasibility of our approach,and the numerical performance of the lower-order penalty approach is at least comparable with SFBM used by Fukushima et al.[1]

    亚洲国产精品合色在线| 亚洲aⅴ乱码一区二区在线播放| 六月丁香七月| 韩国av在线不卡| 午夜久久久久精精品| 国产精品人妻久久久久久| 国产老妇女一区| 午夜福利在线在线| 日韩三级伦理在线观看| 91久久精品国产一区二区成人| 久久久久网色| 联通29元200g的流量卡| 三级国产精品欧美在线观看| 国产av不卡久久| 欧美成人a在线观看| 婷婷色av中文字幕| 黄色配什么色好看| 看非洲黑人一级黄片| 国产精品女同一区二区软件| 超碰97精品在线观看| 国产又色又爽无遮挡免| 国产乱人视频| 欧美一区二区国产精品久久精品| 国产精品熟女久久久久浪| 99久久成人亚洲精品观看| 少妇高潮的动态图| 午夜日本视频在线| 一级二级三级毛片免费看| 久久精品夜色国产| 赤兔流量卡办理| 永久免费av网站大全| 97超视频在线观看视频| 国语对白做爰xxxⅹ性视频网站| 国产精品久久电影中文字幕| av福利片在线观看| 美女黄网站色视频| 国国产精品蜜臀av免费| 亚洲精品乱码久久久久久按摩| 欧美色视频一区免费| 一二三四中文在线观看免费高清| 少妇裸体淫交视频免费看高清| 狂野欧美白嫩少妇大欣赏| 老师上课跳d突然被开到最大视频| 亚洲av二区三区四区| 欧美bdsm另类| 成人无遮挡网站| 99久久人妻综合| 欧美不卡视频在线免费观看| eeuss影院久久| 天堂√8在线中文| 欧美激情在线99| 欧美精品国产亚洲| 蜜臀久久99精品久久宅男| 亚洲欧美成人综合另类久久久 | 国产精华一区二区三区| 韩国高清视频一区二区三区| 日本三级黄在线观看| 亚洲av中文字字幕乱码综合| 亚洲av二区三区四区| 边亲边吃奶的免费视频| 国产精品一及| 国产精品久久久久久av不卡| 亚洲精品456在线播放app| 中文字幕久久专区| 九九在线视频观看精品| 日韩中字成人| 国产成年人精品一区二区| 色哟哟·www| 美女内射精品一级片tv| 成人二区视频| 欧美高清成人免费视频www| 免费观看精品视频网站| 熟妇人妻久久中文字幕3abv| 午夜福利在线观看免费完整高清在| 美女大奶头视频| 男女国产视频网站| 国产精品熟女久久久久浪| 亚洲av电影不卡..在线观看| 亚洲成av人片在线播放无| 日本黄大片高清| 欧美bdsm另类| 中文字幕熟女人妻在线| 男插女下体视频免费在线播放| 中文字幕精品亚洲无线码一区| 99久久人妻综合| 秋霞伦理黄片| 中文亚洲av片在线观看爽| 久久精品久久久久久噜噜老黄 | 久久人妻av系列| 国产亚洲精品av在线| 亚洲中文字幕日韩| 国产精品综合久久久久久久免费| 最新中文字幕久久久久| 亚洲精品色激情综合| 一夜夜www| 午夜爱爱视频在线播放| 九九爱精品视频在线观看| videos熟女内射| 国产精品乱码一区二三区的特点| 日韩人妻高清精品专区| 久久久久精品久久久久真实原创| 精品午夜福利在线看| 一夜夜www| 麻豆成人午夜福利视频| 极品教师在线视频| 国产又黄又爽又无遮挡在线| 国产又色又爽无遮挡免| 国产高清不卡午夜福利| 久久久亚洲精品成人影院| 日韩精品有码人妻一区| 长腿黑丝高跟| 亚洲国产精品成人综合色| 简卡轻食公司| 久久人妻av系列| 女人久久www免费人成看片 | 国产精品国产三级国产专区5o | 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 成人毛片60女人毛片免费| 国产精品日韩av在线免费观看| 秋霞在线观看毛片| 女人久久www免费人成看片 | 精品酒店卫生间| 久久99热这里只有精品18| 午夜免费激情av| 国产高清三级在线| 成人毛片60女人毛片免费| 国产视频首页在线观看| 欧美成人午夜免费资源| 欧美一区二区精品小视频在线| 国产亚洲最大av| 超碰97精品在线观看| 三级经典国产精品| av又黄又爽大尺度在线免费看 | 国产av码专区亚洲av| 亚洲熟妇中文字幕五十中出| 韩国av在线不卡| 黄色配什么色好看| 久久久久久久久久黄片| 韩国高清视频一区二区三区| 日本黄色视频三级网站网址| 一级毛片久久久久久久久女| 国产久久久一区二区三区| 全区人妻精品视频| 99九九线精品视频在线观看视频| 日韩欧美国产在线观看| 91午夜精品亚洲一区二区三区| 18禁在线播放成人免费| 国产亚洲av片在线观看秒播厂 | 日韩中字成人| 国产美女午夜福利| 一级黄色大片毛片| 中国国产av一级| 午夜福利成人在线免费观看| 日本免费一区二区三区高清不卡| 亚洲国产精品成人综合色| 亚洲在线自拍视频| av免费观看日本| 97热精品久久久久久| 啦啦啦韩国在线观看视频| 亚洲真实伦在线观看| 欧美成人a在线观看| 免费观看精品视频网站| 中文欧美无线码| 一区二区三区免费毛片| 国产在线男女| 色综合亚洲欧美另类图片| 好男人在线观看高清免费视频| 色5月婷婷丁香| 亚洲伊人久久精品综合 | 九九在线视频观看精品| 日韩成人av中文字幕在线观看| 亚洲国产精品久久男人天堂| 身体一侧抽搐| 久久6这里有精品| 又黄又爽又刺激的免费视频.| 中文字幕av成人在线电影| 久久6这里有精品| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 春色校园在线视频观看| 内射极品少妇av片p| 日韩精品有码人妻一区| 国产精品久久视频播放| 级片在线观看| 精品一区二区三区人妻视频| 国产一区亚洲一区在线观看| 免费看美女性在线毛片视频| 国产淫片久久久久久久久| 亚洲国产精品国产精品| 特级一级黄色大片| 日韩一本色道免费dvd| 97超视频在线观看视频| 18禁在线无遮挡免费观看视频| 欧美3d第一页| 看黄色毛片网站| 身体一侧抽搐| 亚洲精品乱久久久久久| 色播亚洲综合网| 亚洲美女搞黄在线观看| 亚洲欧美日韩高清专用| 久久久久久久久久久丰满| 久久久久久九九精品二区国产| 日本爱情动作片www.在线观看| 国产 一区 欧美 日韩| 日日啪夜夜撸| 春色校园在线视频观看| 特级一级黄色大片| 一边亲一边摸免费视频| 一卡2卡三卡四卡精品乱码亚洲| 国产成人精品久久久久久| 亚洲av一区综合| 亚洲av成人精品一区久久| 人人妻人人澡欧美一区二区| 国产精品久久久久久精品电影小说 | 国产一级毛片七仙女欲春2| 乱人视频在线观看| 亚洲丝袜综合中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一边亲一边摸免费视频| 级片在线观看| 黄片wwwwww| 国产老妇伦熟女老妇高清| 内射极品少妇av片p| 欧美精品国产亚洲| 中文字幕免费在线视频6| 亚洲精品aⅴ在线观看| 日日干狠狠操夜夜爽| 成人一区二区视频在线观看| 亚洲av男天堂| 亚洲av不卡在线观看| av在线蜜桃| 丝袜美腿在线中文| 欧美日本视频| 日本猛色少妇xxxxx猛交久久| 九九爱精品视频在线观看| 精品熟女少妇av免费看| 男女视频在线观看网站免费| 高清视频免费观看一区二区 | 亚洲欧美日韩高清专用| 黄色日韩在线| 欧美激情在线99| 少妇的逼水好多| 久久久成人免费电影| 亚洲人与动物交配视频| h日本视频在线播放| 最近视频中文字幕2019在线8| 国产在视频线在精品| av在线观看视频网站免费| 亚洲欧美清纯卡通| 伦理电影大哥的女人| 亚洲最大成人av| 十八禁国产超污无遮挡网站| 亚洲欧美成人综合另类久久久 | 久久久成人免费电影| 成年免费大片在线观看| 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| 亚洲精华国产精华液的使用体验| 国产精品三级大全| 国产精品麻豆人妻色哟哟久久 | 国产免费视频播放在线视频 | 人人妻人人澡欧美一区二区| 最近的中文字幕免费完整| 高清午夜精品一区二区三区| videossex国产| av在线亚洲专区| 九色成人免费人妻av| 九九爱精品视频在线观看| 2021天堂中文幕一二区在线观| 国产老妇伦熟女老妇高清| 免费av不卡在线播放| 美女xxoo啪啪120秒动态图| 青春草视频在线免费观看| 热99在线观看视频| 99久国产av精品| 国产三级中文精品| 精品一区二区三区视频在线| 中文亚洲av片在线观看爽| 欧美激情在线99| 欧美日本视频| 激情 狠狠 欧美| 精品国内亚洲2022精品成人| 亚洲精品乱久久久久久| 国产亚洲av片在线观看秒播厂 | 天堂√8在线中文| 在线播放国产精品三级| 在线观看一区二区三区| 国产精品伦人一区二区| 国产一区二区三区av在线| 国产麻豆成人av免费视频| 中文亚洲av片在线观看爽| 一二三四中文在线观看免费高清| 看免费成人av毛片| 国产高清有码在线观看视频| 日本熟妇午夜| 69人妻影院| 久久亚洲国产成人精品v| 亚洲18禁久久av| 九九爱精品视频在线观看| 精品人妻视频免费看| 毛片女人毛片| 亚洲av中文字字幕乱码综合| 日韩人妻高清精品专区| 日韩成人av中文字幕在线观看| 午夜视频国产福利| 亚洲av免费在线观看| 欧美高清性xxxxhd video| 日本与韩国留学比较| 久久久国产成人免费| 小说图片视频综合网站| 精品久久久久久久末码| av福利片在线观看| 一边摸一边抽搐一进一小说| 三级经典国产精品| 性插视频无遮挡在线免费观看| 国产精品99久久久久久久久| 欧美性感艳星| 久久久久久久久久成人| 一级二级三级毛片免费看| 看片在线看免费视频| 日韩三级伦理在线观看| 精品久久久噜噜| 色综合亚洲欧美另类图片| 99热这里只有精品一区| 亚洲av成人精品一二三区| 久久精品久久久久久久性| 精品人妻偷拍中文字幕| 51国产日韩欧美| 国产精品一区二区性色av| 噜噜噜噜噜久久久久久91| 老司机福利观看| 亚洲精品亚洲一区二区| 最近2019中文字幕mv第一页| 中文字幕av成人在线电影| 亚洲国产精品成人久久小说| 永久免费av网站大全| 亚洲av免费高清在线观看| 高清午夜精品一区二区三区| 久久国内精品自在自线图片| 欧美三级亚洲精品| 淫秽高清视频在线观看| 精品无人区乱码1区二区| 两个人视频免费观看高清| 一卡2卡三卡四卡精品乱码亚洲| 中文亚洲av片在线观看爽| 嫩草影院精品99| 欧美成人一区二区免费高清观看| 高清在线视频一区二区三区 | 国产精品,欧美在线| 久久久久久久久久久丰满| 最新中文字幕久久久久| av线在线观看网站| 我的女老师完整版在线观看| 久久久a久久爽久久v久久| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产精品sss在线观看| 美女高潮的动态| 日日啪夜夜撸| 乱人视频在线观看| 国产探花极品一区二区| 精品免费久久久久久久清纯| 白带黄色成豆腐渣| 午夜老司机福利剧场| 亚洲成色77777| 亚洲高清免费不卡视频| 亚洲成人av在线免费| 一边摸一边抽搐一进一小说| 天堂中文最新版在线下载 | 中文精品一卡2卡3卡4更新| 国产 一区 欧美 日韩| 美女黄网站色视频| 精品国内亚洲2022精品成人| 综合色av麻豆| 国产精品99久久久久久久久| 女人十人毛片免费观看3o分钟| 日本熟妇午夜| 18禁在线无遮挡免费观看视频| 国产高清不卡午夜福利| 国内精品宾馆在线| 男女啪啪激烈高潮av片| 青春草视频在线免费观看| 丰满人妻一区二区三区视频av| 又爽又黄a免费视频| 国产成人免费观看mmmm| 又黄又爽又刺激的免费视频.| 国产欧美另类精品又又久久亚洲欧美| 亚洲丝袜综合中文字幕| 激情 狠狠 欧美| 欧美日韩国产亚洲二区| 最近中文字幕高清免费大全6| 国内精品一区二区在线观看| 欧美xxxx黑人xx丫x性爽| 插逼视频在线观看| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站 | 狂野欧美白嫩少妇大欣赏| 亚洲av中文av极速乱| 国产乱来视频区| 人人妻人人澡欧美一区二区| 亚洲国产成人一精品久久久| 美女国产视频在线观看| 亚洲三级黄色毛片| 色综合站精品国产| 日日摸夜夜添夜夜添av毛片| 天美传媒精品一区二区| 成年版毛片免费区| 一区二区三区乱码不卡18| 午夜福利在线观看免费完整高清在| 亚洲欧美日韩高清专用| 午夜福利在线在线| 亚洲一区高清亚洲精品| 久久精品国产自在天天线| 精品99又大又爽又粗少妇毛片| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 色综合站精品国产| 伊人久久精品亚洲午夜| 一边摸一边抽搐一进一小说| 麻豆久久精品国产亚洲av| 国产美女午夜福利| 美女大奶头视频| 欧美成人午夜免费资源| 亚洲18禁久久av| 免费一级毛片在线播放高清视频| 97在线视频观看| 97超碰精品成人国产| 一级毛片久久久久久久久女| 人人妻人人澡人人爽人人夜夜 | 韩国高清视频一区二区三区| 26uuu在线亚洲综合色| 亚洲精品乱码久久久v下载方式| 精品一区二区免费观看| 啦啦啦韩国在线观看视频| 狂野欧美激情性xxxx在线观看| 久久久久久久久久成人| videossex国产| 精品一区二区三区人妻视频| 麻豆精品久久久久久蜜桃| 国产一区二区三区av在线| 内地一区二区视频在线| 亚洲av免费在线观看| 成人午夜精彩视频在线观看| 在线观看美女被高潮喷水网站| 国产精品乱码一区二三区的特点| 插阴视频在线观看视频| 日韩欧美 国产精品| 99热6这里只有精品| 欧美日韩在线观看h| 亚洲不卡免费看| 日韩大片免费观看网站 | 日韩三级伦理在线观看| 国产精品人妻久久久久久| 国产高清有码在线观看视频| 亚洲国产高清在线一区二区三| 一夜夜www| 黄色配什么色好看| 2021少妇久久久久久久久久久| 一区二区三区高清视频在线| 女人被狂操c到高潮| 国产伦精品一区二区三区视频9| 久久久久久久亚洲中文字幕| 舔av片在线| 女人久久www免费人成看片 | 亚洲欧美精品专区久久| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看 | 伦精品一区二区三区| 天天躁日日操中文字幕| 大话2 男鬼变身卡| 国产乱来视频区| 成人国产麻豆网| 国产色爽女视频免费观看| 丰满乱子伦码专区| 白带黄色成豆腐渣| 麻豆成人午夜福利视频| 日本色播在线视频| 国产高清三级在线| 美女xxoo啪啪120秒动态图| 亚洲av二区三区四区| 麻豆成人午夜福利视频| 97人妻精品一区二区三区麻豆| 午夜久久久久精精品| 久久精品综合一区二区三区| 国产精品国产高清国产av| 亚洲四区av| 亚洲av中文av极速乱| 欧美另类亚洲清纯唯美| 久久人人爽人人爽人人片va| 尾随美女入室| 一区二区三区乱码不卡18| 亚洲精品乱码久久久久久按摩| 亚洲国产成人一精品久久久| 国产成人精品婷婷| 亚洲,欧美,日韩| 午夜福利在线观看吧| 日本免费一区二区三区高清不卡| 中文字幕制服av| 国产亚洲91精品色在线| 日本熟妇午夜| 欧美色视频一区免费| 深夜a级毛片| 国产在视频线在精品| 丰满乱子伦码专区| 人人妻人人澡人人爽人人夜夜 | 精品99又大又爽又粗少妇毛片| 亚洲国产欧美在线一区| 两性午夜刺激爽爽歪歪视频在线观看| 插阴视频在线观看视频| 亚洲精品,欧美精品| av黄色大香蕉| 我要看日韩黄色一级片| 黄色日韩在线| 秋霞在线观看毛片| 亚洲综合色惰| 国产精品不卡视频一区二区| 18禁在线无遮挡免费观看视频| 久久久久久九九精品二区国产| 欧美成人免费av一区二区三区| 中文精品一卡2卡3卡4更新| 搞女人的毛片| 国产精品嫩草影院av在线观看| 自拍偷自拍亚洲精品老妇| 99久久人妻综合| 丰满乱子伦码专区| 在线观看66精品国产| 熟女人妻精品中文字幕| 久久精品国产自在天天线| 青春草视频在线免费观看| 两个人视频免费观看高清| 国产免费一级a男人的天堂| 啦啦啦啦在线视频资源| 国产成年人精品一区二区| 欧美+日韩+精品| 插阴视频在线观看视频| 国产午夜精品久久久久久一区二区三区| 内地一区二区视频在线| 亚洲精品国产成人久久av| 夫妻性生交免费视频一级片| 韩国av在线不卡| 99久久中文字幕三级久久日本| 日韩成人伦理影院| 国产亚洲av嫩草精品影院| 自拍偷自拍亚洲精品老妇| 王馨瑶露胸无遮挡在线观看| freevideosex欧美| 老女人水多毛片| 国产综合精华液| 国产免费福利视频在线观看| 蜜桃国产av成人99| 大片电影免费在线观看免费| 国产精品.久久久| 国产 精品1| 精品一区二区三区四区五区乱码 | 亚洲综合色网址| 十八禁网站网址无遮挡| 国产精品久久久久久精品电影小说| 国产极品粉嫩免费观看在线| h视频一区二区三区| 嫩草影院入口| 大香蕉久久成人网| 国产免费又黄又爽又色| 免费观看性生交大片5| 中文天堂在线官网| 久久精品国产a三级三级三级| 制服人妻中文乱码| 亚洲欧美精品自产自拍| 久热久热在线精品观看| 国产亚洲午夜精品一区二区久久| 看十八女毛片水多多多| 最近的中文字幕免费完整| 国产成人免费观看mmmm| 精品少妇黑人巨大在线播放| 国产精品久久久久久精品电影小说| 制服诱惑二区| 欧美97在线视频| 热re99久久国产66热| 久久99精品国语久久久| 巨乳人妻的诱惑在线观看| 免费观看性生交大片5| 久久久久久久久久久久大奶| 伊人久久国产一区二区| 中国国产av一级| 亚洲av日韩在线播放| 中文字幕制服av| 欧美精品av麻豆av| 一级毛片黄色毛片免费观看视频| 飞空精品影院首页| 激情五月婷婷亚洲| 人体艺术视频欧美日本| 妹子高潮喷水视频| 欧美精品国产亚洲| 亚洲av电影在线进入| 另类精品久久| 色哟哟·www| 国产熟女欧美一区二区| 蜜桃国产av成人99| 黑人猛操日本美女一级片| 香蕉丝袜av| 午夜精品国产一区二区电影| 欧美另类一区| 欧美日韩一区二区视频在线观看视频在线| 女人被躁到高潮嗷嗷叫费观| 伦理电影免费视频| 寂寞人妻少妇视频99o| 亚洲图色成人| 午夜免费鲁丝| 亚洲av欧美aⅴ国产| 丁香六月天网| 黄色毛片三级朝国网站| 亚洲精品日韩在线中文字幕| 天天影视国产精品| 王馨瑶露胸无遮挡在线观看| 国产 一区精品| 日韩一区二区视频免费看|