• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some Random Coincidence Point and Common Fixed Point Results in Cone Metric Spaces Over Banach Algebras

    2020-01-07 06:24:22JIANGBinghuaCAIZelinCHENJinyang

    JIANG Bing-hua, CAI Ze-lin, CHEN Jin-yang

    (School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China)

    Abstract: In this paper, we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces. We consider the obtained assertions without the assumption of normality of cones. The presented results generalize some coupled common fixed point theorems in the existing literature.

    Key words: Tripled random fixed point; Tripled random coincidence point; Cone metric space over Banach algebra; Generalized Lipschitz constant; Tripled common random fixed point

    §1. Introduction

    Fixed point theory plays a basic role in applications of many branches of mathematics.Finding the fixed point of contractive mapping becomes the center of strong research activity(see [3, 8-10, 19, 21, 30, 35]). In 2007 Huang and Zhang[15]introduced cone metric space and proved some fixed point theorems of contractive mappings in such spaces. Since then,some authors proved lots of fixed point theorems for contractive or expansive mappings in cone metric spaces that expanded certain fixed point results in metric spaces, (see[1, 2, 5, 11, 13, 20,26, 31]). Hassen[7]introduced tripled fixed point of w-compatible mappings in abstract metric spaces and coupled coincidence point and common coupled fixed point results in cone metric spaces. However, latterly, some authors made a conclusion that fixed point results in cone metric spaces are just equivalent to those in metric spaces (see [4, 6, 22, 32]). But fortunately,very recently, Liu and Xu[24]introduced the concept of cone metric space over Banach algebra and proved the non-equivalence of fixed point results in these new spaces and usual metric spaces. As a result, it is essentially necessary to investigate fixed point results in cone metric spaces over Banach algebras. Random coincidence point theorems are stochastic generalizations of classical coincidence point theorems, and play an important role in the theory of random differential and integral equations. Random fixed point theorems for contractive mapping on complete separable metric space have been proved by several authors (see [17, 23]). ′Ciri′c[12]and Zhu [37]proved some coupled random fixed point and coupled random coincidence results in partially ordered metric spaces. Afterwards, many coupled random coincidence results in partially ordered metric spaces were considered (see [16, 34]). In this paper, we obtain tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in cone metric spaces over Banach algebras by omitting the normality of cones. The presented results improve the main results of [7]in a large extent.

    §2. Preliminaries

    Let A be a Banach algebra with a unit e, and θ the zero element of A. A nonempty closed convex subset P of A is called a cone if

    (i) {θ,e}?P;

    (ii ) P2=PP ?P,P(?P)={θ};

    (iii) λP +μP ?P for all λ,μ≥0.

    On this basis, we define a partial orderingwith respect to P by xy if and only if y ?x ∈P. We shall write xy to indicate that xy but xy, while xwill indicate that y ?x ∈intP, where intP stands for the interior of P. Writeas the norm on A. A cone P is called normal if there is a number M >0 such that for all x,y ∈A,

    The least positive number satisfying above is called the normal constant of P.

    In the following we always suppose that A is a Banach algebra with a unit e. P is a cone in A with intP?, andis a partial ordering with respect to P.

    Definition 2.1[24]Let X be a nonempty set and A a Banach algebra. Suppose that the mapping d:X ×X →A satisfies:

    (i) θ ?d(x,y) for all x,y ∈X withand d(x,y)=θ if and only if x=y;

    (ii) d(x,y)=d(y,x) for all x,y ∈X;

    Then d is called a cone metric on X, and (X,d) is called a cone metric space over Banach algebra A.

    Example 2.2[24]Let A =MnR = {a = (aij)n×n|aij∈R} for all 1 ≤i,j ≤n be the algebra of all n-square real matrices, and define the norm

    Then A is a real Banach algebra with the unit e, the identity matrix. Let P ={a ∈≥0 for all 1 ≤i,j ≤n}. Then P ?A is a normal cone with a normal constant M = 1. Let X =MnR, and define the metric d=X ×X ?→A by

    Then (X,d) is a cone metric space with a Banach algebra A.

    Definition 2.3[36]Let (X,d) be a cone metric space over Banach algebra, x ∈X and{xn} a sequence in X. Then

    (i) {xn} converges to x whenever, for every c ∈E withthere is a natural number N such that d(xn,x)c for all n ≥N. We denote this by=x or xn→x(n →∞).

    (ii) {xn} is a Cauchy sequence whenever, for every c ∈E withthere is a natural number N such that d(xn,xm)c for all n,m ≥N.

    (iii) (X,d) is complete if every Cauchy sequence is convergent.

    The following lemmas are often used (in particular when dealing with cone metric spaces in which the cones need not be normal).

    Lemma 2.4[36]Let (X,d) be a cone metric space over Banach algebra A and P a cone in A. Then the following properties are often used.

    Lemma 2.5[29]Let A be a Banach algebra with a unit e, x ∈A, thenexists and the spectral radius ρ(x) satisfies

    If ρ(x)<|λ|, then λe ?x invertible in A, moreover,

    where λ is a complex constant.

    Lemma 2.6[29]Let A be a Banach algebra with a unit e,a,b ∈A. If a commutes with b,then

    Definition 2.7[33]An element (x,y,z) ∈X3is said to be a tripled fixed point of the mapping F :X3→X if F(x,y,z)=x,F(y,z,x)=y, and F(z,x,y)=z.

    Note that if (x,y,z) is a tripled fixed point of F, then (y,z,x) and (z,x,y) are tripled fixed points of F too.

    Definition 2.8[33]An element (x,y,z)∈X3is called

    (1)a tripled coincidence point of the mapping F :X3→X and g :X →X if F(x,y,z)=gx,F(y,z,x)=gy,F(z,x,y)=gz, and (gx,gy,gz) is called a tripled point of coincidence;

    (2) a common tripled fixed point of mapping F : X3→X and g : X →X if F(x,y,z) =

    gx=x, F(y,z,x)=gy =y and F(z,x,y)=gz =z.

    Definition 2.9[2]The mapping F :X3→X and g :X →X are called w-compatible provided that gF(x,y,z)=F(gx,gy,gz)whenever F(x,y,z)=gx,F(y,z,x)=gy and F(z,x,y)=gz.

    Let (?,Σ) be a measurable space with Σ a sigma algebra of subsets of ? and let (X,d)be a metric space. A mapping T : ? →X is called Σ-measurable if for any open subset U of X, T?1(U) = {ω : T(ω) ∈U} ∈Σ. In what follows, when we speak of measurability we shall mean Σ-measurability. A mapping T :?×X →X is called a random operator if for any x ∈X,T(·,x) is measurable. A measurable mapping ξ :? →X is called a random fixed point of a random operator T :?×X →X, if ξ(ω)=T(ω,ξ(ω)) for every ω ∈?.

    Definition 2.10[18]Let (X,d) be a separable metric space and (?,Σ) be a measurable space. Then F :?×X3→X and g :?×X →X are said to be w-compatible random operators if

    whenever F(ω,(x,y,z)) = g(ω,x),F(ω,(y,z,x)) = g(ω,y),F(ω,(z,x,y)) = g(ω,z) for all ω ∈? and x,y,z ∈X are satisfied.

    Lemma 2.11[36]Let P be a cone in a Banach algebra A and k ∈P be a given vector. Let{un} be a sequence in P. If for eachthere exist N1such thatfor all n>N1,then for each, there exist N2such that kunfor all n>N2.

    Now, we state our main results as follows.

    §3. Main Results

    In this section, we prove some tripled random coincidence and tripled random fixed point theorems for contractive mappings with several generalized Lipschitz constants in the setting of cone metric spaces over Banach algebras by deleting the normality of cones.

    Lemma 3.1[36]Let A be a Banach algebra and k ∈A. If ρ(k)<1, then.

    Remark 3.2If<1, it is natural that ρ(k)<1, yet, the converse is not true.

    Lemma 3.3[36]Let A be a Banach algebra with a unit e, {xn} a sequence in A. If {xn}converges to x in A , and for any n ≥1, {xn} commutes with x, then ρ(xn)→ρ(x) as n →∞.

    Theorem 3.4Let(X,d)be a separable cone metric space over Banach algebra A, P be a cone in A and (?,Σ) be a measurable space. Suppose that the mappings and F :?×X3→X and g :?×X →X satisfy the following contractive condition:

    for all x,y,z,u,v,w ∈X, where ai∈P,aiaj= ajai(i,j = 1,...,15), aiare generalized Lipschitz constants with ρ(a1+a2+a3)+ρ(a4+···+a9)+ρ(a10+a11+a12)<1. Let F(·,v),g(·,x)be measurable for v ∈X3and x ∈X, respectively. Suppose that F(ω×X3) ?g(ω×X) and g(ω ×X) is a complete subspace of X for each ω ∈?. Then there exist mappings ξ,η,θ :? →X such that F(ω,(ξ(ω),η(ω),θ(ω))) = g(ω,ξ(ω)), F(ω,(η(ω),θ(ω),ξ(ω))) = g(ω,η(ω))and F(ω,(θ(ω),ξ(ω),η(ω)))=g(ω,θ(ω)) for all ω ∈?, that is, F and g have a tripled random coincidence point.

    ProofLet Θ = {η : ? →X} be a family of measurable mappings. We construct three sequences of measurable mappings {ξn}, {ηn}, {θn} in Θ and three sequences {g(ω,ξn(ω))},{g(ω,ηn(ω))}, {g(ω,θn(ω))} in X as follows.

    Let ξ0,η0,θ0∈Θ. Since F(ω,(ξ0(ω),η0(ω),θ0(ω))) ∈F(ω×X3) ?g(ω×X), by a sort of Filippov measurable implicit function theorem(see[35]),there is ξ1∈Θ such that g(ω,ξ1(ω))=F(ω,(ξ0(ω),η0(ω),θ0(ω))). Similarly as F(ω,η0(ω), θ0(ω)ξ0(ω))) ∈g(ω×X), there is η1∈Θ such that g(ω,η1(ω))=F(ω,(η0(ω),θ0(ω)ξ0(ω))),F(ω,(θ0(ω),ξ0(ω),η0(ω)))∈g(ω×X),there is θ1∈Θ such that g(ω,θ1(ω)) = F(ω,(θ0(ω),ξ0(ω),η0(ω))). Continuing this process we can construct sequences {ξn(ω)}, {ηn(ω)} and {θn(ω)} in X such that

    for all n ∈N. According to (3.1), we have

    Further, we have

    Hence, we obtain that

    Similarly, we can prove that

    and

    Put

    Uniting (3.3)-(3.5), ones assert that

    Furthermore,

    Then

    Accordingly, it is clear that

    Similarly, we can prove that

    and

    Uniting (3.7)-(3.9), one gets that

    By using (3.6) and (3.10), it is easy to see that

    Then by Lemma 2.5 and Lemma 2.6, it follows that 2e ?k is invertible. Furthermore,To multiply in both side of (3.11) by (2e ?k)?1, we obtain

    Denote h=(2e ?k)?1k, then by (3.12) we get

    Note by Lemma 2.6 that

    so by Lemma 3.3 it leads to

    which establishes that e ?h is invertible and→0 as n →∞. Thus for all m > n ≥1,ones have

    Now, by (3.13) and sρ(h)<1, it follows that

    Owing to

    we have (e ?h)?1hnd0→θ (n →∞).

    According to Lemma 2.4, and for anythere exists N0such that for all n >N0, (e ?h)?1hnd0Furthermore, from (3.14) and for any m > n > N0, it follows that d(g(ω,ξn(ω)),g(ω,ξm(ω)))+d(g(ω,ηn(ω)),g(ω,ηm(ω)))+d(g(ω,θn(ω)),g(ω,θm(ω)))which implies that d(g(ω,ξn(ω)),g(ω,ξm(ω)))c,d(g(ω,ηn(ω)),g(ω,ηm(ω)))d(g(ω,θn(ω)),g(ω,θm(ω))). Hence, {g(ω,ξn(ω))}, {g(ω,ηn(ω))}, {g(ω,θn(ω))} are Cauchy sequences in g(X). Since g(X) is complete, there exist ξ?(ω),η?(ω) and θ?(ω) ∈X for all ω ∈? such that g(ω,ξn(ω)) →g(ω,ξ?(ω)),g(ω,ηn(ω)) →g(ω,η?(ω)),g(ω,θn(ω)) →g(ω,θ?(ω)) as n →∞.Moreover, note that

    Hence, we get that

    Similarly, it is easily obtain that

    and

    Put

    On view of (3.15)-(3.17), we get

    Then

    where A = a1+a2+a3+a10+a11+a12, B = a4+a5+a6+10+a11+12, C = a4+a5+a6+a7+a8+a9, ρ(A) ≤ρ(a1+a2+a3)+ρ(a4+···+a9)+ρ(a10+a11+a12) < 1. Since g(ω,ξn(ω))→g(ω,ξ?(ω)),g(ω,ηn(ω))→g(ω,η?(ω)),g(ω,θn(ω))→g(ω,θ?(ω)),it follows that for any cθ, there exists N0such that for n>N0. Then by Lemma 2.11 we have

    6

    Hence,

    Now, according to Lemma 2.4, it follows that δ =θ, that is,

    which implies that

    Thus,

    Therefore (ξ?(ω),η?(ω),θ?(ω)) is a tripled coincidence point of F and g for all ω ∈?.

    Corollary 3.5Let (X,d) be a separable cone metric space over Banach algebra A and P be a cone in A, (?,Σ) be a measurable space. Suppose that the mappings F :?×X3→X,g :?×X →X satisfy the following contractive condition:

    for all x,y,z,u,v,w ∈X,where k,l,t ∈P are generalized Lipschitz constant with ρ(k+l+t)<1,F(.,v),g(.,x) are measurable for v ∈X3and x ∈X, respectively, F(ω ×X3) ?g(ω ×X)and g(ω ×X) is complete subspace of X for each ω ∈?, then there are mappings ξ,η,θ :? →X, such that F(ω,(ξ(ω),η(ω),θ(ω))) = g(ω,ξ(ω)), F(ω,(η(ω),θ(ω),ξ(ω))) = g(ω,η(ω)),F(ω,(θ(ω),ξ(ω),η(ω))) = g(ω,θ(ω)) for all ω ∈?, that is F and g have a tripled random coincidence point.

    Corollary 3.6Let (X,d) be a separable cone metric space over Banach algebra A, P be a cone in A and(?,Σ)be a measurable space. Suppose that the mappings F :?×X3→X,g :?×X →X satisfy the following contractive condition:

    for all x,y,z,u,v,w ∈X,where k,l ∈P are generalized Lipschitz constants with ρ(k)+ρ(l)<1,F(·,v),g(·,x) are measurable for v ∈X3and x ∈X, respectively, F(ω ×X3) ?g(ω ×X)and g(ω ×X) is complete subspace of X for each ω ∈?, then there are mappings ξ,η,θ :? →X, such that F(ω,(ξ(ω),η(ω),θ(ω))) = g(ω,ξ(ω)), F(ω,(η(ω),θ(ω),ξ(ω))) = g(ω,η(ω)),F(ω,(θ(ω),ξ(ω),η(ω))) = g(ω,θ(ω)) for all ω ∈?, that is, F and g have a tripled random coincidence point.

    The conditions of Theorem 3.4 are not enough to prove the existence of a common tripled fixed point for the mappings F and g. By restricting to w-compatibility for F and g, we obtain the following theorem.

    Theorem 3.7In addition to hypotheses of Theorem 3.4, if F and g are w-compatible,then F and g have a unique tripled common fixed point. Moreover, a tripled common random fixed point of F and g is of the form (ξ?(ω),ξ?(ω),ξ?(ω))∈X for all ω ∈?.

    ProofBy Theorem 3.4,F and g have tripled random coincidence point(ξ?(ω),η?(ω),θ?(ω)).Then (g(ω,ξ?(ω)),g(ω,η?(ω)),g(ω,(θ?(ω))) is a tripled random point of coincidence of F and g such that

    First, we shall show that the tripled random point of coincidence is unique. Suppose that F and g have another tripled random point of coincidence(g(ω,ξ??(ω)),g(ω,η??(ω)),g(ω,θ??(ω)))such that

    where (ξ??(ω),η??(ω),θ??(ω))∈X3for all ω ∈?. Then we have

    Hence,

    Similarly, we have

    and

    By combining (3.19)-(3.21), we get

    Set α=a7+···+a12, γ =d(g(ω,ξ?(ω)),g(ω,ξ??(ω)))+d(g(ω,η?(ω)),g(ω,η??(ω)))+d(g(ω,θ?(ω)),g(ω,θ??(ω))), we haveNow that ρ(α)<1,

    which leads to αn→θ (n →∞), we claim that, for each c, there exists n0(c) such that αnc (n>n0(c)). Consequently by Lemma 2.11,

    d(g(ω,ξ?(ω)),g(ω,ξ??(ω)))+d(g(ω,η?(ω)),g(ω,η??(ω)))+d(g(ω,θ?(ω)),g(ω,θ??(ω)))=θ.

    Hence,

    that is,

    which implies the uniqueness of the tripled random point of coincidence of F and g. By a similar way, someone can prove that

    In view of (3.22)-(3.24), one can assert

    In other words, the unique tripled random point of coincidence of F and g is(g(ω,ξ?(ω)),g(ω,η?(ω)),g(ω,θ?(ω))). Let u(ω) = g(ω,ξ?(ω)) = F(ω,(ξ?(ω)),η?(ω)),θ?(ω))).Since F and g are w-compatible, then we have

    Thus (g(ω,u(ω)),g(ω,u(ω)),g(ω,u(ω))) is a tripled random point of coincidence. We also have (u(ω),u(ω),u(ω)) is a tripled random point of coincidence. Note that the uniqueness of the tripled random point of coincidence implies that g(ω,u(ω)) = u(ω). Therefore u(ω) =g(ω,u(ω)) = F(ω,(u(ω),u(ω),u(ω))). Hence (u(ω),u(ω),u(ω)) is the unique tripled common random fixed point of F and g for all ω ∈?. This completes the proof.

    Putting g(ω,·)=I(ω,·)(identity mapping )in Theorem 3.4, we obtain the following result.The following example illustrates our conclusions.

    Example 3.8Let X = R3, A = R3. For each x = (x1,x2,x3) ∈X, let|x1|+|x2|+|x3|, P ={(x1,x2,x3)∈R3|x1≥0,x2≥0,x3≥0}. The multiplication is defined by

    Then one can easily verify that A is a Banach algebra with unit e=(1,0,0). Can be observed,P is a cone in A. A metric d on X is defined by

    Easy to know (x,d) is a complete cone metric space over the Banach algebra A. Consider the following mapping g :?×X →X,g(ω,x)=((x1,2x2,3x3), for each (ω,(x1,x2,x3))∈?×X.Then g is a surjection. Define f :?×X3→X by

    Firstly, easy to verify

    (1) d(F(ω,(x,y,z)),F(ω,(u,v,w)))d(f(ω,(x,y,z)),f(ω,(u,v,w))).

    (2) d(f(ω,(x,y,z)),f(ω,(x,y,z)))

    On the side, the following inequality naturally holds,

    By (1),(2) and (3) have

    Get through theorem 3.4, we commandthat g,F immediately satisfy (3.1), and aiaj=ajai, (i,j =1,2...12), on the side,

    By Theorem 3.4 F and g have a tripled random coincidence point.

    Remark 3.9Our main results mainly generalize the recent results. In fact, they never consider the normality of cones, which may offer us more applications since there exist lots of non-normal cones (see [28]). Moreover, we establish the contractive mappings with several generalized Lipschitz constants,where the constants are all vectors but not usual real constants.Thus they are different from some ordinary results and more interesting.

    Remark 3.10Our theorems deal not only with common fixed point results with random process, but also with them from usual coupled fixed point to tripled fixed point. Therefore,our results greatly improve and extend some results in the literature (see [7]).

    Remark 3.11Our results are mainly related to tripled random coincidence point and common fixed point results of generalized Lipschitz mappings in cone metric spaces over Banach algebras. Our tripled random coincidence point and common fixed point results cannot reduced to the counterparts of the results with one variable. In other words, the method of [22]cannot be utilized to our main results. This is because the generalized Lipchitz constants from our results are vectors. Moreover, the multiplication of the vectors do not satisfy the combinative law. Hence we cannot use a method of reducing our tripled results to the respective results for mappings with one variable.

    Authors’ contributionsAll authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

    成人手机av| 757午夜福利合集在线观看| 精品人妻熟女毛片av久久网站| 中文字幕最新亚洲高清| 村上凉子中文字幕在线| 极品人妻少妇av视频| 亚洲精品中文字幕在线视频| 久久精品国产清高在天天线| 亚洲精品自拍成人| 美女福利国产在线| 91精品三级在线观看| 精品一区二区三区av网在线观看| a级片在线免费高清观看视频| 多毛熟女@视频| 精品熟女少妇八av免费久了| 午夜亚洲福利在线播放| 久久国产精品男人的天堂亚洲| 国产精品一区二区精品视频观看| 一级片'在线观看视频| 久久久久国内视频| 国产一区二区三区视频了| 午夜精品在线福利| 精品电影一区二区在线| 国产麻豆69| 免费黄频网站在线观看国产| 久久草成人影院| 在线视频色国产色| 人妻久久中文字幕网| 国产蜜桃级精品一区二区三区 | 1024香蕉在线观看| 久久婷婷成人综合色麻豆| 精品卡一卡二卡四卡免费| 老司机福利观看| 男人的好看免费观看在线视频 | 欧美日本中文国产一区发布| 男男h啪啪无遮挡| 午夜亚洲福利在线播放| 成年人午夜在线观看视频| 成年人免费黄色播放视频| 在线av久久热| 变态另类成人亚洲欧美熟女 | 欧美大码av| 天堂√8在线中文| 午夜日韩欧美国产| 51午夜福利影视在线观看| 精品福利观看| 国产精华一区二区三区| 午夜视频精品福利| 99热网站在线观看| 国产真人三级小视频在线观看| 日韩欧美在线二视频 | 欧美一级毛片孕妇| 亚洲,欧美精品.| 日日摸夜夜添夜夜添小说| 午夜亚洲福利在线播放| 侵犯人妻中文字幕一二三四区| 欧美成狂野欧美在线观看| 婷婷精品国产亚洲av在线 | 婷婷成人精品国产| 久久久精品国产亚洲av高清涩受| 村上凉子中文字幕在线| 久久午夜综合久久蜜桃| 国产三级黄色录像| 两性午夜刺激爽爽歪歪视频在线观看 | 啦啦啦 在线观看视频| 精品久久久精品久久久| 亚洲黑人精品在线| 国产精品久久久久久精品古装| 人人妻人人澡人人看| 免费少妇av软件| 最近最新中文字幕大全电影3 | 看免费av毛片| 欧美日韩亚洲综合一区二区三区_| 欧美激情久久久久久爽电影 | 在线观看免费高清a一片| 亚洲国产欧美日韩在线播放| 91国产中文字幕| 美女视频免费永久观看网站| 精品国产一区二区久久| 久久精品熟女亚洲av麻豆精品| www.熟女人妻精品国产| 久久香蕉国产精品| 超碰成人久久| 黄片大片在线免费观看| 亚洲伊人色综图| 高清av免费在线| 老汉色av国产亚洲站长工具| 精品久久久精品久久久| 男人的好看免费观看在线视频 | 一个人免费在线观看的高清视频| 激情在线观看视频在线高清 | 欧美国产精品va在线观看不卡| 黄片大片在线免费观看| 国产在线观看jvid| 久久久久久久久免费视频了| 免费观看人在逋| 亚洲久久久国产精品| 18禁美女被吸乳视频| 久久亚洲真实| 亚洲av日韩精品久久久久久密| 他把我摸到了高潮在线观看| 午夜影院日韩av| 亚洲少妇的诱惑av| 国产1区2区3区精品| 这个男人来自地球电影免费观看| videos熟女内射| 国产激情欧美一区二区| 亚洲五月天丁香| 成人国产一区最新在线观看| 黑人猛操日本美女一级片| 18禁国产床啪视频网站| 高清欧美精品videossex| 成人手机av| 精品久久久久久电影网| 老司机福利观看| 欧美丝袜亚洲另类 | 国产在线精品亚洲第一网站| 久久99一区二区三区| 亚洲成人免费av在线播放| 日日爽夜夜爽网站| 99riav亚洲国产免费| 国产又爽黄色视频| 在线观看免费视频网站a站| 亚洲中文日韩欧美视频| 岛国毛片在线播放| 黄色毛片三级朝国网站| 国产精品成人在线| 亚洲精品久久成人aⅴ小说| 香蕉久久夜色| 久99久视频精品免费| 宅男免费午夜| 国产精品国产高清国产av | 一级a爱视频在线免费观看| 亚洲免费av在线视频| 成年人免费黄色播放视频| 午夜两性在线视频| 欧美国产精品一级二级三级| 精品国产乱码久久久久久男人| 午夜视频精品福利| 50天的宝宝边吃奶边哭怎么回事| av超薄肉色丝袜交足视频| 啦啦啦免费观看视频1| 欧美乱色亚洲激情| 国产精品美女特级片免费视频播放器 | 午夜老司机福利片| 黄色视频不卡| 丝袜在线中文字幕| 久久热在线av| 黄片大片在线免费观看| 一进一出好大好爽视频| 成年人午夜在线观看视频| 亚洲精品乱久久久久久| 极品教师在线免费播放| av中文乱码字幕在线| 男男h啪啪无遮挡| 一进一出抽搐动态| 十八禁网站免费在线| 国产亚洲精品久久久久久毛片 | 亚洲精品在线美女| xxx96com| 十八禁人妻一区二区| 一进一出好大好爽视频| 亚洲专区国产一区二区| 午夜久久久在线观看| 亚洲av欧美aⅴ国产| 一区二区日韩欧美中文字幕| 在线十欧美十亚洲十日本专区| 99热网站在线观看| 国产男女超爽视频在线观看| 午夜精品国产一区二区电影| 精品国内亚洲2022精品成人 | 老司机午夜十八禁免费视频| 久久香蕉国产精品| 伊人久久大香线蕉亚洲五| 91精品国产国语对白视频| av福利片在线| 亚洲精品国产精品久久久不卡| 亚洲全国av大片| 热re99久久国产66热| 久久久精品国产亚洲av高清涩受| av有码第一页| 男女午夜视频在线观看| 天天躁日日躁夜夜躁夜夜| aaaaa片日本免费| 黄色视频,在线免费观看| 新久久久久国产一级毛片| 成人精品一区二区免费| 操美女的视频在线观看| 国产一区二区激情短视频| www.自偷自拍.com| 韩国av一区二区三区四区| 国产亚洲精品久久久久久毛片 | 黑人巨大精品欧美一区二区蜜桃| 色综合婷婷激情| 国产精品亚洲av一区麻豆| 91大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 精品福利观看| 一边摸一边做爽爽视频免费| 欧美不卡视频在线免费观看 | 99精品在免费线老司机午夜| 久久这里只有精品19| 天天添夜夜摸| 精品一区二区三卡| 欧美成人午夜精品| 免费在线观看日本一区| 精品一区二区三区四区五区乱码| 国内毛片毛片毛片毛片毛片| 国产主播在线观看一区二区| 精品一区二区三区视频在线观看免费 | 欧美日韩视频精品一区| 国产国语露脸激情在线看| 操出白浆在线播放| av片东京热男人的天堂| 久久草成人影院| 国产成人av激情在线播放| 操出白浆在线播放| 日韩人妻精品一区2区三区| 天堂√8在线中文| 日韩 欧美 亚洲 中文字幕| 国产成人欧美| 欧美性长视频在线观看| 人人澡人人妻人| 国产亚洲欧美98| 丝袜人妻中文字幕| 午夜福利免费观看在线| avwww免费| 纯流量卡能插随身wifi吗| 成年人午夜在线观看视频| 在线免费观看的www视频| 国产99久久九九免费精品| 这个男人来自地球电影免费观看| 国产精品国产高清国产av | 女性生殖器流出的白浆| 久久久精品区二区三区| 午夜久久久在线观看| 满18在线观看网站| 欧美 日韩 精品 国产| 操美女的视频在线观看| 国产av一区二区精品久久| 曰老女人黄片| 国产精品欧美亚洲77777| 国产成人精品久久二区二区91| 亚洲国产毛片av蜜桃av| 一级毛片精品| 人人妻人人澡人人看| 亚洲av日韩精品久久久久久密| 老熟妇仑乱视频hdxx| 啦啦啦在线免费观看视频4| 99精品久久久久人妻精品| 日本精品一区二区三区蜜桃| 成年版毛片免费区| av一本久久久久| 视频在线观看一区二区三区| av欧美777| 在线国产一区二区在线| e午夜精品久久久久久久| 五月开心婷婷网| 极品少妇高潮喷水抽搐| 亚洲国产欧美网| 日本撒尿小便嘘嘘汇集6| 一本一本久久a久久精品综合妖精| 精品少妇一区二区三区视频日本电影| 两个人看的免费小视频| 在线观看免费日韩欧美大片| 黄片小视频在线播放| 午夜激情av网站| 法律面前人人平等表现在哪些方面| cao死你这个sao货| 国产一区在线观看成人免费| 九色亚洲精品在线播放| 成人18禁高潮啪啪吃奶动态图| 91国产中文字幕| 欧美黑人欧美精品刺激| 亚洲全国av大片| 一本大道久久a久久精品| 婷婷丁香在线五月| 麻豆av在线久日| 99re6热这里在线精品视频| 国产亚洲精品第一综合不卡| 不卡av一区二区三区| 国产单亲对白刺激| 麻豆av在线久日| 黄色视频不卡| 欧美精品高潮呻吟av久久| 日韩免费高清中文字幕av| 熟女少妇亚洲综合色aaa.| 在线观看午夜福利视频| www.999成人在线观看| 亚洲精品成人av观看孕妇| 一级毛片女人18水好多| 别揉我奶头~嗯~啊~动态视频| 大陆偷拍与自拍| 国产xxxxx性猛交| 建设人人有责人人尽责人人享有的| 怎么达到女性高潮| 夜夜夜夜夜久久久久| 欧美在线一区亚洲| 黄片小视频在线播放| 黑人巨大精品欧美一区二区蜜桃| 岛国在线观看网站| 国产人伦9x9x在线观看| 99热国产这里只有精品6| 国产亚洲精品久久久久5区| 在线观看免费日韩欧美大片| av福利片在线| 日本撒尿小便嘘嘘汇集6| 老司机午夜福利在线观看视频| 亚洲国产中文字幕在线视频| 人妻久久中文字幕网| 99国产精品一区二区蜜桃av | 久久精品国产a三级三级三级| 又紧又爽又黄一区二区| 人人澡人人妻人| 精品久久蜜臀av无| 国产色视频综合| 性色av乱码一区二区三区2| 日韩欧美一区二区三区在线观看 | 99久久国产精品久久久| 99久久综合精品五月天人人| 黄色毛片三级朝国网站| 精品久久久精品久久久| 超碰成人久久| 一边摸一边做爽爽视频免费| 久久婷婷成人综合色麻豆| 丝瓜视频免费看黄片| 久久亚洲精品不卡| 乱人伦中国视频| 国产精品久久久久久精品古装| 女性被躁到高潮视频| 99国产精品99久久久久| 色尼玛亚洲综合影院| 亚洲成国产人片在线观看| 香蕉国产在线看| 欧美精品人与动牲交sv欧美| 老司机影院毛片| 免费在线观看完整版高清| 欧美av亚洲av综合av国产av| 国产精品久久久久久精品古装| 又黄又爽又免费观看的视频| 制服人妻中文乱码| 中文字幕人妻熟女乱码| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品综合久久久久久久免费 | 久久精品91无色码中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 久久中文看片网| 十八禁高潮呻吟视频| 一边摸一边做爽爽视频免费| 又黄又粗又硬又大视频| 久久青草综合色| √禁漫天堂资源中文www| 精品一区二区三区四区五区乱码| 亚洲成国产人片在线观看| 国产黄色免费在线视频| 久久天堂一区二区三区四区| 91成人精品电影| www.自偷自拍.com| 国产一区二区三区视频了| 9热在线视频观看99| 91九色精品人成在线观看| 男人操女人黄网站| 这个男人来自地球电影免费观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久水蜜桃国产精品网| 一进一出好大好爽视频| 巨乳人妻的诱惑在线观看| 中文字幕制服av| 亚洲欧美激情在线| 侵犯人妻中文字幕一二三四区| 岛国在线观看网站| 老司机深夜福利视频在线观看| 丝袜美足系列| xxxhd国产人妻xxx| 国产精品一区二区免费欧美| av一本久久久久| 国产成人免费观看mmmm| 美女 人体艺术 gogo| 在线观看日韩欧美| 麻豆国产av国片精品| 男人的好看免费观看在线视频 | 亚洲专区字幕在线| 免费在线观看日本一区| 精品久久久久久久久久免费视频 | 亚洲一区二区三区欧美精品| 亚洲av第一区精品v没综合| 黑丝袜美女国产一区| 国产精品.久久久| 一二三四社区在线视频社区8| 1024香蕉在线观看| 丰满的人妻完整版| 国产蜜桃级精品一区二区三区 | 在线视频色国产色| 国产亚洲精品第一综合不卡| 男人舔女人的私密视频| 三上悠亚av全集在线观看| 女人被躁到高潮嗷嗷叫费观| 少妇粗大呻吟视频| 亚洲熟女毛片儿| 999精品在线视频| 久久久久久免费高清国产稀缺| 一级黄色大片毛片| 中文亚洲av片在线观看爽 | 午夜91福利影院| 高清在线国产一区| 男女高潮啪啪啪动态图| 午夜成年电影在线免费观看| 亚洲av成人不卡在线观看播放网| 成人亚洲精品一区在线观看| 国产亚洲欧美98| 99国产精品一区二区三区| 亚洲男人天堂网一区| 99国产精品免费福利视频| av超薄肉色丝袜交足视频| 女人精品久久久久毛片| 黄色a级毛片大全视频| 老司机在亚洲福利影院| 涩涩av久久男人的天堂| 精品人妻熟女毛片av久久网站| 在线看a的网站| 热99re8久久精品国产| 欧美精品av麻豆av| 一本大道久久a久久精品| 国产精品综合久久久久久久免费 | 欧美激情极品国产一区二区三区| 久久精品91无色码中文字幕| 久久久国产成人精品二区 | 久久久久国产一级毛片高清牌| 亚洲精品av麻豆狂野| 亚洲专区国产一区二区| 欧美av亚洲av综合av国产av| 女人久久www免费人成看片| 黄片大片在线免费观看| 高清av免费在线| 国产在视频线精品| 好男人电影高清在线观看| 美女高潮喷水抽搐中文字幕| 亚洲黑人精品在线| 国产97色在线日韩免费| 免费一级毛片在线播放高清视频 | 在线天堂中文资源库| 男人的好看免费观看在线视频 | 女性被躁到高潮视频| 国产亚洲av高清不卡| 久久国产乱子伦精品免费另类| av视频免费观看在线观看| 美女高潮喷水抽搐中文字幕| 夜夜爽天天搞| 99热国产这里只有精品6| 人人澡人人妻人| 欧美日韩国产mv在线观看视频| 国产精品99久久99久久久不卡| 正在播放国产对白刺激| 夜夜躁狠狠躁天天躁| 黑人操中国人逼视频| 777久久人妻少妇嫩草av网站| 中文亚洲av片在线观看爽 | 下体分泌物呈黄色| 欧美日韩黄片免| 丁香欧美五月| 亚洲视频免费观看视频| 久久精品人人爽人人爽视色| 亚洲精品中文字幕一二三四区| 午夜福利在线观看吧| 亚洲第一青青草原| 国产成人系列免费观看| 午夜福利一区二区在线看| 亚洲精品国产精品久久久不卡| 免费观看人在逋| 久久精品成人免费网站| 无人区码免费观看不卡| 欧美一级毛片孕妇| 黄片播放在线免费| 欧美日韩国产mv在线观看视频| 国产精品一区二区精品视频观看| ponron亚洲| 久久婷婷成人综合色麻豆| 乱人伦中国视频| 午夜免费观看网址| 黄色视频,在线免费观看| 99riav亚洲国产免费| 久久这里只有精品19| av片东京热男人的天堂| 欧美精品av麻豆av| 精品高清国产在线一区| 欧美激情久久久久久爽电影 | 久久精品人人爽人人爽视色| 老鸭窝网址在线观看| 老司机午夜十八禁免费视频| 欧美大码av| 色婷婷久久久亚洲欧美| 精品国产美女av久久久久小说| 一级作爱视频免费观看| 在线观看免费高清a一片| 女人爽到高潮嗷嗷叫在线视频| 建设人人有责人人尽责人人享有的| 人人妻,人人澡人人爽秒播| 亚洲成人国产一区在线观看| 91av网站免费观看| 午夜福利在线观看吧| 操出白浆在线播放| 99热网站在线观看| 淫妇啪啪啪对白视频| 97人妻天天添夜夜摸| 99国产精品免费福利视频| 母亲3免费完整高清在线观看| 法律面前人人平等表现在哪些方面| 久久国产精品影院| 99热只有精品国产| 久久香蕉激情| 看片在线看免费视频| 999久久久国产精品视频| 精品福利永久在线观看| 免费在线观看亚洲国产| 黄片播放在线免费| 在线观看免费视频日本深夜| 成人国产一区最新在线观看| 国产一卡二卡三卡精品| 午夜福利免费观看在线| 如日韩欧美国产精品一区二区三区| bbb黄色大片| 国产成人一区二区三区免费视频网站| 久久热在线av| 亚洲欧美日韩另类电影网站| 亚洲全国av大片| 99国产精品免费福利视频| 丝袜人妻中文字幕| 日韩欧美在线二视频 | 久久久久国产精品人妻aⅴ院 | 老司机影院毛片| 狂野欧美激情性xxxx| 亚洲精品一卡2卡三卡4卡5卡| 宅男免费午夜| 日韩有码中文字幕| 午夜福利影视在线免费观看| 国产主播在线观看一区二区| 啦啦啦 在线观看视频| 久久九九热精品免费| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 久久国产乱子伦精品免费另类| 国产亚洲欧美在线一区二区| 麻豆国产av国片精品| 人人妻人人添人人爽欧美一区卜| 亚洲欧美激情在线| 国产真人三级小视频在线观看| 亚洲性夜色夜夜综合| 久99久视频精品免费| xxxhd国产人妻xxx| 亚洲一区中文字幕在线| 啦啦啦免费观看视频1| 精品免费久久久久久久清纯 | 99久久综合精品五月天人人| 国产亚洲精品一区二区www | 正在播放国产对白刺激| 亚洲av成人不卡在线观看播放网| 99国产精品一区二区蜜桃av | 国产精品国产av在线观看| 丝袜人妻中文字幕| 91九色精品人成在线观看| 99久久人妻综合| 亚洲九九香蕉| 精品欧美一区二区三区在线| www日本在线高清视频| 午夜福利欧美成人| 啪啪无遮挡十八禁网站| 久久久国产一区二区| 久久久久国产精品人妻aⅴ院 | 老司机在亚洲福利影院| 国产主播在线观看一区二区| 麻豆av在线久日| 18禁裸乳无遮挡动漫免费视频| 看免费av毛片| 999久久久国产精品视频| 久久久久精品人妻al黑| 久久香蕉激情| 亚洲精品久久午夜乱码| 老熟妇仑乱视频hdxx| 女人久久www免费人成看片| 人人妻人人澡人人看| 91九色精品人成在线观看| 精品亚洲成a人片在线观看| 欧美激情高清一区二区三区| 精品欧美一区二区三区在线| 看片在线看免费视频| 女人高潮潮喷娇喘18禁视频| 91av网站免费观看| 少妇猛男粗大的猛烈进出视频| 久久久精品免费免费高清| 国产区一区二久久| 纯流量卡能插随身wifi吗| 日韩大码丰满熟妇| 两性午夜刺激爽爽歪歪视频在线观看 | 成年人午夜在线观看视频| 国产主播在线观看一区二区| 超色免费av| 一级毛片精品| av中文乱码字幕在线| 狠狠婷婷综合久久久久久88av| 一级片'在线观看视频| 九色亚洲精品在线播放| 亚洲第一青青草原| 免费在线观看黄色视频的| 中文字幕高清在线视频| 女人高潮潮喷娇喘18禁视频| 久久99一区二区三区| 极品人妻少妇av视频| 九色亚洲精品在线播放| 一本一本久久a久久精品综合妖精| 成年人黄色毛片网站| 窝窝影院91人妻| 欧美av亚洲av综合av国产av| 69av精品久久久久久| 丰满迷人的少妇在线观看| 建设人人有责人人尽责人人享有的|