• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Products and Diagonals of Mappings in Generalized Topological Spaces

    2020-01-07 06:22:26CAOChunfangSHENRongxin

    CAO Chun-fang, SHEN Rong-xin

    (1. Department of Mathematics, Taizhou University, Taizhou 225300, Jiangsu, P.R. China; 2. Department of Mathematics, Taizhou University, Taizhou 225300, Jiangsu, P.R. China )

    Abstract: Based on the theory of products of generalized topologies, we introduce the product mappings and the diagonal mappings in generalized topological spaces in this paper.We investigate some basic properties (especially, the continuity, openness and closedness) of the product mappings and the diagonal mappings in generalized topological spaces. Some applications are given to answer two questions raised in [3].

    Key words: Product mappings; Diagonal mappings; Generalized topology

    §1. Introduction

    In recent years, the theory of generalized topological spaces founded by Cs′asz′ar has been extensively studied, which is one of the most important development of general topology, see[1-3, 10, 12-20, 23]. In [9], Cs′asz′ar introduced the Cartesian product of generalized topologies and built some fundamental results on this topic. The second author gave some remarks on product of generalized topologies to discuss the connectedness and compactness of products of generalized topologies in [22]. In this paper, we will discuss the properties of the product and the diagonal of the mappings in the realm of generalized topological spaces. As applications,we give answers to two questions raised in [3].

    We recall some basic definitions and notions in generalized topological spaces. Let X be a nonempty set and ExpX be the power set of X. The subset μ of ExpX is called a generalized topology (briefly GT) on X if ?∈μ and every union of some elements of μ belongs to μ. A set with a GT is said to be a generalized topological space (briefly GTS). The elements of μ are called μ-open sets (briefly, open sets) and their complements are called μ-closed sets (briefly,closed sets). The generalized interior of a subset A of X denoted by iμA is the union of allμ-open sets included in A, and the generalized closure of A denoted by cμA is the intersection of all μ-closed sets including A. It is easy to verify that cμA=X ?iμ(X ?A)and iμA=X ?cμ(X ?A)[7]. For a generalized topological space (X,μ), we denote Mμby the union of all elements of μ.We say the GT μ is strong if X ∈μ. Obviously, the GT μ is strong if and only if Mμ=X.

    Let(X,μX)and(Y,μY)be two generalized topological spaces and f be a mapping X →Y.We say that f is (μX,μY)-continuous (briefly continuous) if U ∈μYimplies f?1(U) ∈μX, f is (μX,μY)-open (briefly open) if U ∈μXimplies f(U)∈μY, and f is (μX,μY)-closed (briefly closed) if X ?F ∈μXimplies Y ?f(F)∈μY. It is obvious that μXis strong whenever μYis strong and f : X →Y is continuous, and μYis strong whenever μXis strong and f : X →Y is open and surjective.

    §2. The product of GT’s

    Lemma 2.1[9]

    Lemma 2.2[22]Let K0be a finite subset of K. If Ak∈{Mk,Xk} for each k ∈K K0,then iA=

    Lemma 2.3[9]The projection pkis (μ,μk)-open for each k ∈K.

    Lemma 2.4[9]If all μk’s are strong, then every pkis (μ,μk)-continuous.

    Theorem 2.5The setis μ-closed inif and only if Akis μk-closed in

    Xkfor each k ∈K.

    ProofSuppose the setis μ-closed, thenAk. By lemma 2.1,it follows that ckAk=Ak. So Akis μk-closed set in Xkfor each k ∈K.

    Conversely, if every Akis a μk-closed set in Xk, then ckAk=Akfor each k ∈K. Then

    Theorem 2.6The setisμ-open inif and only if Akisμk-open in Xkfor each k ∈K and there exists a finite subset of K0such that Ak=Mkfor each k ∈KK0.

    ProofSufficiency is obvious, to show the necessity. Suppose the setμ-open inBy Lemma 2.3, Akis open in Xkfor each k ∈K. Take arbitrary standard open set B contained in A with the formBk, where Bk= Mk(k ∈K K0) for some finite K0?K. Then Ak=Mkfor each k ∈KK0.

    §3. The Products of The Mappings

    Let K be a nonempty index set. Suppose we are given two families of generalized topological spaces {Xk}k∈Kand {Yk}k∈Kand a family of mappings {fk}k∈K, where fk: Xk→Yk.The mapping assigning to the pointt he point {fk(xk)}is called the cartesian product (briefly, the product) of the mappingsand is denoted by

    Consider in the following M is denoted by the union of all elements of μX,is denoted by the union of all elements of μY, Mkis denoted by the union of all elements of μXk,is denoted by the union of all elements of μYk, pkis denoted by the projection X →Xkandis denoted by the projection Y →Yk.

    where fk: Xk→Yk, Ak?Xkand Bk?Yk.

    Theorem 3.1Let K be a nonempty index set, {Xk: k ∈K} and {Yk: k ∈K} be two classes of generalized topological spaces,For a finite set K0?K, we have

    (1)If all mappings fk: Xk→Yk(k ∈K) are continuous and spaces Yk(k ∈K K0) are strong, thenis continuous.

    Proof(1) Let U be a standard open setin Y, where K1is a finite subset of K and Ukis an open set in Ykfor each k ∈KK1. Without loss of generality,we may assume that K0?K1. Then we have Since every fk: Xk→Ykis continuous, every f?1(Uk) is an open set in Xk(k ∈K1). So f?1(U) is an open set in X. Thus f is continuous.

    (2)Let k0∈K. For any open set Vk0in Yk0(k0∈K),the set×Vk0is open in Y.So the setis open in X by the continuity of f. Thenis an open set in Xk0by theorem 2.6. Thus fk0: Xk0→Yk0is continuous.

    The following example shows that the condition that “all but finite many Yk’s are strong”can not be omitted in above.

    Example 3.2Let K be a infinite index set, Xk= Yk= {a,b} for each k ∈K andμ1={?,{a},{a,b}}, μ2={?,{a}}. We consider a family of functions fk: (Xk,μ1)→(Yk,μ2)(k ∈K) defined by fk(a) = a,fk(b) = b. It is easy to see that every fkis continuous and f =X →Y is not continuous.

    Theorem 3.3Let K be a nonempty index set, {Xk: k ∈K} and {Yk: k ∈K} be two classes of generalized topological spaces,Then the product mapping f =X →Y is open if and only if every fk: Xk→Ykis open for each k ∈K and there exists a finite subset K0?K such that fk(Mk)=∈KK0.

    ProofSuppose that f is an open mapping. Thenis an open set in Y. It follows from theorem 2.6 thatall but finitely many members of K. Now let k0∈K andbe an open set inThen the setis open in X. Since f is open,is open in Y. Then we have that fk0(Uk0) is an open set in Yk0. So fk0is open.

    Corollary 3.4Let K be a nonempty index set, {Xk: k ∈K} and {Yk: k ∈K} be two classes of generalized topological spaces. If Xkis strong and fk: Xk→Ykis open and surjective for each k ∈K, then the product mappingis open.

    Theorem 3.5Let K be a nonempty index set, {Xk: k ∈K} and {Yk: k ∈K} be two classes of generalized topological spaces,for each k ∈K. Ifis closed, then fkis closed for each k ∈K.

    ProofLet k0∈K and Fk0be a closed set in Xk0. Then the setis close d in X by theroem 2.5. Sois closed in Y. Thus the set fk0(Fk0) is a closed set in Yk0. So fk0is closed.

    Remark 3.6The converse of the theorem 3.5 is not valid in general, even when K is finite and {Xk: k ∈K} and {Yk: k ∈K} are classes of topological spaces, see [11, Example 2.3.28].

    §4. The Diagonals of The Mappings

    Suppose we are given a generalized topological space X, a family {Yk}k∈Kof generalized topological spaces and a family of mappings {fk}k∈K, where fk: X →Yk. The mapping f:X →Y =assigning to the point x ∈X the point {fk(x)}Ykis called the diagonal of the mappings {fk}k∈Kand is denoted by ?k∈Kfk.

    For the diagonal f =?k∈Kfk, we have

    where fk: X →Yk, A ?X and Bk?Yk.

    Theorem 4.1If every Ykis strong and f = ?k∈Kfk: X →Y is continuous, then every fk: X →Ykis continuous.

    ProofFor every open set Vkin Yk,the setis open in Y,since every Ykis strong.Sois an open set in X. Thus every fk: X →Ykis continuous.

    The following example 4.2 shows that the strongness of the images can not be omitted in theorem 4.1, and example 4.3 shows that the converse of theorem 4.1 is not valid.

    Example 4.2Let X = Y = {a,b,c} and μ1= {?,{a}}, μ2= {?,{c}}. We consider a mapping f1= id|X: (X,μ1) →(X,μ1) defined by f1(a) = a,f1(b) = b,f1(c) = c, and another mapping f2: (X,μ1) →(Y,μ2) defined by f2(a) = b,f2(b) = c,f2(c) = a. It is easy to verify that the mapping f =f1?f2is continuous, and f2is not continuous.

    Example 4.3Let X =Y ={a,b,c} and μ1=μ2={?,{a,b},{a,c},{b,c},{a,b,c}}. We consider a mapping f1=id|X: (X,μ1)→(X,μ1)defined by f1(a)=a,f1(b)=b,f1(c)=c,and another mapping f2: (X,μ1)→(Y,μ2)defined by f2(a)=c,f2(b)=a,f2(c)=b. Obviously we have that both f1and f2are continuous. Since(f1?f2)?1({a,b}×{a,b})={a,b}∩{b,c}=is not open in X, the mapping f =f1?f2is not continuous.

    The above examples also give answers to the questions raised in[3]. we recall some notations and definitions.

    Definition 4.4[7]Let (X,μ) be a generalized topological space and A ?X. Then A is said to be

    (1) α-open if A ?iμ(cμ(iμ(A)));

    (2) σ-open if A ?cμ(iμ(A));

    (3) π-open if A ?iμ(cμ(A));

    (4) β-open if A ?cμ(iμ(cμ(A))).

    Definition 4.5[3]Let (X,μ) andbe GTS’s . Then a mapping f : X →is said to be

    Remark 4.6The following implications can be verified easily.

    Question 4.7[3,Question1]Let (X,μ), () be two generalized topological spaces,f : X →be a mapping, and h be the graph mapping of f. Is f (μ,α)-continuous((μ,)-continuous) whenever h is (μ,-continuous ((μ,)-continuous)?

    Question 4.8[3,Question2]Let (X,μ), () be two generalized topological spaces,f : X →be a mapping, and h be the graph mapping of f. Is h (μ,)-continuous (resp,.(μ,βcontinuous,(μ,)-continuous,(μ,)-continuous)whenever f is(μ,α-continuous(resp., (continuous, (μ,σ-continuous, (μ,)-continuous)?

    The answer to above questionsLetbe the space Y, and f be the mapping f2in the example 4.2, then the graph mapping h of f equals to the diagonal f1?f2. Note that the set {a}×{c} is the unique nonempty open set in. Then it is easy to verify that{a}×{c}is also the unique nonempty π-open(α-open)set inIt follows that the graph mapping h = f1?f2is (μ,α-continuous ((μ,-continuous). We have already proved in example 4.2 that f2is not continuous, which gives a negative answer to question 4.7. Further we letthe space Y,and f be the mapping f2in the example 4.3,then the graph mapping h of f equals to the diagonal f1?f2. It is easy to check that the class of all β-open sets inis {?,{a,b},{a,c},{b,c},{a,b,c}}. So the mapping f2is (μ)-continuous. We have already proved in example 4.3 that f1?f2is not continuous, which gives a negative answer to question 4.8.

    Theorem 4.9If the diagonal f = ?k∈Kfk: X →Y is open, then every mapping fk:X →Ykis open.

    ProofThe conclusion follows from the equality fk=?f and lemma 2.3, which states that the projectionY →YKis always open.

    Remark 4.10The converse of the theorem 4.9 is not valid in general, even when {Yk:k ∈K} is a finite class of topological spaces, see [11, Example 2.3.33].

    In order to discuss the closedness of diagonal of mappings,we recall the axioms of separation for the generalized topological spaces, which were discussed in [10, 12-13, 15-16, 19-20].

    Definition 4.11[12,19]Let X be a generalized topological space. X is called T1if for every pair of distinct points x1,x2∈X there exists an open set U ?X such that x1∈U and x2. X is called T3if X is T1and for every point x ∈X and every closed set F ?X such that xthere exist two open sets U1, U2?X such that x ∈U1, F ?U2and U1∩U2=?.

    Theorem 4.12If a generalized topological space X is a T3-space, then for every x ∈X and every open neighborhood V of x, there exists an open neighborhood U of x such that

    cU ?V.

    ProofSuppose that X is a T3-space. By the definition,there exist two open sets U1, U2?X such that x ∈U1, X V ?U2and U1∩U2= ?. Then we have U1?X U2?V, which implies that cU1?V.

    Theorem 4.13A mapping f: X →Y is closed if and only if for every set B ?Y and every open set U ?X which contains f?1(B), there exists an open set V ?Y containing B such that f?1(V)?U.

    ProofSuppose that f: X →Y is closed, B is a subset of Y and U is an open subset of X which contains f?1(B). So the set V =Y f(XU)is open in Y and contains B. Moreover,

    Conversely, let us take a closed set F ?X. It suffices to show f(F) is closed in Y. Note that the set U =X F is open in X, and for B =Y f(F) we have

    By the condition in the theorem, there exists an open subset V of Y such that Y f(F) ?V and f?1(V)?U, i.e., f?1(V)∩F =?. The last equality implies that V ∩f(F)=?, i.e., that V ?Y f(F). So we have that V =Y f(F) and thus f(F) is closed in Y.

    Theorem 4.14Let X be a GTS, Y1a T1-GTS, Y2a T3-GTS and fibe the mapping X →Yifor i=1,2. If both f1and f2are closed and continuous, then the diagonal f =f1?f2is closed.

    ProofSuppose a closed set A ?X and a point (y1,y2) ∈(Y1×Y2)f(A). We haveand thusNote thatis a closed set in X, since Y1is T1and f1is continuous. Then X (A ∩) is an open set in X.By theorem 4.12 and theorem 4.13, there exists an open neighborhood V2?Y2of y2satisfying)?X(A ∩)). Then we have?X(A ∩). By theorem 4.13,there exists an open neighborhood V1?Y1of y1satisfying?X(A ∩cV2)), thus A ∩(V2)=?. The equality shows that f?1(V1×V2) ?X A, So V1×V2is an open neighborhood of (y1,y2) in Y1×Y2satisfying that V1×V2∩f(A)=?, which implies that f(A) is closed in Y1×Y2. Therefore, the diagonal f is closed.

    Remark 4.15The closedness and continuity of the diagonal f1?f2do not imply that f1and f2are closed even in topological spaces, see [11, Example 2.3.31].

    It was shown in page 85 of[11]that theorem 4.14 can not be generalized to infinite diagonals.However, we still do not know that whether is it valid for finite index set with size bigger than two.

    Question 4.16Let X be a GTS, Y1a T1-GTS and Y2,Y3··· ,Ynbe T3-GTS’s. If every mapping fi: X →Yiis closed and continuous for i = 1,2··· ,n, is then the diagonal f =f1?f2···?fnclosed?

    午夜福利在线在线| 久久久久久九九精品二区国产| 又粗又爽又猛毛片免费看| 一级a爱片免费观看的视频| 午夜福利18| 少妇的逼好多水| 俺也久久电影网| 夜夜夜夜夜久久久久| 国产av麻豆久久久久久久| 99视频精品全部免费 在线| 黄片wwwwww| 俄罗斯特黄特色一大片| 免费在线观看成人毛片| 人人妻人人看人人澡| 日本成人三级电影网站| 久久精品国产亚洲av香蕉五月| 搡老妇女老女人老熟妇| 美女高潮的动态| 少妇的逼水好多| 国产高潮美女av| 天堂动漫精品| 午夜精品在线福利| 国产高清三级在线| 成人特级黄色片久久久久久久| 久久亚洲精品不卡| 男女视频在线观看网站免费| 午夜福利成人在线免费观看| 国内精品一区二区在线观看| 97人妻精品一区二区三区麻豆| 亚洲狠狠婷婷综合久久图片| 亚洲欧美激情综合另类| 免费av观看视频| 午夜福利高清视频| 色哟哟·www| 久久久色成人| 啦啦啦观看免费观看视频高清| 全区人妻精品视频| 国产91精品成人一区二区三区| 日本 欧美在线| 内地一区二区视频在线| 99久久九九国产精品国产免费| 亚洲精品日韩av片在线观看| 日本爱情动作片www.在线观看 | 女的被弄到高潮叫床怎么办 | videossex国产| 亚洲avbb在线观看| 欧美不卡视频在线免费观看| 日韩精品有码人妻一区| 91久久精品国产一区二区成人| 如何舔出高潮| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| 久久亚洲精品不卡| 久久这里只有精品中国| 国产蜜桃级精品一区二区三区| 国产一区二区亚洲精品在线观看| 岛国在线免费视频观看| 午夜福利视频1000在线观看| 最近视频中文字幕2019在线8| 哪里可以看免费的av片| 国产黄a三级三级三级人| 给我免费播放毛片高清在线观看| 亚洲欧美日韩高清在线视频| 日韩欧美 国产精品| 国产国拍精品亚洲av在线观看| 99在线视频只有这里精品首页| 嫁个100分男人电影在线观看| 直男gayav资源| 黄色日韩在线| 亚洲av.av天堂| 久久久久国内视频| 日本一本二区三区精品| 在线观看免费视频日本深夜| 久久精品国产自在天天线| 狠狠狠狠99中文字幕| 成年女人毛片免费观看观看9| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久久亚洲 | 欧美不卡视频在线免费观看| 草草在线视频免费看| 中亚洲国语对白在线视频| 级片在线观看| 国产午夜福利久久久久久| 亚洲av免费在线观看| 禁无遮挡网站| 日日夜夜操网爽| 22中文网久久字幕| 国产精品精品国产色婷婷| 美女高潮的动态| 天天一区二区日本电影三级| 久久久成人免费电影| 日韩高清综合在线| 久久久久久久亚洲中文字幕| 亚洲成人久久性| 亚洲国产欧美人成| 日本黄色片子视频| 99久久九九国产精品国产免费| 国产高清激情床上av| 欧美成人一区二区免费高清观看| 精品一区二区三区av网在线观看| ponron亚洲| 日韩强制内射视频| 国产v大片淫在线免费观看| 黄色配什么色好看| 亚洲综合色惰| 好男人在线观看高清免费视频| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播| av在线天堂中文字幕| 久久草成人影院| 看十八女毛片水多多多| 亚洲一级一片aⅴ在线观看| 亚洲av免费高清在线观看| 啦啦啦韩国在线观看视频| 日本免费一区二区三区高清不卡| 偷拍熟女少妇极品色| 极品教师在线视频| 欧美区成人在线视频| 日本精品一区二区三区蜜桃| 美女 人体艺术 gogo| 国产免费男女视频| 日日撸夜夜添| 简卡轻食公司| 伦精品一区二区三区| 男人舔女人下体高潮全视频| 午夜免费激情av| 啦啦啦韩国在线观看视频| 国产av在哪里看| 一夜夜www| 九九爱精品视频在线观看| av.在线天堂| 国产精品一区二区三区四区久久| 在线免费观看不下载黄p国产 | videossex国产| 亚洲欧美日韩高清在线视频| 久久欧美精品欧美久久欧美| 成人午夜高清在线视频| 亚洲人成网站高清观看| 日韩欧美国产一区二区入口| 日日干狠狠操夜夜爽| 中文在线观看免费www的网站| av在线蜜桃| 久久久精品欧美日韩精品| 成人亚洲精品av一区二区| 夜夜看夜夜爽夜夜摸| 女生性感内裤真人,穿戴方法视频| 欧美色欧美亚洲另类二区| 亚洲va日本ⅴa欧美va伊人久久| 黄色女人牲交| 精品人妻熟女av久视频| 欧美绝顶高潮抽搐喷水| 国产精品免费一区二区三区在线| 国内精品久久久久久久电影| 亚洲av二区三区四区| 国产成年人精品一区二区| 无人区码免费观看不卡| 成年版毛片免费区| 久久精品影院6| 女人被狂操c到高潮| 亚洲色图av天堂| 国产成年人精品一区二区| 国产日本99.免费观看| 少妇高潮的动态图| 天堂√8在线中文| 亚洲一区高清亚洲精品| 亚洲电影在线观看av| 成人特级av手机在线观看| 国产v大片淫在线免费观看| 全区人妻精品视频| 18禁在线播放成人免费| 亚洲天堂国产精品一区在线| 午夜福利在线在线| 午夜老司机福利剧场| 国产av麻豆久久久久久久| 一级a爱片免费观看的视频| 高清毛片免费观看视频网站| 国产亚洲精品综合一区在线观看| 久久婷婷人人爽人人干人人爱| 欧美色视频一区免费| 中国美白少妇内射xxxbb| 日韩欧美一区二区三区在线观看| 人妻少妇偷人精品九色| 黄色配什么色好看| 亚洲国产欧美人成| 久久久久久久久久久丰满 | 最近最新免费中文字幕在线| 人妻丰满熟妇av一区二区三区| 免费看a级黄色片| 中亚洲国语对白在线视频| 国产伦精品一区二区三区四那| av国产免费在线观看| 国产亚洲av嫩草精品影院| 中文资源天堂在线| 国产精品,欧美在线| 很黄的视频免费| 国产精品98久久久久久宅男小说| 国国产精品蜜臀av免费| 亚洲精品乱码久久久v下载方式| 国产白丝娇喘喷水9色精品| 国产午夜福利久久久久久| 亚洲自拍偷在线| 一级毛片久久久久久久久女| 色精品久久人妻99蜜桃| 老司机福利观看| 男女那种视频在线观看| 国产欧美日韩精品一区二区| av福利片在线观看| 欧美bdsm另类| 校园人妻丝袜中文字幕| 日韩欧美精品免费久久| 欧美极品一区二区三区四区| 国产午夜精品论理片| 99国产极品粉嫩在线观看| 成人特级av手机在线观看| 精品无人区乱码1区二区| 99久久成人亚洲精品观看| 日日摸夜夜添夜夜添av毛片 | 99久久无色码亚洲精品果冻| 蜜桃亚洲精品一区二区三区| 伊人久久精品亚洲午夜| 国产一区二区三区av在线 | 精品不卡国产一区二区三区| eeuss影院久久| 欧美激情在线99| 亚洲欧美精品综合久久99| 免费看光身美女| 午夜a级毛片| 最近最新免费中文字幕在线| 黄色丝袜av网址大全| 一级黄色大片毛片| 99久久中文字幕三级久久日本| 午夜免费激情av| 成人美女网站在线观看视频| 不卡一级毛片| 99久久中文字幕三级久久日本| 嫁个100分男人电影在线观看| 亚洲av成人精品一区久久| 国产一级毛片七仙女欲春2| 国产精品国产三级国产av玫瑰| 毛片女人毛片| 国产精品电影一区二区三区| 一个人看的www免费观看视频| 午夜福利在线观看免费完整高清在 | 欧美日韩乱码在线| 久久精品国产99精品国产亚洲性色| a级一级毛片免费在线观看| av福利片在线观看| 日本与韩国留学比较| 日本a在线网址| 人妻久久中文字幕网| 免费无遮挡裸体视频| 长腿黑丝高跟| 国产美女午夜福利| 国产精品不卡视频一区二区| 日韩欧美精品v在线| 丝袜美腿在线中文| 尤物成人国产欧美一区二区三区| 国产精品久久久久久久电影| 精品久久久久久久久av| aaaaa片日本免费| 久久久久久久久久成人| www日本黄色视频网| 午夜老司机福利剧场| 精品一区二区三区av网在线观看| 人人妻,人人澡人人爽秒播| 听说在线观看完整版免费高清| 干丝袜人妻中文字幕| 小说图片视频综合网站| 亚洲精品粉嫩美女一区| 国产精品伦人一区二区| h日本视频在线播放| 97超视频在线观看视频| 亚洲成人久久爱视频| 欧美绝顶高潮抽搐喷水| 久久中文看片网| 久久精品国产亚洲网站| 搡老熟女国产l中国老女人| 高清毛片免费观看视频网站| 男人和女人高潮做爰伦理| 高清在线国产一区| 日本成人三级电影网站| 免费高清视频大片| 夜夜夜夜夜久久久久| 欧美最新免费一区二区三区| 美女免费视频网站| 亚洲va在线va天堂va国产| 中文字幕av在线有码专区| 日本色播在线视频| 欧美成人性av电影在线观看| 99九九线精品视频在线观看视频| 在线看三级毛片| 午夜视频国产福利| 看免费成人av毛片| 日韩一本色道免费dvd| 国产一区二区激情短视频| 麻豆精品久久久久久蜜桃| 亚洲无线观看免费| 欧美bdsm另类| 男插女下体视频免费在线播放| 国产欧美日韩精品一区二区| 精品久久久久久,| 久久午夜福利片| 国产探花在线观看一区二区| 村上凉子中文字幕在线| 午夜福利在线观看吧| 黄色欧美视频在线观看| 最好的美女福利视频网| 男女视频在线观看网站免费| 成人综合一区亚洲| 少妇人妻一区二区三区视频| 美女cb高潮喷水在线观看| 少妇的逼水好多| 亚洲精品成人久久久久久| 久久久久九九精品影院| av福利片在线观看| 久久午夜福利片| 国产精品一区二区三区四区免费观看 | 少妇被粗大猛烈的视频| 很黄的视频免费| 999久久久精品免费观看国产| 夜夜爽天天搞| 婷婷精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 中文字幕高清在线视频| 有码 亚洲区| 日本一本二区三区精品| 国产精品,欧美在线| 在线播放国产精品三级| 亚洲美女视频黄频| 日本三级黄在线观看| 久久精品久久久久久噜噜老黄 | 国产私拍福利视频在线观看| av黄色大香蕉| 我的女老师完整版在线观看| 级片在线观看| 日韩欧美一区二区三区在线观看| 尤物成人国产欧美一区二区三区| 国产精品久久久久久精品电影| 欧美另类亚洲清纯唯美| 日韩精品有码人妻一区| 亚洲国产精品久久男人天堂| 国产精品av视频在线免费观看| 亚洲欧美精品综合久久99| 精品久久久久久,| 啦啦啦啦在线视频资源| 少妇人妻一区二区三区视频| 成年女人看的毛片在线观看| 免费人成视频x8x8入口观看| 国产乱人伦免费视频| 免费人成视频x8x8入口观看| 国产精品98久久久久久宅男小说| 在线观看午夜福利视频| 亚洲国产高清在线一区二区三| 欧美xxxx黑人xx丫x性爽| 黄色一级大片看看| 啪啪无遮挡十八禁网站| 国产白丝娇喘喷水9色精品| 女人十人毛片免费观看3o分钟| 人妻制服诱惑在线中文字幕| 久久6这里有精品| 国产免费男女视频| 欧美在线一区亚洲| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 国产毛片a区久久久久| 久久6这里有精品| 国产精品国产高清国产av| 日本爱情动作片www.在线观看 | av国产免费在线观看| 国产v大片淫在线免费观看| 日本色播在线视频| 国产精品久久电影中文字幕| 久久久久久伊人网av| 久久久久久久久久久丰满 | 特大巨黑吊av在线直播| 男女做爰动态图高潮gif福利片| 亚洲美女搞黄在线观看 | 欧美成人一区二区免费高清观看| av.在线天堂| 亚洲av免费高清在线观看| 色哟哟哟哟哟哟| 久9热在线精品视频| 欧美一区二区精品小视频在线| 久99久视频精品免费| 欧美+亚洲+日韩+国产| 很黄的视频免费| 自拍偷自拍亚洲精品老妇| 夜夜夜夜夜久久久久| 国产午夜精品久久久久久一区二区三区 | 一边摸一边抽搐一进一小说| 国产午夜福利久久久久久| 久久午夜亚洲精品久久| 欧美+亚洲+日韩+国产| 国产日本99.免费观看| 久久人人精品亚洲av| 国产精品久久久久久久久免| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久| 久久久久久伊人网av| 男女那种视频在线观看| 国产一区二区激情短视频| 人人妻人人看人人澡| 深爱激情五月婷婷| 成年版毛片免费区| 日本一二三区视频观看| 成人毛片a级毛片在线播放| 热99re8久久精品国产| 国产男靠女视频免费网站| 免费看av在线观看网站| 搡女人真爽免费视频火全软件 | 亚洲中文日韩欧美视频| 国产黄色小视频在线观看| 黄色配什么色好看| 久久久久九九精品影院| 国内少妇人妻偷人精品xxx网站| 18禁黄网站禁片午夜丰满| 精品人妻1区二区| 成年女人毛片免费观看观看9| 久久精品久久久久久噜噜老黄 | or卡值多少钱| 国内精品一区二区在线观看| 国产成人影院久久av| 亚洲第一区二区三区不卡| 简卡轻食公司| 日韩欧美精品v在线| 亚洲男人的天堂狠狠| 日日撸夜夜添| 免费一级毛片在线播放高清视频| 观看美女的网站| 又黄又爽又免费观看的视频| 在线观看午夜福利视频| 国产高清视频在线播放一区| 国产69精品久久久久777片| 一a级毛片在线观看| 色尼玛亚洲综合影院| 深夜精品福利| 亚洲午夜理论影院| 色播亚洲综合网| 久久香蕉精品热| 别揉我奶头~嗯~啊~动态视频| 久久欧美精品欧美久久欧美| 午夜福利成人在线免费观看| 亚洲av.av天堂| 日日夜夜操网爽| 18禁在线播放成人免费| 亚洲精品一卡2卡三卡4卡5卡| 男人的好看免费观看在线视频| 12—13女人毛片做爰片一| x7x7x7水蜜桃| www日本黄色视频网| 午夜久久久久精精品| 国产亚洲91精品色在线| 欧美高清成人免费视频www| 天堂影院成人在线观看| 一级a爱片免费观看的视频| 直男gayav资源| 天堂动漫精品| 成人永久免费在线观看视频| 久久天躁狠狠躁夜夜2o2o| 麻豆久久精品国产亚洲av| aaaaa片日本免费| 少妇丰满av| 亚洲天堂国产精品一区在线| a级毛片免费高清观看在线播放| 少妇的逼水好多| 亚洲欧美日韩卡通动漫| 精品一区二区三区视频在线观看免费| 国产日本99.免费观看| 男女下面进入的视频免费午夜| 一本精品99久久精品77| 欧美一区二区国产精品久久精品| 亚洲国产精品合色在线| 春色校园在线视频观看| 午夜免费成人在线视频| 国产精品永久免费网站| 国国产精品蜜臀av免费| 又黄又爽又免费观看的视频| 日韩亚洲欧美综合| 国产 一区精品| 国产av一区在线观看免费| 亚洲精品粉嫩美女一区| 欧美精品啪啪一区二区三区| 久久午夜亚洲精品久久| 精品久久久久久,| 日韩欧美国产在线观看| or卡值多少钱| 在线观看66精品国产| 午夜爱爱视频在线播放| 久久精品国产自在天天线| 亚洲在线观看片| 亚洲狠狠婷婷综合久久图片| 国产精品1区2区在线观看.| 国产真实乱freesex| 国产 一区精品| 真实男女啪啪啪动态图| 国产精品精品国产色婷婷| av福利片在线观看| 美女 人体艺术 gogo| 最新中文字幕久久久久| 可以在线观看毛片的网站| 国产伦人伦偷精品视频| av.在线天堂| 亚洲成a人片在线一区二区| 精品国产三级普通话版| 99久久精品一区二区三区| 91在线精品国自产拍蜜月| 中文亚洲av片在线观看爽| 久久精品国产亚洲网站| 亚洲综合色惰| netflix在线观看网站| 午夜福利在线观看吧| 91午夜精品亚洲一区二区三区 | 麻豆国产97在线/欧美| 国产免费男女视频| 亚洲av免费高清在线观看| 国产真实伦视频高清在线观看 | 俄罗斯特黄特色一大片| 九九在线视频观看精品| 在线看三级毛片| 一进一出好大好爽视频| 在线国产一区二区在线| 最近最新免费中文字幕在线| 久久欧美精品欧美久久欧美| 尤物成人国产欧美一区二区三区| 亚洲狠狠婷婷综合久久图片| 国产视频一区二区在线看| 国产日本99.免费观看| 久久久久久久久大av| 亚洲国产日韩欧美精品在线观看| 俺也久久电影网| 欧美日本亚洲视频在线播放| 国产在线精品亚洲第一网站| 校园人妻丝袜中文字幕| 亚洲一区二区三区色噜噜| 成人鲁丝片一二三区免费| 国产91精品成人一区二区三区| 中国美白少妇内射xxxbb| 高清毛片免费观看视频网站| 国产午夜精品久久久久久一区二区三区 | 国产精品久久久久久久久免| 长腿黑丝高跟| 欧美不卡视频在线免费观看| 51国产日韩欧美| 久久精品国产亚洲av香蕉五月| 亚洲中文日韩欧美视频| 最后的刺客免费高清国语| 自拍偷自拍亚洲精品老妇| 真实男女啪啪啪动态图| 国产精品久久视频播放| av在线观看视频网站免费| 九色国产91popny在线| 免费大片18禁| av在线蜜桃| 精品99又大又爽又粗少妇毛片 | 欧美日韩瑟瑟在线播放| 精品一区二区三区视频在线| 日本 av在线| 亚洲中文日韩欧美视频| a在线观看视频网站| 日韩欧美精品v在线| 日韩大尺度精品在线看网址| 亚洲黑人精品在线| 嫩草影视91久久| 国产精品永久免费网站| 深爱激情五月婷婷| 人妻夜夜爽99麻豆av| 干丝袜人妻中文字幕| 长腿黑丝高跟| 亚洲经典国产精华液单| 久久99热6这里只有精品| 国产精品人妻久久久影院| 黄色一级大片看看| 国产中年淑女户外野战色| 高清日韩中文字幕在线| 国产探花极品一区二区| 乱系列少妇在线播放| 国产精品av视频在线免费观看| 日韩在线高清观看一区二区三区 | 少妇高潮的动态图| 精品无人区乱码1区二区| 国产精品国产三级国产av玫瑰| 免费看光身美女| 18禁黄网站禁片午夜丰满| 亚洲av.av天堂| 日韩国内少妇激情av| 国产精品美女特级片免费视频播放器| 国产精品久久久久久精品电影| 国产伦一二天堂av在线观看| 一本一本综合久久| 一区福利在线观看| 日韩在线高清观看一区二区三区 | 一级黄色大片毛片| 国产单亲对白刺激| 成年女人永久免费观看视频| 熟女电影av网| 成熟少妇高潮喷水视频| 亚洲最大成人av| 国内精品美女久久久久久| 内地一区二区视频在线| 欧美一区二区亚洲| 1000部很黄的大片| 尤物成人国产欧美一区二区三区| 国产伦人伦偷精品视频| 日韩一本色道免费dvd| av在线老鸭窝| 亚洲国产精品成人综合色| 精品人妻1区二区| 啦啦啦观看免费观看视频高清| 欧美成人a在线观看| 国产午夜精品久久久久久一区二区三区 | 国产av一区在线观看免费| 一个人免费在线观看电影| 精品人妻偷拍中文字幕| 日本一本二区三区精品| 久久亚洲真实|