• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Existence and Multiplicity of Periodic solutions for the Non-autonomous Second-order Hamiltonian Systems

    2020-01-07 06:26:08CHENYusongCHANGHejie

    CHEN Yu-song, CHANG He-jie

    (1.Department of Basic Education, Shangqiu Institute of Technology, Henan, 476000, P.R. China;2.Department of Basic Education, Luohe Vocational Technology College, Henan, 462000, P.R. China)

    Abstract: In this paper, we study the existence and multiplicity of periodic solutions of the non-autonomous second-order Hamiltonian systemswhere T > 0. Under suitable assumptions on F, some new existence and multiplicity theorems are obtained by using the least action principle and minimax methods in critical point theory.

    Key words: Periodic solution; Second-order Hamiltonian system; Saddle Point Theorem;Sobolev’s inequality; Wirtinger’s inequality

    §1. Introduction and Main Results

    Consider the non-autonomous second-order Hamiltonian systems

    where T >0, F :[0,T]×RN→R satisfy the following assumption:

    (A) F(t,x) is measurable in t for every x ∈RNand continuously differentiable in x for a.e.t ∈[0,T], and there exist α ∈C(R+,R+), b ∈L1(0,T;R+) such that

    for all x ∈RNand a.e. t ∈[0,T].

    The corresponding function ? on H1Tgiven by

    is continuously differentiable and weakly lower semi-continuous on H1T, where

    is a Hilbert space with the norm defined by

    As is well known, a Hamiltonian system is a system of differential equations which can model the motion of a mechanical system. An important and interesting question is under what conditions the Hamiltonian system can support periodic solutions. During the past few years,many existence results are obtained for problem(1.1)by the least action principle and the minimax methods (see[1-2, 4-6, 8-13, 14-25]). Using the variational methods, many existence results are obtained under different conditions, such as the coercive condition (see [1,5]), the periodicity condition (see [2, 5]), the convexity condition (see [4, 5, 7, 9]), the subconvex condition (see [15-16, 19]) and the subaddieive condition (see [7, 16]).

    Especially,when the gradient ?F(t,x)is bounded,that is,there exists g(t)∈L1([0,T],R+)such that

    for all x ∈RNand a.e. t ∈[0,T], Mawhin and Willem [5]proved the existence of solutions for problem (1.1) under the condition

    When the gradient ?F(t,x)is sublinearly bounded,that is,there exist f, g ∈L1(0,T;R+)and α ∈[0,1) such that

    for all x ∈RNand a.e. t ∈[0,T], Tang [8]also proved the existence of solutions for problem(1.1) under the condition

    which generalizes Mawhin-Willem’s results.

    Afterwards, Y.W Ye and C.L Tang [20]study the existence and multiplicity of periodic solutions by the following conditions:

    where r <4π2/T2, f,g ∈L1(0,T;R+), α ∈[0,1) and F =F1+F2.

    Inspired and motivated by the results due to Y.W Ye[20], R.G Yang[16], Nurbek Aizmahin and T.Q An [19], X.H. Tang and Q. Meng [22], X.Y. Zhang and Y.G. Zhou [15], Z. Wang and J. Zhang [13], J. Pipan, M. Schechter [23], we will focus on some new results for problem (1.1)under some more general conditions then (1.2) and (1.3).

    In the following,we always suppose that F(t,x)=F1(t,x)+F2(t,x)satisfies the assumption(A), we will use the following conditions for F1, F2.

    (F1) There exists constants C0> 0, K1> 0, K2> 0, α ∈[0,1) and a nonnegative function h ∈C([0,∞),[0,∞)) with the properties:

    Moreover, there exist f ∈L1(0,T;R+) and g ∈L1(0,T;R+) such that

    for all x ∈RNand a.e. t ∈[0,T].

    (F2) there exists r ∈L1(0,T;R+) withr(t)dtsuch that

    for all x,y ∈RNand a.e. t ∈[0,T].

    We know the condition (F1), (F2) are more weakly than the condition (1.2) and (1.3). In fact, the condition (1.2) is special cases of the condition (F1) with control function h(x)=xα,α ∈[0,1), t ∈[0,∞). Then the existence of periodic solutions, which generalizes Y.W Ye and C.L Tangs results mentioned above, are obtained by the minimax methods in critical point theory. Moreover, the multiplicity of periodic solutions is also obtained. Our main results of this paper are as follows:

    Theorem 1 Suppose that F = F1+F2satisfies assumption (A), (F1), (F2), and the following condition:(V1) there exists a nonnegative function h ∈C([0,+∞),[0,+∞))which satisfies the conditions(i)?(iv) and

    Then problem (1.1) has at least one solution in

    Remark 1 Theorem 1 extends Theorem 1.2 in[19],in which it is special case of Theorem 1 with control function h(t) = tα, α ∈[0,1), t ∈[0,+∞). What’s more, there are functions F(t,x)=F1(t,x)+F2(t,x) satisfy our theorems and do not satisfy the results in [5,7,12,13,16-22]. For example, let

    where l(t)∈L1(0,T;RN), k(t)We have

    for any α ∈[0,1), and

    so this example cannot be solved by theorem 1.2 [19], theorem 1.1 [22]and earlier results, such as [5, 7, 12-13, 16-22]. On the other hand, take h(|x|) =it is not difficult to see that (i), (iii) and (iv) of (F1) hold, and let C0=2, then

    (ii) of (F1) holds. Moveover,

    Remark 2Theorem 1 extends Theorem 1.1 in [13], in which it is a special case of our Theorem 1 corresponding to F2≡0.

    Theorem 2Suppose that F = F1+F2satisfies assumption (A), (F1), (F2), and the following condition:

    (V2) there exists a nonnegative function h ∈C([0,+∞),[0,+∞)) which satisfies the conditions (i)?(iv) and

    Then problem (1.1) has at least one solution in

    Remark 3We note that Theorem 2 generalizes Theorem 1.2 in[13], which is the special case of our Theorem 2 corresponding to F2≡0.

    Theorem 3Suppose that F = F1+ F2satisfies assumption (A), (F1), (F2), (V2).Assume that there exist δ >0,0 and an integer k >0 such that

    for all x ∈RNand a.e. t ∈[0,T], and

    for all |x| ≤δ and a.e. t ∈[0,T], where wThen problem (1.1) has at least two distinct solution in

    Theorem 4Suppose that F = F1+ F2satisfies assumption (A), (F1), (F2), (V1).Assume that there exist δ >0,0 and an integer k >0 such that

    for all |x|≤δ and a.e. t ∈[0,T], where w =Then problem (1.1) has at least three distinct solution in

    §2. Preliminary Results

    Proposition 2.1[5,Proposition1.1]There exists c>0 such that, if u ∈H1T, then

    Proposition 2.2[5,Proposition1.3]If u ∈andu(t)dt=0, then

    ( Wirtinger’s inequality ) and

    (Sobolev inequality).

    Lemma 2.3[5,Theorem1.1]If ? is weakly lower semi-continuous on a reflexive Banach space X and has a bounded minimizing sequence, then ? has a minimum on X.Lemma 2.4[5,Corollary1.1]Let L:[0,T]×RN×RN→R be defined by

    where F :[0,T]×RN→R,is measurable in t for each x ∈RN, continuously differentiable in x for almost every t ∈[0,T]and satisfy the following conditions:

    for a.e.t ∈[0,T], all x ∈RN, some a ∈C(R+,R+), and some b ∈L1(0,T;R+). If u ∈is a solution of the corresponding Euler equation)=0, then ˙u has a weak derivative ¨u and

    Lemma 2.5[3,Theorem4.6]Let E =where E is a real Banach space and Vand is finite dimensional, Suppose ? ∈C1(E,R), satisfies (PS)-condition, and(?1) there is a constant α and a bounded neighborhood D of 0 in V such thatand(?2) there is a constant β >α such that ?|X≤β.Then ? possesses a critical value c ≥β. Moreover c can be characterized as

    where

    Lemma 2.6[14,Theorem4]Let X be a Banach space with a direct sum decompositionwith dim X2< ∞, and let ? be a C1function on X with ?(0) = 0, satisfying(PS)-condition. Assume that some R>0,

    and

    Again, assume that ? is bounded from below and inf ?<0. Then ? has at least two non-zero critical points.

    §3. Existence of Solutions

    In this section we give the proofs of the main results.

    For convenience,we will denote various positive constants as Ci, i=1,2,3,···. For u ∈H1T,letdt and, then one has

    and

    Proof of Theorem 1For u ∈H1T, it follows from (H1) and sobolev’s inequality that

    Note that

    Then by condition (V1), and the fact thatone has

    Since ? is weakly lower semi-continuous onby lemma 2.3 and lemma 2.4[5]the result holds.

    Proof of Theorem 2Step 1. We prove that ? satisfies the(PS)condition. Assume thatis a (PS) sequence for ?, that is,→0 as n →+∞and ?(un) is bounded,for n large enough, suppose thatDefine un=as before. For all u ∈by Proposition 2.1 and Proposition 2.2, one has

    Then, by condition (F1) and the above inequality, we have

    for some positive constants C5, C6. By condition (F2) and the sobolev’s inequality, one has

    Hence, we see that

    for large n and some positive condition C8.

    By the above inequality, thus we obtain

    for some C9and large n due to α<1. By condition (F2) and the Sobolev inequality, we have

    By (3.1), the above inequality and the boundedness of {?(un)},

    for some positive constant C10, by (V2), which implies that

    it is in contradiction with the boundedness of{?(un)},so{ˉun}is bounded,thus{un}is bounded too. Arguing then as in proposition 4.1 in [5], {ˉun} has a convergent subsequence which shows that the (PS) condition holds.

    Step 2. We prove that ? satisfies the rest conditions of the lemma 2.5. Suppose that

    which implies that

    By Wirtinger’s inequality, one has

    Hence, (i) holds.

    On the other hand, by (V2), we obtain

    Combine (3.3) and (3.4), applying Lemma 2.5, then problem (1.1) has at least one solution in

    Proof of Theorem 3Let E =

    and ψ = ??. Then ψ ∈C1(E,R) satisfies the (PS) condition by the proof of Theorem (1.2).

    In view of theorem 5.29 and Example 5.26 in [3], we only need to prove that

    (ψ1) lim inf>0 as u → 0 in Hk,

    (ψ2) ψ(u)≤0 for all u inand

    (ψ3) ψ(u)→?∞as→∞in

    In fact, by (F1), (F2), one has

    and

    We see that

    for all x ∈RNand a.e. t ∈[0,T], for all|x|≥δ, a.e. t ∈[0,T]and some Q ∈L1(0,T;R+)given by

    Now it follows from (1.5) that

    for all x ∈RNa.e. t ∈[0,T]. Moreover, for all u ∈Hk, it satisfies u=where=0,cos jwt+bjsinwt), and

    Hence we obtain

    for all u ∈Hk, whereand C is a positive constant such that

    so(ψ2)is obtained. At last(ψ3)follows from(3.3). Hence the proof of theorem 1.3 is completed.

    Proof of Theorem 4From the proof of Theorem 1.1, we know that ? is coercive which implies the (PS) condition. Let X2be the finite-dimensional subspace Hkgiven by (3.5) and let X1=. Then by (1.6) we have

    for all u ∈X2with≤C?1δ and

    for all u ∈X1with≤C?1δ, where C is the positive constant given in (3.6).

    for every given |x|<δ, implies inf ?<0. Now our Theorem 4 follows from Lemma 2.6.

    Then measE(x)=0 for all |x|<δ. Given |x|<δ we have

    国产精品人妻久久久影院| 日韩欧美 国产精品| 午夜福利成人在线免费观看| 在线观看免费高清a一片| 久久久久久伊人网av| 国产免费福利视频在线观看| 夜夜爽夜夜爽视频| 人妻少妇偷人精品九色| 日本免费a在线| 草草在线视频免费看| 色网站视频免费| 天堂av国产一区二区熟女人妻| 国产美女午夜福利| 久久精品综合一区二区三区| 日日啪夜夜撸| 一区二区三区高清视频在线| 天天一区二区日本电影三级| 国产激情偷乱视频一区二区| 国产久久久一区二区三区| 国产一级毛片在线| 好男人在线观看高清免费视频| 国产黄色小视频在线观看| 高清日韩中文字幕在线| 亚洲精品久久午夜乱码| 七月丁香在线播放| 欧美精品一区二区大全| 国产成人午夜福利电影在线观看| 一级爰片在线观看| 精品一区二区三卡| 欧美成人一区二区免费高清观看| 亚洲国产欧美人成| 美女大奶头视频| 美女主播在线视频| 国产伦一二天堂av在线观看| 老师上课跳d突然被开到最大视频| 99久国产av精品| 免费人成在线观看视频色| 国产激情偷乱视频一区二区| 看黄色毛片网站| 久久精品熟女亚洲av麻豆精品 | 亚洲四区av| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品94久久精品| 高清欧美精品videossex| 久久久久久久大尺度免费视频| 99久久人妻综合| 成人高潮视频无遮挡免费网站| av在线观看视频网站免费| 日韩av免费高清视频| 亚洲国产最新在线播放| 天堂俺去俺来也www色官网 | 免费无遮挡裸体视频| 亚洲精品视频女| 爱豆传媒免费全集在线观看| 欧美激情在线99| 国产精品一二三区在线看| 精品亚洲乱码少妇综合久久| 免费人成在线观看视频色| 国产成人freesex在线| 午夜福利高清视频| 亚洲av福利一区| 丝袜美腿在线中文| 建设人人有责人人尽责人人享有的 | 真实男女啪啪啪动态图| 99热这里只有是精品在线观看| 亚洲高清免费不卡视频| a级毛色黄片| 久久久久久久亚洲中文字幕| 高清视频免费观看一区二区 | 亚洲伊人久久精品综合| 精品午夜福利在线看| av免费在线看不卡| 国产黄a三级三级三级人| 噜噜噜噜噜久久久久久91| 夫妻午夜视频| 一级毛片久久久久久久久女| 少妇猛男粗大的猛烈进出视频 | 日韩强制内射视频| 2018国产大陆天天弄谢| 天堂√8在线中文| 国产黄a三级三级三级人| 国产精品女同一区二区软件| 噜噜噜噜噜久久久久久91| 亚洲国产欧美人成| 久久99热这里只频精品6学生| 偷拍熟女少妇极品色| 国产亚洲最大av| 午夜激情久久久久久久| 日本爱情动作片www.在线观看| 久久综合国产亚洲精品| 欧美一区二区亚洲| 综合色丁香网| 最近视频中文字幕2019在线8| 国产成人福利小说| 精品久久久久久久久av| 有码 亚洲区| 国产成人福利小说| 亚洲熟妇中文字幕五十中出| 国产 亚洲一区二区三区 | 亚洲av中文av极速乱| 欧美精品一区二区大全| 精品国产露脸久久av麻豆 | 国内少妇人妻偷人精品xxx网站| 纵有疾风起免费观看全集完整版 | 亚洲av.av天堂| 综合色av麻豆| 好男人视频免费观看在线| 午夜激情欧美在线| 亚洲av不卡在线观看| 日韩欧美一区视频在线观看 | 色5月婷婷丁香| av天堂中文字幕网| 肉色欧美久久久久久久蜜桃 | 97人妻精品一区二区三区麻豆| 日日撸夜夜添| 欧美日韩在线观看h| av播播在线观看一区| 少妇被粗大猛烈的视频| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久国产a免费观看| 丰满乱子伦码专区| 午夜福利视频精品| 能在线免费看毛片的网站| av国产久精品久网站免费入址| 国模一区二区三区四区视频| 五月天丁香电影| 亚洲精品日本国产第一区| 免费看美女性在线毛片视频| 综合色丁香网| 美女内射精品一级片tv| 久久精品久久久久久久性| 尤物成人国产欧美一区二区三区| 80岁老熟妇乱子伦牲交| 欧美日本视频| av在线亚洲专区| 欧美激情国产日韩精品一区| 天天一区二区日本电影三级| 亚洲经典国产精华液单| av网站免费在线观看视频 | 欧美日韩精品成人综合77777| av又黄又爽大尺度在线免费看| 精品午夜福利在线看| 91久久精品国产一区二区三区| av在线天堂中文字幕| 91久久精品国产一区二区成人| av在线播放精品| 听说在线观看完整版免费高清| 99热网站在线观看| 色综合亚洲欧美另类图片| 欧美一区二区亚洲| 青春草亚洲视频在线观看| 亚洲精品国产av成人精品| 久久精品国产鲁丝片午夜精品| 欧美高清成人免费视频www| 国产免费一级a男人的天堂| 亚洲av成人精品一二三区| 欧美一区二区亚洲| 亚洲人与动物交配视频| 日韩视频在线欧美| 国产亚洲精品av在线| 永久免费av网站大全| 国产一区二区在线观看日韩| 欧美性感艳星| 欧美xxxx性猛交bbbb| 亚洲av成人精品一区久久| 国产一区有黄有色的免费视频 | 国产熟女欧美一区二区| 全区人妻精品视频| 国产一级毛片七仙女欲春2| 午夜福利网站1000一区二区三区| 国产精品福利在线免费观看| 亚洲美女视频黄频| 免费看美女性在线毛片视频| 六月丁香七月| 久久精品夜色国产| 日日啪夜夜爽| 国产成人精品福利久久| 中文字幕av成人在线电影| av又黄又爽大尺度在线免费看| 日韩av在线大香蕉| 2021少妇久久久久久久久久久| 97精品久久久久久久久久精品| 日日啪夜夜爽| 免费大片黄手机在线观看| 中文天堂在线官网| 亚洲欧美成人综合另类久久久| 国产一区二区亚洲精品在线观看| 国产精品女同一区二区软件| 91精品伊人久久大香线蕉| 亚洲四区av| 国产91av在线免费观看| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| 噜噜噜噜噜久久久久久91| 不卡av一区二区三区| 日日啪夜夜爽| 欧美xxⅹ黑人| 欧美少妇被猛烈插入视频| 热99国产精品久久久久久7| 老女人水多毛片| 国产日韩欧美亚洲二区| 精品国产超薄肉色丝袜足j| 亚洲欧美成人精品一区二区| 亚洲美女黄色视频免费看| 午夜福利视频精品| 国产在线一区二区三区精| 欧美激情高清一区二区三区 | 欧美日韩精品成人综合77777| 亚洲,一卡二卡三卡| 欧美亚洲日本最大视频资源| 蜜桃在线观看..| 亚洲精品,欧美精品| 中文字幕av电影在线播放| 亚洲成人一二三区av| 尾随美女入室| av福利片在线| 少妇猛男粗大的猛烈进出视频| 国产一级毛片在线| 捣出白浆h1v1| 日韩中字成人| 综合色丁香网| 久久久久久久大尺度免费视频| 99国产精品免费福利视频| 日韩av不卡免费在线播放| 国产亚洲欧美精品永久| 好男人视频免费观看在线| 91精品国产国语对白视频| 青春草亚洲视频在线观看| 久久久久国产精品人妻一区二区| 欧美在线黄色| 边亲边吃奶的免费视频| 啦啦啦在线观看免费高清www| 天美传媒精品一区二区| 一区二区三区激情视频| 国产日韩欧美在线精品| 成年人免费黄色播放视频| 国产成人精品无人区| 成人国语在线视频| 国产成人a∨麻豆精品| 最近的中文字幕免费完整| 涩涩av久久男人的天堂| 国产在线免费精品| 国产成人免费观看mmmm| 91精品国产国语对白视频| 欧美 日韩 精品 国产| 午夜老司机福利剧场| 日本欧美国产在线视频| 日本欧美视频一区| 丝袜人妻中文字幕| 久久影院123| 免费黄色在线免费观看| 免费在线观看完整版高清| 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| 美女视频免费永久观看网站| 欧美日韩综合久久久久久| 亚洲av福利一区| 咕卡用的链子| 美女中出高潮动态图| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦在线观看免费高清www| 最近的中文字幕免费完整| 亚洲成av片中文字幕在线观看 | 国产成人av激情在线播放| 日本色播在线视频| 香蕉国产在线看| 免费av中文字幕在线| 搡女人真爽免费视频火全软件| 9191精品国产免费久久| 精品99又大又爽又粗少妇毛片| 黑丝袜美女国产一区| freevideosex欧美| 国产视频首页在线观看| 午夜精品国产一区二区电影| 在线天堂最新版资源| 午夜免费鲁丝| 丁香六月天网| 2022亚洲国产成人精品| 亚洲av电影在线观看一区二区三区| 色视频在线一区二区三区| 国产精品麻豆人妻色哟哟久久| 纵有疾风起免费观看全集完整版| 午夜福利视频精品| 亚洲精品久久成人aⅴ小说| 一区在线观看完整版| 午夜91福利影院| 亚洲第一av免费看| 一级毛片 在线播放| 水蜜桃什么品种好| 久久久久久久久久久免费av| 国产亚洲午夜精品一区二区久久| 亚洲国产精品国产精品| 丝袜人妻中文字幕| a 毛片基地| 一区二区日韩欧美中文字幕| 制服诱惑二区| 国产黄色视频一区二区在线观看| 亚洲中文av在线| 国产精品一区二区在线不卡| 97在线人人人人妻| 一区在线观看完整版| 春色校园在线视频观看| 波野结衣二区三区在线| 免费久久久久久久精品成人欧美视频| 日日啪夜夜爽| 国产黄频视频在线观看| 午夜福利视频精品| 国产精品.久久久| 日日撸夜夜添| 久久久久久人妻| 国产福利在线免费观看视频| 亚洲国产欧美网| 亚洲精品久久成人aⅴ小说| 日本vs欧美在线观看视频| 欧美精品亚洲一区二区| 五月开心婷婷网| av天堂久久9| 高清欧美精品videossex| 尾随美女入室| 日本wwww免费看| 九色亚洲精品在线播放| 国产精品国产av在线观看| 少妇人妻 视频| 亚洲四区av| 大香蕉久久网| 国产亚洲午夜精品一区二区久久| 久久久久久久亚洲中文字幕| 在线观看免费日韩欧美大片| a 毛片基地| 亚洲欧美成人精品一区二区| 欧美日韩一级在线毛片| 日韩免费高清中文字幕av| 香蕉精品网在线| 国产高清不卡午夜福利| av福利片在线| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 日日爽夜夜爽网站| 一区二区日韩欧美中文字幕| 亚洲欧洲日产国产| 精品国产超薄肉色丝袜足j| 欧美精品人与动牲交sv欧美| 9色porny在线观看| 亚洲欧美色中文字幕在线| 香蕉丝袜av| 国产成人91sexporn| 中文字幕精品免费在线观看视频| 少妇精品久久久久久久| 2022亚洲国产成人精品| 色婷婷久久久亚洲欧美| 捣出白浆h1v1| 亚洲 欧美一区二区三区| 国产色婷婷99| 国产成人精品婷婷| 免费黄网站久久成人精品| 一区在线观看完整版| 一本久久精品| 叶爱在线成人免费视频播放| 性少妇av在线| 天天躁夜夜躁狠狠躁躁| 日韩av在线免费看完整版不卡| 国产成人a∨麻豆精品| 伊人久久大香线蕉亚洲五| 人成视频在线观看免费观看| 久久国内精品自在自线图片| 岛国毛片在线播放| 国产1区2区3区精品| 国产精品麻豆人妻色哟哟久久| 亚洲av.av天堂| 中文字幕av电影在线播放| 18禁国产床啪视频网站| 精品久久久久久电影网| 美女xxoo啪啪120秒动态图| 日本91视频免费播放| 久久这里只有精品19| 91精品伊人久久大香线蕉| 亚洲精华国产精华液的使用体验| 一级片免费观看大全| 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 免费观看a级毛片全部| 97人妻天天添夜夜摸| 久久久久久久久久久免费av| 久久青草综合色| 亚洲国产精品999| 七月丁香在线播放| 国产精品蜜桃在线观看| 欧美亚洲 丝袜 人妻 在线| 99九九在线精品视频| 成人亚洲精品一区在线观看| 婷婷色综合大香蕉| 成年av动漫网址| 丝袜美腿诱惑在线| 美国免费a级毛片| 99国产精品免费福利视频| 人人妻人人添人人爽欧美一区卜| 午夜福利一区二区在线看| 熟女少妇亚洲综合色aaa.| 97精品久久久久久久久久精品| 日韩熟女老妇一区二区性免费视频| 99热网站在线观看| 午夜精品国产一区二区电影| 久久久亚洲精品成人影院| 下体分泌物呈黄色| 夫妻性生交免费视频一级片| 9191精品国产免费久久| 午夜福利,免费看| 人人澡人人妻人| 精品亚洲成a人片在线观看| 日本wwww免费看| 欧美亚洲日本最大视频资源| 婷婷色综合大香蕉| 免费黄色在线免费观看| 亚洲精品视频女| 丝袜美足系列| 90打野战视频偷拍视频| 一级片'在线观看视频| 久久狼人影院| 成人国产麻豆网| 成年av动漫网址| 人成视频在线观看免费观看| 狂野欧美激情性bbbbbb| 九草在线视频观看| 亚洲欧美一区二区三区久久| 国产在线视频一区二区| 9191精品国产免费久久| 国产一区二区三区综合在线观看| 亚洲精品av麻豆狂野| 成年人免费黄色播放视频| 国产精品三级大全| 国产又色又爽无遮挡免| 欧美日韩亚洲国产一区二区在线观看 | 久久av网站| 可以免费在线观看a视频的电影网站 | 新久久久久国产一级毛片| 日韩av不卡免费在线播放| 韩国av在线不卡| 永久网站在线| 夜夜骑夜夜射夜夜干| 伦理电影大哥的女人| av国产久精品久网站免费入址| 日韩,欧美,国产一区二区三区| 免费观看无遮挡的男女| 大香蕉久久网| 日日摸夜夜添夜夜爱| 人体艺术视频欧美日本| 99热网站在线观看| av女优亚洲男人天堂| 亚洲一区二区三区欧美精品| 欧美成人精品欧美一级黄| 亚洲精品日韩在线中文字幕| 日韩中文字幕欧美一区二区 | 女的被弄到高潮叫床怎么办| 99热国产这里只有精品6| 在线观看www视频免费| 少妇被粗大猛烈的视频| 婷婷成人精品国产| 精品一区二区免费观看| 国产成人欧美| 香蕉丝袜av| 午夜久久久在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩综合在线一区二区| 91成人精品电影| 日韩伦理黄色片| 涩涩av久久男人的天堂| 日本午夜av视频| 女的被弄到高潮叫床怎么办| 亚洲色图 男人天堂 中文字幕| 精品99又大又爽又粗少妇毛片| 免费观看a级毛片全部| 高清在线视频一区二区三区| av福利片在线| 天天影视国产精品| 亚洲精品国产一区二区精华液| 巨乳人妻的诱惑在线观看| 亚洲欧洲精品一区二区精品久久久 | 99热全是精品| 91午夜精品亚洲一区二区三区| 国产无遮挡羞羞视频在线观看| 天天躁夜夜躁狠狠久久av| 蜜桃国产av成人99| 少妇人妻 视频| 亚洲伊人色综图| 又粗又硬又长又爽又黄的视频| 亚洲精品中文字幕在线视频| 免费大片黄手机在线观看| 日韩三级伦理在线观看| 超碰成人久久| 极品少妇高潮喷水抽搐| 国产男女超爽视频在线观看| 国产精品亚洲av一区麻豆 | 一区福利在线观看| 69精品国产乱码久久久| av电影中文网址| 亚洲精华国产精华液的使用体验| 国产成人91sexporn| 色视频在线一区二区三区| 99热全是精品| 成人免费观看视频高清| 午夜久久久在线观看| 久久久久久人人人人人| 国产女主播在线喷水免费视频网站| 国产免费视频播放在线视频| 日本91视频免费播放| 亚洲一码二码三码区别大吗| 国产av国产精品国产| 老女人水多毛片| www.av在线官网国产| 日韩av不卡免费在线播放| 啦啦啦视频在线资源免费观看| 乱人伦中国视频| 男女啪啪激烈高潮av片| 亚洲欧美精品综合一区二区三区 | 少妇猛男粗大的猛烈进出视频| 肉色欧美久久久久久久蜜桃| 好男人视频免费观看在线| 日韩人妻精品一区2区三区| 美女国产高潮福利片在线看| 亚洲人成电影观看| 亚洲国产精品国产精品| 成年女人毛片免费观看观看9 | 国产97色在线日韩免费| 一区福利在线观看| 免费播放大片免费观看视频在线观看| 18禁观看日本| 国产一区二区在线观看av| 久久久精品免费免费高清| 久久午夜综合久久蜜桃| 国产av码专区亚洲av| 日韩欧美精品免费久久| 这个男人来自地球电影免费观看 | 免费看不卡的av| 久久久精品94久久精品| 亚洲成色77777| 亚洲欧美清纯卡通| 久久99一区二区三区| 最近的中文字幕免费完整| 亚洲一区二区三区欧美精品| 老汉色∧v一级毛片| 国产精品人妻久久久影院| 久久亚洲国产成人精品v| 久久综合国产亚洲精品| 国产av码专区亚洲av| 色婷婷久久久亚洲欧美| 中文字幕人妻熟女乱码| 老熟女久久久| av一本久久久久| 亚洲成人av在线免费| 我要看黄色一级片免费的| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 最近最新中文字幕免费大全7| 新久久久久国产一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品二区激情视频| 中文字幕av电影在线播放| 国产成人精品在线电影| 亚洲色图综合在线观看| 大话2 男鬼变身卡| 国产人伦9x9x在线观看 | 七月丁香在线播放| 考比视频在线观看| 亚洲婷婷狠狠爱综合网| 精品福利永久在线观看| 国产爽快片一区二区三区| 七月丁香在线播放| 亚洲久久久国产精品| 黄片播放在线免费| 成人毛片60女人毛片免费| 女人被躁到高潮嗷嗷叫费观| 久久久久久伊人网av| 黄片小视频在线播放| 黄色怎么调成土黄色| 国产成人精品久久二区二区91 | 我要看黄色一级片免费的| 母亲3免费完整高清在线观看 | 超碰97精品在线观看| 黄片无遮挡物在线观看| 亚洲少妇的诱惑av| 亚洲av电影在线观看一区二区三区| 丝袜美腿诱惑在线| 少妇猛男粗大的猛烈进出视频| 丝袜人妻中文字幕| 中文字幕制服av| 欧美少妇被猛烈插入视频| 亚洲第一av免费看| 午夜福利视频精品| 超色免费av| 久久人人97超碰香蕉20202| 国产片内射在线| 亚洲久久久国产精品| 丝袜脚勾引网站| 亚洲国产av影院在线观看| 亚洲美女搞黄在线观看| 精品第一国产精品| 不卡视频在线观看欧美| 久久97久久精品| 1024视频免费在线观看| 午夜激情av网站| 女人精品久久久久毛片| 国产一区二区三区综合在线观看| 午夜av观看不卡| 日韩电影二区| 两个人看的免费小视频| 天天操日日干夜夜撸| 国产精品国产三级国产专区5o| 国产国语露脸激情在线看| 黄片小视频在线播放| 精品卡一卡二卡四卡免费| 久久99蜜桃精品久久| av在线老鸭窝| 成人18禁高潮啪啪吃奶动态图| 国产成人精品久久二区二区91 | 一区二区三区精品91|