• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Robust Cooperative Dual Equilibrium with Ellipsoidal Asymmetric Strategy Uncertainty

    2020-01-07 06:31:26LUOGuiMei

    LUO Gui-Mei

    (School of Financial Mathematics and Statistics,Guangdong University of Finance,Guangzhou,Guangdong, 510521, P.R. China)

    Abstract: In this paper, we investigate robust cooperative dual equilibria with two players in which each player minimizes the opponent’s cost and can not evaluate his own strategy while may estimate an asymmetric bounded set of the mixed strategy. Using dual theory and robust optimization technique, we obtain a result that the counterpart of the primitive uncertainty with ellipsoidal norm for each player can be formulated as a second-order cone programming (SOCP) and solving the corresponding equilibrium can be converted to solving a second-order cone complementarity problem (SOCCP). Then we present a numerical experiment to illustrate the behavior of robust cooperative dual equilibrium.

    Key words:Robust cooperative dual equilibrium;Asymmetric strategy uncertainty;SOCP;SOCCP

    §1. Introduction

    Bimatrix game is the formal study of decision-making where two players make choices that potentially affect the interests of his opponent. In[14-15],John Nash first introduced the notion of an equilibrium (Nash equilibrium) of a non-cooperate, simultaneous-move, one-shot, finite games with complete information. However, in real-world, game-theoretic situations, players are often uncertain of the structure of the game, such as player’s own strategies [16, 18]. When each player’s strategy set depends on the other players’ strategies and at the same time, each player acts in his own selfish interest, Facchinei et al. [8-9]and Pang etc. Fukushima [17]studied general Nash equilibrium using quasi-variational inequalities or variational inequalities. In[1], Aghassi and Bertsimas introduced robust optimization equilibria and established existence theorems for this equilibria. Robust optimization is emerging as a leading methodology to address optimization problems under uncertainty. Ben-Tal and Nemirovski [2-3, 5, 7]and other researchers investigated the robust counterparts under different uncertainty sets. Wiesemann etc. [19]introduced standardized ambiguity sets which contain all probably distributions with prescribed conic representable confidence sets and with mean values residing on an affine manifold. Bertsimas et al. [4]proposed a novel schema for utilizing data to construct uncertainty sets for robust optimization using statistical hypothesis tests. In this paper, we consider a cooperative dual equilibrium (DE) [6]with uncertainty in which each player unselfishly responds to the DE strategy for the other player so as to minimize the cost of the other player.

    In what follows, from the structure of strategy uncertainty, we consider a two-person game,in which each player attempts to minimize his opponent’s cost where each opponent’s strategy belongs to a mixed strategies set and his own strategy is uncertain while can be estimated to be included in an asymmetric closed and bounded set. In this situation, the model essentially reduces to the following programming:

    and

    and

    A pair of strategies (z,y) is called a robust cooperative dual equilibrium for problems (1.1) and(1.2) if z is the optimal solution to (1.3) and y is the optimal solution to (1.4) simultaneously.Accordingly,(1.3)and(1.4)are called robust counterparts of(1.1)and(1.2). However,problems(1.3) and (1.4) are generally semi-infinite programming problems and usually computationally intractable. How to deal with an uncertainty set is very important in the solution to these problems. In what follows, we assume that the uncertain strategy sets can be estimated at some asymmetric bounded sets. When the elements of the mixed strategy sets are ellipsoidal uncertainty, the robust counterparts for each player can be formulated as a second-order cone programming and the corresponding robust cooperative dual optimization equilibrium can be converted to a second-order cone complementarity problem (SOCCP) [5, 11]as follows:

    where K is a ?-dimensional closed convex cone defined by K=K?1×K?2×···×K?mwith ?j?dimensional second-order cones K?j={(x1,x2)∈and ? =?1+···+?m,G, H ∈, C ∈andd∈The major contributions of the paper are as follows.

    (a) The equilibrium is based on the viewpoint of cooperation which is different from the traditional non-cooperative case such as [12].

    (b) The asymmetric uncertain set better captures the essence of the underlying random variables comparing to symmetric uncertainty.

    (c) Using robust technique, the intractable primitive problem including asymmetric uncertainty for each player can be converted to a computable SOCP. Then the dual equilibrium of cooperation between two players can be formulated as a SOCCP defined in (1.5). From this point, the work is an extension of that in [5]where the asymmetric uncertainty only in unilateral activities not in bimatrix games was considered. At the same time, it generalizes the work in [12]in which only symmetric games was investigated.

    The paper is organized as follows. Section 2 investigates the robust counterpart and the corresponding equilibrium when each player can be certain of his own cost matrix and can not estimate his own’s strategies exactly while the strategies are estimated to be contained in an asymmetric ellipsoidal uncertain set. Some numerical experiments are presented in Section 3.

    §2. Asymmetric Ellipsoidal Uncertainty in Players Own Strategy

    In this section,we focus our attention on the tractability of problems(1.3)and(1.4). To this end, it is necessary to deal with the inner optimization problems which rely on the structures of Yuand Zurespectively. In what follows, we investigate a general uncertainty set, namely,asymmetric ellipsoidal uncertainty. We first consider (1.3). For each ?y∈Yu, we let

    whereydenotes the nominal value ofl = 1,··· ,L are random vectors,yl∈Rnare known directions of data perturbation for,l = 1,··· ,L, L may be small, modeling situations involving a small collection of primitive uncertainties, or large, potentially as large as the number of entries in the data. Let= max{0,= max{0,?. ThenUnder these assumptions, the asymmetric uncertain set (2.1) under l2-norm can be written as

    where P1= diag(p11,··· ,p1L) and Q1= diag(q11,··· ,q1L) with p1l,q1l> 0,l = 1,··· ,L are forward and backward deviation related to the random variable △hj,j=1,2,σ0is a parameter controlling the tradeoff between robustness and optimality. The conditionsandensureto be a mixed strategy.

    It is easy to obtain that whenis given as (2.2), then the robust counterpart of (1.1) can be formulated as an SOCP. To this end, we first introduce the following lemma.

    Lemma 2.1(Chen, Sim and Sun [5]) Let

    Then π?=wheret=(t1,...,tN1)T, tj=max{aj,bj,0},j ∈N1.

    Theorem 2.1If player one’s strategy set is given as (2.2), then the robust counterpart of (1.1) can be formulated as an SOCP over varies (z,α,r,γ,f) ∈as follows.

    where Y =(y1y2···yL)∈denotes the matric of perturbation directions.

    ProofFor the worst case, (1.1)can be expressed as(1.3). When Yuis given as(2.2), the inner optimization problem of (1.3) can be written as

    where

    Under some mild condition, such as the existence of Slater points [10], the zero duality gap is guaranteed by strong conic duality theorem, and the third equality comes from direct transformation of vectorsrespectively and the last equality follows from Lemma 2.1 and

    with μ1=y1TAz+y1Tf +αy1Ten,..., μL=yLTAz+yLTf +αyLTen.

    Therefore,(1.3)can be converted to the following SOCP over(z,α,γ,f)∈

    It is easy to show that (2.5) can be rewritten as (2.3) combining with (2.4), that is, the robust counterpart of (1.1) can be formulated as (2.3).

    Similar to (2.2), if ZUis constructed as follows:

    Then the robust counterpart of (1.2) can be formulated as an SOCP over varies∈

    where Z =(z1z2··· zK)∈

    In what follows, we focus on the KKT conditions for problems (2.3) and (2.7). It is easy to show that the KKT conditions for (2.3) can be written as

    where u1,v1∈, η,σ ∈are the Lagrangian multipliers.

    similarly, the KKT conditions for (2.7) can be expressed as

    where u2,v2∈, φ,ρ ∈are the Lagrangian multipliers.

    Consequently, the problem to find a pair of strategies (z,y) satisfying problems (2.3) and(2.7) simultaneously can be converted to the problem to find (z,y) satisfying the KKT conditions (2.8) and (2.9) simultaneously. The latter can be further formulated to an SOCCP (1.5)whereare two partitioned matrices as follows:

    dT=(0 1 σ00 1 ρ0),qandrare two ?-dimensional zero vectors.

    Therefore, for mixed strategy sets with asymmetric ellipsoidal uncertainty, we obtain the following result.

    Theorem 2.2Let mixed strategy sets be given as (2.2) and (2.6) withnorm respectively, then solving the robust cooperative dual equilibrium for problems (1.1) and (1.2)can be formulated as an SOCCP as above.

    §3. Numerical Experiments

    In the previous sections, we have shown that the robust cooperative dual equilibrium problems for the bimatrix game with asymmetric strategy uncertainty can be formulated as an SOCCP. In this section, we present a numerical experiment for robust cooperative dual equilibrium. We only consider the case where each player’s own strategies are uncertain with L=K =3 and m=n=3. While doing numerical experiments, we adopt the algorithm in [?]to solve the SOCCP in Theorem 2.2. Consider the bimatrix game with cost matrices:

    We select the matrices of perturbation directions as

    For simplicity, we select the matrices of deviation measures as P1= I3,Q1= 2I3,M1=0.5I3and N1= I3. Particularly, if the control parameters σ0and ρ0are equal to zeros, the corresponding model reduces to the primitive situation,that is,there is no perturbation in their strategies and the two player adopt pure strategies. In this situation, the strategies for player one and player two are=(0 1 0) and(1 0 0) and the corresponding cost values are 20 and ?40 respectively. The robust cooperative dual equilibrium for various σ0and ρ0are listed in Table 1. The meaning of the columns in Table 1 is listed below:

    Table 1: Robust cooperative dual equilibrium with asymmetric uncertainty under l2?norm

    From table 1, we see that (a) There is little change about the strategies for player one when control parameters vary from 0.1 to 2. This implies that the cooperative dual equilibrium model is almost robust for player one. (b) As the parameters increase continuously, the cost values are not always steady increase while alternately change which implies that the parameters σ0and ρ0and the direction matrices play important roles in controlling the robustness and optimality. (c)How to choose an appropriate parameter or direction matrix between robustness and optimality is an important while significantly hard work. (d) The work can be applied to the optimal reinsurance. For example,suppose that the two players one and two denote insurer and reinsurer respectively and suppose that they reach a premium agreement with respect to some types of insurance and the corresponding price. The insurer pays the premium to the reinsurer to transfer some risk. The reinsurer receives premium from the insurer to take the corresponding risk transferred from the insurer. Therefore, ˉyTrAˉzrdenotes the insurance premium with sign plus (omitted) which the insurer pays to the reinsurer and ˉyTrBˉzrdenotes the insurance premium with sign minus which the reinsurer obtains from the insurer. In this situation, we can choose the cost matrix A for insurer as above and let B = ?A be the cost matrix for reinsurer.

    中文字幕精品免费在线观看视频| 色在线成人网| 国产aⅴ精品一区二区三区波| 亚洲五月婷婷丁香| 国产成年人精品一区二区| 久久精品人妻少妇| 国产熟女xx| www.精华液| 国产欧美日韩一区二区精品| 哪里可以看免费的av片| www.自偷自拍.com| 中文字幕精品免费在线观看视频| 日本在线视频免费播放| 午夜福利视频1000在线观看| 亚洲国产欧美一区二区综合| 国产欧美日韩精品亚洲av| 亚洲一区二区三区色噜噜| 国产三级在线视频| 黑人欧美特级aaaaaa片| 99久久国产精品久久久| 两个人视频免费观看高清| 88av欧美| av天堂在线播放| 国产视频一区二区在线看| 我的亚洲天堂| 亚洲第一欧美日韩一区二区三区| 中文字幕人妻熟女乱码| 啪啪无遮挡十八禁网站| 久久久久久大精品| 欧美黄色片欧美黄色片| 久久精品夜夜夜夜夜久久蜜豆 | 国产av不卡久久| 一本久久中文字幕| 久久精品aⅴ一区二区三区四区| 2021天堂中文幕一二区在线观 | 1024手机看黄色片| a在线观看视频网站| 国产国语露脸激情在线看| 美女 人体艺术 gogo| 午夜福利视频1000在线观看| 给我免费播放毛片高清在线观看| 1024手机看黄色片| 高清毛片免费观看视频网站| 国内精品久久久久久久电影| 久久精品成人免费网站| 日日干狠狠操夜夜爽| 在线永久观看黄色视频| 国产爱豆传媒在线观看 | 成年版毛片免费区| 欧美国产精品va在线观看不卡| 欧美 亚洲 国产 日韩一| 女人爽到高潮嗷嗷叫在线视频| 精品久久蜜臀av无| 亚洲精华国产精华精| 长腿黑丝高跟| 亚洲国产精品999在线| 99久久久亚洲精品蜜臀av| 好看av亚洲va欧美ⅴa在| 欧美国产日韩亚洲一区| 一本一本综合久久| 欧美成人性av电影在线观看| 99热只有精品国产| 男女午夜视频在线观看| 岛国在线观看网站| 中文字幕最新亚洲高清| 免费在线观看成人毛片| 亚洲国产欧美一区二区综合| 日韩三级视频一区二区三区| 亚洲成人精品中文字幕电影| 黄色毛片三级朝国网站| 成年免费大片在线观看| 亚洲av第一区精品v没综合| 成人av一区二区三区在线看| 久久国产精品人妻蜜桃| a在线观看视频网站| or卡值多少钱| 国产高清激情床上av| 国产成人欧美| 在线观看舔阴道视频| 亚洲欧洲精品一区二区精品久久久| 99久久国产精品久久久| 麻豆av在线久日| 欧美日韩中文字幕国产精品一区二区三区| 国产野战对白在线观看| 女同久久另类99精品国产91| 成人精品一区二区免费| 午夜成年电影在线免费观看| 久99久视频精品免费| 69av精品久久久久久| 久久久水蜜桃国产精品网| 免费av毛片视频| 此物有八面人人有两片| 国产精品一区二区精品视频观看| 一级毛片精品| 国产精品久久电影中文字幕| 午夜激情福利司机影院| 99久久无色码亚洲精品果冻| 19禁男女啪啪无遮挡网站| 日韩精品免费视频一区二区三区| 亚洲全国av大片| 国产精品99久久99久久久不卡| 啦啦啦观看免费观看视频高清| 又大又爽又粗| 国产不卡一卡二| 欧美在线黄色| 国产爱豆传媒在线观看 | 色播在线永久视频| 久久人妻av系列| 首页视频小说图片口味搜索| 真人一进一出gif抽搐免费| 欧美在线一区亚洲| 黑丝袜美女国产一区| 精品乱码久久久久久99久播| www日本黄色视频网| 国内少妇人妻偷人精品xxx网站 | 精品国产乱码久久久久久男人| 99热只有精品国产| 精品国产一区二区三区四区第35| 精品一区二区三区视频在线观看免费| 亚洲专区国产一区二区| 欧美精品啪啪一区二区三区| 在线国产一区二区在线| 黄色a级毛片大全视频| 亚洲精品国产一区二区精华液| 色综合欧美亚洲国产小说| bbb黄色大片| 一边摸一边抽搐一进一小说| 亚洲av第一区精品v没综合| 国产亚洲欧美在线一区二区| 在线永久观看黄色视频| 丁香欧美五月| 男女午夜视频在线观看| 伊人久久大香线蕉亚洲五| 国产99白浆流出| 白带黄色成豆腐渣| 中文资源天堂在线| 国产1区2区3区精品| 亚洲一区中文字幕在线| 婷婷亚洲欧美| 韩国av一区二区三区四区| 精品高清国产在线一区| 高潮久久久久久久久久久不卡| 久久伊人香网站| 成年免费大片在线观看| 非洲黑人性xxxx精品又粗又长| 黄片大片在线免费观看| 99国产精品一区二区蜜桃av| 亚洲av电影在线进入| 波多野结衣高清作品| 国产一卡二卡三卡精品| 男女下面进入的视频免费午夜 | 18禁黄网站禁片免费观看直播| 国产三级在线视频| 嫩草影视91久久| 欧美一区二区精品小视频在线| 精品一区二区三区视频在线观看免费| 变态另类成人亚洲欧美熟女| 麻豆成人av在线观看| 一二三四在线观看免费中文在| 一本大道久久a久久精品| 窝窝影院91人妻| 久久热在线av| 正在播放国产对白刺激| 精品日产1卡2卡| 桃色一区二区三区在线观看| 久久久精品国产亚洲av高清涩受| 别揉我奶头~嗯~啊~动态视频| 中国美女看黄片| 亚洲aⅴ乱码一区二区在线播放 | 免费高清视频大片| 男女床上黄色一级片免费看| 久热这里只有精品99| 久久精品aⅴ一区二区三区四区| 国产真人三级小视频在线观看| 精品久久久久久,| 2021天堂中文幕一二区在线观 | 午夜福利在线观看吧| 免费人成视频x8x8入口观看| 天天添夜夜摸| 日本a在线网址| 极品教师在线免费播放| or卡值多少钱| 久久久精品欧美日韩精品| 久久久国产精品麻豆| 国产精品自产拍在线观看55亚洲| 亚洲狠狠婷婷综合久久图片| a级毛片a级免费在线| 久久久国产精品麻豆| 琪琪午夜伦伦电影理论片6080| 露出奶头的视频| 听说在线观看完整版免费高清| 女生性感内裤真人,穿戴方法视频| 国产三级黄色录像| 巨乳人妻的诱惑在线观看| 久久国产精品影院| 麻豆成人av在线观看| 国产视频一区二区在线看| 黄网站色视频无遮挡免费观看| 国产精品98久久久久久宅男小说| 欧美不卡视频在线免费观看 | 国产亚洲精品一区二区www| 成人永久免费在线观看视频| 亚洲自偷自拍图片 自拍| 岛国在线观看网站| 亚洲一区中文字幕在线| 色老头精品视频在线观看| 在线十欧美十亚洲十日本专区| 国产免费男女视频| 亚洲国产日韩欧美精品在线观看 | 在线播放国产精品三级| svipshipincom国产片| 久久伊人香网站| 国产又黄又爽又无遮挡在线| 黑人欧美特级aaaaaa片| 啦啦啦韩国在线观看视频| 99国产精品99久久久久| 亚洲最大成人中文| 一二三四在线观看免费中文在| 中文亚洲av片在线观看爽| 999久久久精品免费观看国产| 身体一侧抽搐| 12—13女人毛片做爰片一| 成人一区二区视频在线观看| 欧美日韩福利视频一区二区| 色尼玛亚洲综合影院| 国产激情欧美一区二区| 一区二区三区国产精品乱码| 无限看片的www在线观看| 国产精品98久久久久久宅男小说| 一级黄色大片毛片| 亚洲中文字幕一区二区三区有码在线看 | 韩国av一区二区三区四区| 两性午夜刺激爽爽歪歪视频在线观看 | 99精品久久久久人妻精品| 国产成人一区二区三区免费视频网站| 欧美色欧美亚洲另类二区| 成人三级做爰电影| www.熟女人妻精品国产| 人人妻人人看人人澡| 中文字幕精品免费在线观看视频| 美女国产高潮福利片在线看| 老司机在亚洲福利影院| 亚洲 欧美 日韩 在线 免费| 国产精品综合久久久久久久免费| 人人妻,人人澡人人爽秒播| 美女午夜性视频免费| 黄片小视频在线播放| 国产一区二区在线av高清观看| 国产精品 国内视频| 国产区一区二久久| 精品第一国产精品| 久久久久久久久中文| 亚洲国产日韩欧美精品在线观看 | 黄色丝袜av网址大全| 黄片播放在线免费| 人妻丰满熟妇av一区二区三区| 国产成人精品久久二区二区免费| 欧美乱色亚洲激情| 亚洲欧美精品综合一区二区三区| 国产99白浆流出| 婷婷精品国产亚洲av在线| 久久狼人影院| 岛国视频午夜一区免费看| 亚洲人成77777在线视频| 大香蕉久久成人网| 人人妻人人澡人人看| 成年女人毛片免费观看观看9| 在线播放国产精品三级| 成人欧美大片| 麻豆一二三区av精品| 看免费av毛片| 夜夜看夜夜爽夜夜摸| 伊人久久大香线蕉亚洲五| 99re在线观看精品视频| 啦啦啦 在线观看视频| 国产成人精品无人区| 久久久国产成人免费| 久久精品国产99精品国产亚洲性色| 国产精品亚洲av一区麻豆| 九色国产91popny在线| 中文资源天堂在线| 亚洲成人免费电影在线观看| 97碰自拍视频| 免费av毛片视频| 国产黄a三级三级三级人| 男女视频在线观看网站免费 | av视频在线观看入口| 国产国语露脸激情在线看| 精品久久久久久成人av| 窝窝影院91人妻| 黄色成人免费大全| 97碰自拍视频| 久久精品国产清高在天天线| 亚洲av熟女| 久99久视频精品免费| 久久伊人香网站| 亚洲av成人一区二区三| 在线观看66精品国产| 男人舔奶头视频| 亚洲第一青青草原| 俄罗斯特黄特色一大片| 男女视频在线观看网站免费 | 男人的好看免费观看在线视频 | 大香蕉久久成人网| 性欧美人与动物交配| 国产精品一区二区免费欧美| 日韩国内少妇激情av| 日本免费一区二区三区高清不卡| 日韩精品免费视频一区二区三区| 久久久久久大精品| 青草久久国产| 啦啦啦韩国在线观看视频| 国产亚洲av高清不卡| 免费在线观看完整版高清| 久久人妻福利社区极品人妻图片| 一区二区三区精品91| 国产又黄又爽又无遮挡在线| 好看av亚洲va欧美ⅴa在| 日本黄色视频三级网站网址| 97人妻精品一区二区三区麻豆 | 99国产精品一区二区蜜桃av| 国产成人av教育| 国产人伦9x9x在线观看| 国产精品乱码一区二三区的特点| 999久久久国产精品视频| 婷婷六月久久综合丁香| 免费看美女性在线毛片视频| 一本久久中文字幕| 91麻豆av在线| 精品卡一卡二卡四卡免费| 精品国产超薄肉色丝袜足j| 99re在线观看精品视频| 国产精品日韩av在线免费观看| 久久久久久久精品吃奶| 日韩一卡2卡3卡4卡2021年| 两个人看的免费小视频| 婷婷亚洲欧美| 在线视频色国产色| 久久人妻福利社区极品人妻图片| 麻豆成人午夜福利视频| 亚洲男人的天堂狠狠| 国产成+人综合+亚洲专区| 久久久久久九九精品二区国产 | 国产精品久久久av美女十八| 19禁男女啪啪无遮挡网站| www.www免费av| 亚洲精品国产一区二区精华液| 欧美日本视频| 妹子高潮喷水视频| 天堂动漫精品| 视频在线观看一区二区三区| 国产视频内射| 国产精品电影一区二区三区| 久热爱精品视频在线9| 天天躁狠狠躁夜夜躁狠狠躁| 在线天堂中文资源库| 一本久久中文字幕| 国产av一区在线观看免费| 国产精品国产高清国产av| 亚洲国产精品999在线| 成人亚洲精品一区在线观看| 国产真实乱freesex| 日本一本二区三区精品| 亚洲午夜精品一区,二区,三区| 免费看a级黄色片| 琪琪午夜伦伦电影理论片6080| 国产色视频综合| 成人18禁在线播放| 亚洲最大成人中文| 精品久久久久久,| 叶爱在线成人免费视频播放| 在线看三级毛片| 人人妻人人看人人澡| 精品电影一区二区在线| 国产精品二区激情视频| 最近最新免费中文字幕在线| 欧美成人免费av一区二区三区| 国产精品亚洲美女久久久| 97碰自拍视频| 久久香蕉国产精品| 精品一区二区三区四区五区乱码| 日日夜夜操网爽| 999精品在线视频| 亚洲国产欧洲综合997久久, | aaaaa片日本免费| 亚洲av片天天在线观看| 久久久久久人人人人人| 亚洲av成人av| 国产色视频综合| 久久午夜综合久久蜜桃| 777久久人妻少妇嫩草av网站| 国产在线观看jvid| 亚洲一码二码三码区别大吗| 精品欧美一区二区三区在线| 不卡av一区二区三区| 亚洲国产看品久久| 国产成人精品无人区| 熟女少妇亚洲综合色aaa.| 亚洲午夜精品一区,二区,三区| 在线观看一区二区三区| 欧美zozozo另类| 可以免费在线观看a视频的电影网站| 老司机深夜福利视频在线观看| 97人妻精品一区二区三区麻豆 | 无人区码免费观看不卡| 中文字幕av电影在线播放| 欧美成人午夜精品| 国产精品免费一区二区三区在线| 一本久久中文字幕| 亚洲在线自拍视频| 91字幕亚洲| 女性生殖器流出的白浆| 国内精品久久久久久久电影| 亚洲av成人一区二区三| 久久久国产欧美日韩av| 99精品欧美一区二区三区四区| 国产精品 国内视频| 日本三级黄在线观看| 熟女电影av网| 长腿黑丝高跟| 久久久精品国产亚洲av高清涩受| 国产亚洲精品综合一区在线观看 | 欧美亚洲日本最大视频资源| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| 无限看片的www在线观看| 在线观看一区二区三区| 日韩大码丰满熟妇| 久久青草综合色| 久久欧美精品欧美久久欧美| 91av网站免费观看| www.熟女人妻精品国产| 精品国内亚洲2022精品成人| 18禁观看日本| 成在线人永久免费视频| 中出人妻视频一区二区| 变态另类成人亚洲欧美熟女| 99精品欧美一区二区三区四区| 国产av又大| 黑人操中国人逼视频| 成人三级黄色视频| 精品久久久久久久末码| 人人澡人人妻人| 人人妻,人人澡人人爽秒播| 99国产精品一区二区蜜桃av| 最新美女视频免费是黄的| 免费在线观看影片大全网站| 极品教师在线免费播放| √禁漫天堂资源中文www| 成人特级黄色片久久久久久久| 99在线人妻在线中文字幕| 国产成人一区二区三区免费视频网站| 成人永久免费在线观看视频| 日本 av在线| 国产av又大| 国产伦在线观看视频一区| 天天躁狠狠躁夜夜躁狠狠躁| 这个男人来自地球电影免费观看| 午夜久久久久精精品| 日韩欧美 国产精品| 日韩欧美免费精品| 久久久久精品国产欧美久久久| 国产精品综合久久久久久久免费| 国产三级黄色录像| 欧美成狂野欧美在线观看| 国产aⅴ精品一区二区三区波| 妹子高潮喷水视频| 变态另类丝袜制服| 老司机福利观看| 免费在线观看影片大全网站| 少妇裸体淫交视频免费看高清 | 亚洲无线在线观看| 桃色一区二区三区在线观看| 亚洲在线自拍视频| 精品国产美女av久久久久小说| 首页视频小说图片口味搜索| 亚洲av成人不卡在线观看播放网| 亚洲五月婷婷丁香| 国产成人av激情在线播放| 亚洲成人久久性| 国产精品香港三级国产av潘金莲| 91麻豆精品激情在线观看国产| 99riav亚洲国产免费| 看黄色毛片网站| 久久狼人影院| 最近在线观看免费完整版| 搡老熟女国产l中国老女人| 国产私拍福利视频在线观看| 免费在线观看黄色视频的| 国产精品国产高清国产av| АⅤ资源中文在线天堂| 特大巨黑吊av在线直播 | 久久久久久国产a免费观看| 成人三级做爰电影| 国产精品综合久久久久久久免费| 亚洲精品色激情综合| a级毛片在线看网站| 亚洲av中文字字幕乱码综合 | 久久久久久久精品吃奶| 人人澡人人妻人| 在线观看www视频免费| 国产高清视频在线播放一区| 国产真人三级小视频在线观看| 男女视频在线观看网站免费 | 国产久久久一区二区三区| 午夜两性在线视频| 国产精品九九99| 欧洲精品卡2卡3卡4卡5卡区| 成人特级黄色片久久久久久久| 久久久久久大精品| 成年人黄色毛片网站| 人妻久久中文字幕网| 中文亚洲av片在线观看爽| 丝袜美腿诱惑在线| 成人18禁高潮啪啪吃奶动态图| 国产三级在线视频| 又大又爽又粗| 人人妻人人看人人澡| 欧美亚洲日本最大视频资源| 成在线人永久免费视频| 亚洲国产精品久久男人天堂| 亚洲av成人不卡在线观看播放网| 国产成人影院久久av| 中文字幕精品免费在线观看视频| АⅤ资源中文在线天堂| 国产成人啪精品午夜网站| 久久精品人妻少妇| 高清毛片免费观看视频网站| 国产熟女xx| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看| 99久久久亚洲精品蜜臀av| 欧美在线一区亚洲| 人人妻人人看人人澡| 亚洲成人国产一区在线观看| 特大巨黑吊av在线直播 | 午夜福利在线观看吧| 成人永久免费在线观看视频| 19禁男女啪啪无遮挡网站| 亚洲第一电影网av| 自线自在国产av| 一本一本综合久久| 一级a爱视频在线免费观看| 日本免费a在线| 一区二区三区国产精品乱码| 深夜精品福利| 午夜成年电影在线免费观看| 国产男靠女视频免费网站| 麻豆国产av国片精品| 黑人巨大精品欧美一区二区mp4| 性色av乱码一区二区三区2| 成人精品一区二区免费| 亚洲男人天堂网一区| 日韩欧美在线二视频| 日本五十路高清| 一进一出抽搐动态| 欧美三级亚洲精品| 欧美在线一区亚洲| 久久精品国产综合久久久| 亚洲熟妇熟女久久| 久久人妻av系列| 一区二区日韩欧美中文字幕| 国产97色在线日韩免费| 亚洲 国产 在线| 精品一区二区三区四区五区乱码| 久久久久久九九精品二区国产 | 两个人视频免费观看高清| 亚洲国产欧美网| 19禁男女啪啪无遮挡网站| 我的亚洲天堂| 岛国视频午夜一区免费看| 天堂影院成人在线观看| 男人舔女人下体高潮全视频| 女人被狂操c到高潮| 久久欧美精品欧美久久欧美| 午夜精品久久久久久毛片777| 亚洲三区欧美一区| 国产精品久久视频播放| 又黄又爽又免费观看的视频| av视频在线观看入口| 又黄又粗又硬又大视频| 91成年电影在线观看| 久久久久精品国产欧美久久久| 每晚都被弄得嗷嗷叫到高潮| 久久人妻福利社区极品人妻图片| 黄色丝袜av网址大全| 日韩欧美 国产精品| 香蕉丝袜av| 久久热在线av| 午夜两性在线视频| 91字幕亚洲| 国产野战对白在线观看| 日本一区二区免费在线视频| 免费在线观看影片大全网站| 1024视频免费在线观看| 婷婷精品国产亚洲av| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 国内毛片毛片毛片毛片毛片| 一本综合久久免费| 俄罗斯特黄特色一大片| 中文资源天堂在线| 俄罗斯特黄特色一大片| 一本综合久久免费| 制服丝袜大香蕉在线| 无限看片的www在线观看| 少妇裸体淫交视频免费看高清 | 90打野战视频偷拍视频| 看黄色毛片网站| 精品久久久久久久毛片微露脸| 看黄色毛片网站| 日韩视频一区二区在线观看| 女人爽到高潮嗷嗷叫在线视频| 免费女性裸体啪啪无遮挡网站| 欧美绝顶高潮抽搐喷水|