• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some Random Coincidence Point and Common Fixed Point Results in Cone Metric Spaces Over Banach Algebras

    2020-01-07 06:24:22JIANGBinghuaCAIZelinCHENJinyang

    JIANG Bing-hua, CAI Ze-lin, CHEN Jin-yang

    (School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China)

    Abstract: In this paper, we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces. We consider the obtained assertions without the assumption of normality of cones. The presented results generalize some coupled common fixed point theorems in the existing literature.

    Key words: Tripled random fixed point; Tripled random coincidence point; Cone metric space over Banach algebra; Generalized Lipschitz constant; Tripled common random fixed point

    §1. Introduction

    Fixed point theory plays a basic role in applications of many branches of mathematics.Finding the fixed point of contractive mapping becomes the center of strong research activity(see [3, 8-10, 19, 21, 30, 35]). In 2007 Huang and Zhang[15]introduced cone metric space and proved some fixed point theorems of contractive mappings in such spaces. Since then,some authors proved lots of fixed point theorems for contractive or expansive mappings in cone metric spaces that expanded certain fixed point results in metric spaces, (see[1, 2, 5, 11, 13, 20,26, 31]). Hassen[7]introduced tripled fixed point of w-compatible mappings in abstract metric spaces and coupled coincidence point and common coupled fixed point results in cone metric spaces. However, latterly, some authors made a conclusion that fixed point results in cone metric spaces are just equivalent to those in metric spaces (see [4, 6, 22, 32]). But fortunately,very recently, Liu and Xu[24]introduced the concept of cone metric space over Banach algebra and proved the non-equivalence of fixed point results in these new spaces and usual metric spaces. As a result, it is essentially necessary to investigate fixed point results in cone metric spaces over Banach algebras. Random coincidence point theorems are stochastic generalizations of classical coincidence point theorems, and play an important role in the theory of random differential and integral equations. Random fixed point theorems for contractive mapping on complete separable metric space have been proved by several authors (see [17, 23]). ′Ciri′c[12]and Zhu [37]proved some coupled random fixed point and coupled random coincidence results in partially ordered metric spaces. Afterwards, many coupled random coincidence results in partially ordered metric spaces were considered (see [16, 34]). In this paper, we obtain tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in cone metric spaces over Banach algebras by omitting the normality of cones. The presented results improve the main results of [7]in a large extent.

    §2. Preliminaries

    Let A be a Banach algebra with a unit e, and θ the zero element of A. A nonempty closed convex subset P of A is called a cone if

    (i) {θ,e}?P;

    (ii ) P2=PP ?P,P(?P)={θ};

    (iii) λP +μP ?P for all λ,μ≥0.

    On this basis, we define a partial orderingwith respect to P by xy if and only if y ?x ∈P. We shall write xy to indicate that xy but xy, while xwill indicate that y ?x ∈intP, where intP stands for the interior of P. Writeas the norm on A. A cone P is called normal if there is a number M >0 such that for all x,y ∈A,

    The least positive number satisfying above is called the normal constant of P.

    In the following we always suppose that A is a Banach algebra with a unit e. P is a cone in A with intP?, andis a partial ordering with respect to P.

    Definition 2.1[24]Let X be a nonempty set and A a Banach algebra. Suppose that the mapping d:X ×X →A satisfies:

    (i) θ ?d(x,y) for all x,y ∈X withand d(x,y)=θ if and only if x=y;

    (ii) d(x,y)=d(y,x) for all x,y ∈X;

    Then d is called a cone metric on X, and (X,d) is called a cone metric space over Banach algebra A.

    Example 2.2[24]Let A =MnR = {a = (aij)n×n|aij∈R} for all 1 ≤i,j ≤n be the algebra of all n-square real matrices, and define the norm

    Then A is a real Banach algebra with the unit e, the identity matrix. Let P ={a ∈≥0 for all 1 ≤i,j ≤n}. Then P ?A is a normal cone with a normal constant M = 1. Let X =MnR, and define the metric d=X ×X ?→A by

    Then (X,d) is a cone metric space with a Banach algebra A.

    Definition 2.3[36]Let (X,d) be a cone metric space over Banach algebra, x ∈X and{xn} a sequence in X. Then

    (i) {xn} converges to x whenever, for every c ∈E withthere is a natural number N such that d(xn,x)c for all n ≥N. We denote this by=x or xn→x(n →∞).

    (ii) {xn} is a Cauchy sequence whenever, for every c ∈E withthere is a natural number N such that d(xn,xm)c for all n,m ≥N.

    (iii) (X,d) is complete if every Cauchy sequence is convergent.

    The following lemmas are often used (in particular when dealing with cone metric spaces in which the cones need not be normal).

    Lemma 2.4[36]Let (X,d) be a cone metric space over Banach algebra A and P a cone in A. Then the following properties are often used.

    Lemma 2.5[29]Let A be a Banach algebra with a unit e, x ∈A, thenexists and the spectral radius ρ(x) satisfies

    If ρ(x)<|λ|, then λe ?x invertible in A, moreover,

    where λ is a complex constant.

    Lemma 2.6[29]Let A be a Banach algebra with a unit e,a,b ∈A. If a commutes with b,then

    Definition 2.7[33]An element (x,y,z) ∈X3is said to be a tripled fixed point of the mapping F :X3→X if F(x,y,z)=x,F(y,z,x)=y, and F(z,x,y)=z.

    Note that if (x,y,z) is a tripled fixed point of F, then (y,z,x) and (z,x,y) are tripled fixed points of F too.

    Definition 2.8[33]An element (x,y,z)∈X3is called

    (1)a tripled coincidence point of the mapping F :X3→X and g :X →X if F(x,y,z)=gx,F(y,z,x)=gy,F(z,x,y)=gz, and (gx,gy,gz) is called a tripled point of coincidence;

    (2) a common tripled fixed point of mapping F : X3→X and g : X →X if F(x,y,z) =

    gx=x, F(y,z,x)=gy =y and F(z,x,y)=gz =z.

    Definition 2.9[2]The mapping F :X3→X and g :X →X are called w-compatible provided that gF(x,y,z)=F(gx,gy,gz)whenever F(x,y,z)=gx,F(y,z,x)=gy and F(z,x,y)=gz.

    Let (?,Σ) be a measurable space with Σ a sigma algebra of subsets of ? and let (X,d)be a metric space. A mapping T : ? →X is called Σ-measurable if for any open subset U of X, T?1(U) = {ω : T(ω) ∈U} ∈Σ. In what follows, when we speak of measurability we shall mean Σ-measurability. A mapping T :?×X →X is called a random operator if for any x ∈X,T(·,x) is measurable. A measurable mapping ξ :? →X is called a random fixed point of a random operator T :?×X →X, if ξ(ω)=T(ω,ξ(ω)) for every ω ∈?.

    Definition 2.10[18]Let (X,d) be a separable metric space and (?,Σ) be a measurable space. Then F :?×X3→X and g :?×X →X are said to be w-compatible random operators if

    whenever F(ω,(x,y,z)) = g(ω,x),F(ω,(y,z,x)) = g(ω,y),F(ω,(z,x,y)) = g(ω,z) for all ω ∈? and x,y,z ∈X are satisfied.

    Lemma 2.11[36]Let P be a cone in a Banach algebra A and k ∈P be a given vector. Let{un} be a sequence in P. If for eachthere exist N1such thatfor all n>N1,then for each, there exist N2such that kunfor all n>N2.

    Now, we state our main results as follows.

    §3. Main Results

    In this section, we prove some tripled random coincidence and tripled random fixed point theorems for contractive mappings with several generalized Lipschitz constants in the setting of cone metric spaces over Banach algebras by deleting the normality of cones.

    Lemma 3.1[36]Let A be a Banach algebra and k ∈A. If ρ(k)<1, then.

    Remark 3.2If<1, it is natural that ρ(k)<1, yet, the converse is not true.

    Lemma 3.3[36]Let A be a Banach algebra with a unit e, {xn} a sequence in A. If {xn}converges to x in A , and for any n ≥1, {xn} commutes with x, then ρ(xn)→ρ(x) as n →∞.

    Theorem 3.4Let(X,d)be a separable cone metric space over Banach algebra A, P be a cone in A and (?,Σ) be a measurable space. Suppose that the mappings and F :?×X3→X and g :?×X →X satisfy the following contractive condition:

    for all x,y,z,u,v,w ∈X, where ai∈P,aiaj= ajai(i,j = 1,...,15), aiare generalized Lipschitz constants with ρ(a1+a2+a3)+ρ(a4+···+a9)+ρ(a10+a11+a12)<1. Let F(·,v),g(·,x)be measurable for v ∈X3and x ∈X, respectively. Suppose that F(ω×X3) ?g(ω×X) and g(ω ×X) is a complete subspace of X for each ω ∈?. Then there exist mappings ξ,η,θ :? →X such that F(ω,(ξ(ω),η(ω),θ(ω))) = g(ω,ξ(ω)), F(ω,(η(ω),θ(ω),ξ(ω))) = g(ω,η(ω))and F(ω,(θ(ω),ξ(ω),η(ω)))=g(ω,θ(ω)) for all ω ∈?, that is, F and g have a tripled random coincidence point.

    ProofLet Θ = {η : ? →X} be a family of measurable mappings. We construct three sequences of measurable mappings {ξn}, {ηn}, {θn} in Θ and three sequences {g(ω,ξn(ω))},{g(ω,ηn(ω))}, {g(ω,θn(ω))} in X as follows.

    Let ξ0,η0,θ0∈Θ. Since F(ω,(ξ0(ω),η0(ω),θ0(ω))) ∈F(ω×X3) ?g(ω×X), by a sort of Filippov measurable implicit function theorem(see[35]),there is ξ1∈Θ such that g(ω,ξ1(ω))=F(ω,(ξ0(ω),η0(ω),θ0(ω))). Similarly as F(ω,η0(ω), θ0(ω)ξ0(ω))) ∈g(ω×X), there is η1∈Θ such that g(ω,η1(ω))=F(ω,(η0(ω),θ0(ω)ξ0(ω))),F(ω,(θ0(ω),ξ0(ω),η0(ω)))∈g(ω×X),there is θ1∈Θ such that g(ω,θ1(ω)) = F(ω,(θ0(ω),ξ0(ω),η0(ω))). Continuing this process we can construct sequences {ξn(ω)}, {ηn(ω)} and {θn(ω)} in X such that

    for all n ∈N. According to (3.1), we have

    Further, we have

    Hence, we obtain that

    Similarly, we can prove that

    and

    Put

    Uniting (3.3)-(3.5), ones assert that

    Furthermore,

    Then

    Accordingly, it is clear that

    Similarly, we can prove that

    and

    Uniting (3.7)-(3.9), one gets that

    By using (3.6) and (3.10), it is easy to see that

    Then by Lemma 2.5 and Lemma 2.6, it follows that 2e ?k is invertible. Furthermore,To multiply in both side of (3.11) by (2e ?k)?1, we obtain

    Denote h=(2e ?k)?1k, then by (3.12) we get

    Note by Lemma 2.6 that

    so by Lemma 3.3 it leads to

    which establishes that e ?h is invertible and→0 as n →∞. Thus for all m > n ≥1,ones have

    Now, by (3.13) and sρ(h)<1, it follows that

    Owing to

    we have (e ?h)?1hnd0→θ (n →∞).

    According to Lemma 2.4, and for anythere exists N0such that for all n >N0, (e ?h)?1hnd0Furthermore, from (3.14) and for any m > n > N0, it follows that d(g(ω,ξn(ω)),g(ω,ξm(ω)))+d(g(ω,ηn(ω)),g(ω,ηm(ω)))+d(g(ω,θn(ω)),g(ω,θm(ω)))which implies that d(g(ω,ξn(ω)),g(ω,ξm(ω)))c,d(g(ω,ηn(ω)),g(ω,ηm(ω)))d(g(ω,θn(ω)),g(ω,θm(ω))). Hence, {g(ω,ξn(ω))}, {g(ω,ηn(ω))}, {g(ω,θn(ω))} are Cauchy sequences in g(X). Since g(X) is complete, there exist ξ?(ω),η?(ω) and θ?(ω) ∈X for all ω ∈? such that g(ω,ξn(ω)) →g(ω,ξ?(ω)),g(ω,ηn(ω)) →g(ω,η?(ω)),g(ω,θn(ω)) →g(ω,θ?(ω)) as n →∞.Moreover, note that

    Hence, we get that

    Similarly, it is easily obtain that

    and

    Put

    On view of (3.15)-(3.17), we get

    Then

    where A = a1+a2+a3+a10+a11+a12, B = a4+a5+a6+10+a11+12, C = a4+a5+a6+a7+a8+a9, ρ(A) ≤ρ(a1+a2+a3)+ρ(a4+···+a9)+ρ(a10+a11+a12) < 1. Since g(ω,ξn(ω))→g(ω,ξ?(ω)),g(ω,ηn(ω))→g(ω,η?(ω)),g(ω,θn(ω))→g(ω,θ?(ω)),it follows that for any cθ, there exists N0such that for n>N0. Then by Lemma 2.11 we have

    6

    Hence,

    Now, according to Lemma 2.4, it follows that δ =θ, that is,

    which implies that

    Thus,

    Therefore (ξ?(ω),η?(ω),θ?(ω)) is a tripled coincidence point of F and g for all ω ∈?.

    Corollary 3.5Let (X,d) be a separable cone metric space over Banach algebra A and P be a cone in A, (?,Σ) be a measurable space. Suppose that the mappings F :?×X3→X,g :?×X →X satisfy the following contractive condition:

    for all x,y,z,u,v,w ∈X,where k,l,t ∈P are generalized Lipschitz constant with ρ(k+l+t)<1,F(.,v),g(.,x) are measurable for v ∈X3and x ∈X, respectively, F(ω ×X3) ?g(ω ×X)and g(ω ×X) is complete subspace of X for each ω ∈?, then there are mappings ξ,η,θ :? →X, such that F(ω,(ξ(ω),η(ω),θ(ω))) = g(ω,ξ(ω)), F(ω,(η(ω),θ(ω),ξ(ω))) = g(ω,η(ω)),F(ω,(θ(ω),ξ(ω),η(ω))) = g(ω,θ(ω)) for all ω ∈?, that is F and g have a tripled random coincidence point.

    Corollary 3.6Let (X,d) be a separable cone metric space over Banach algebra A, P be a cone in A and(?,Σ)be a measurable space. Suppose that the mappings F :?×X3→X,g :?×X →X satisfy the following contractive condition:

    for all x,y,z,u,v,w ∈X,where k,l ∈P are generalized Lipschitz constants with ρ(k)+ρ(l)<1,F(·,v),g(·,x) are measurable for v ∈X3and x ∈X, respectively, F(ω ×X3) ?g(ω ×X)and g(ω ×X) is complete subspace of X for each ω ∈?, then there are mappings ξ,η,θ :? →X, such that F(ω,(ξ(ω),η(ω),θ(ω))) = g(ω,ξ(ω)), F(ω,(η(ω),θ(ω),ξ(ω))) = g(ω,η(ω)),F(ω,(θ(ω),ξ(ω),η(ω))) = g(ω,θ(ω)) for all ω ∈?, that is, F and g have a tripled random coincidence point.

    The conditions of Theorem 3.4 are not enough to prove the existence of a common tripled fixed point for the mappings F and g. By restricting to w-compatibility for F and g, we obtain the following theorem.

    Theorem 3.7In addition to hypotheses of Theorem 3.4, if F and g are w-compatible,then F and g have a unique tripled common fixed point. Moreover, a tripled common random fixed point of F and g is of the form (ξ?(ω),ξ?(ω),ξ?(ω))∈X for all ω ∈?.

    ProofBy Theorem 3.4,F and g have tripled random coincidence point(ξ?(ω),η?(ω),θ?(ω)).Then (g(ω,ξ?(ω)),g(ω,η?(ω)),g(ω,(θ?(ω))) is a tripled random point of coincidence of F and g such that

    First, we shall show that the tripled random point of coincidence is unique. Suppose that F and g have another tripled random point of coincidence(g(ω,ξ??(ω)),g(ω,η??(ω)),g(ω,θ??(ω)))such that

    where (ξ??(ω),η??(ω),θ??(ω))∈X3for all ω ∈?. Then we have

    Hence,

    Similarly, we have

    and

    By combining (3.19)-(3.21), we get

    Set α=a7+···+a12, γ =d(g(ω,ξ?(ω)),g(ω,ξ??(ω)))+d(g(ω,η?(ω)),g(ω,η??(ω)))+d(g(ω,θ?(ω)),g(ω,θ??(ω))), we haveNow that ρ(α)<1,

    which leads to αn→θ (n →∞), we claim that, for each c, there exists n0(c) such that αnc (n>n0(c)). Consequently by Lemma 2.11,

    d(g(ω,ξ?(ω)),g(ω,ξ??(ω)))+d(g(ω,η?(ω)),g(ω,η??(ω)))+d(g(ω,θ?(ω)),g(ω,θ??(ω)))=θ.

    Hence,

    that is,

    which implies the uniqueness of the tripled random point of coincidence of F and g. By a similar way, someone can prove that

    In view of (3.22)-(3.24), one can assert

    In other words, the unique tripled random point of coincidence of F and g is(g(ω,ξ?(ω)),g(ω,η?(ω)),g(ω,θ?(ω))). Let u(ω) = g(ω,ξ?(ω)) = F(ω,(ξ?(ω)),η?(ω)),θ?(ω))).Since F and g are w-compatible, then we have

    Thus (g(ω,u(ω)),g(ω,u(ω)),g(ω,u(ω))) is a tripled random point of coincidence. We also have (u(ω),u(ω),u(ω)) is a tripled random point of coincidence. Note that the uniqueness of the tripled random point of coincidence implies that g(ω,u(ω)) = u(ω). Therefore u(ω) =g(ω,u(ω)) = F(ω,(u(ω),u(ω),u(ω))). Hence (u(ω),u(ω),u(ω)) is the unique tripled common random fixed point of F and g for all ω ∈?. This completes the proof.

    Putting g(ω,·)=I(ω,·)(identity mapping )in Theorem 3.4, we obtain the following result.The following example illustrates our conclusions.

    Example 3.8Let X = R3, A = R3. For each x = (x1,x2,x3) ∈X, let|x1|+|x2|+|x3|, P ={(x1,x2,x3)∈R3|x1≥0,x2≥0,x3≥0}. The multiplication is defined by

    Then one can easily verify that A is a Banach algebra with unit e=(1,0,0). Can be observed,P is a cone in A. A metric d on X is defined by

    Easy to know (x,d) is a complete cone metric space over the Banach algebra A. Consider the following mapping g :?×X →X,g(ω,x)=((x1,2x2,3x3), for each (ω,(x1,x2,x3))∈?×X.Then g is a surjection. Define f :?×X3→X by

    Firstly, easy to verify

    (1) d(F(ω,(x,y,z)),F(ω,(u,v,w)))d(f(ω,(x,y,z)),f(ω,(u,v,w))).

    (2) d(f(ω,(x,y,z)),f(ω,(x,y,z)))

    On the side, the following inequality naturally holds,

    By (1),(2) and (3) have

    Get through theorem 3.4, we commandthat g,F immediately satisfy (3.1), and aiaj=ajai, (i,j =1,2...12), on the side,

    By Theorem 3.4 F and g have a tripled random coincidence point.

    Remark 3.9Our main results mainly generalize the recent results. In fact, they never consider the normality of cones, which may offer us more applications since there exist lots of non-normal cones (see [28]). Moreover, we establish the contractive mappings with several generalized Lipschitz constants,where the constants are all vectors but not usual real constants.Thus they are different from some ordinary results and more interesting.

    Remark 3.10Our theorems deal not only with common fixed point results with random process, but also with them from usual coupled fixed point to tripled fixed point. Therefore,our results greatly improve and extend some results in the literature (see [7]).

    Remark 3.11Our results are mainly related to tripled random coincidence point and common fixed point results of generalized Lipschitz mappings in cone metric spaces over Banach algebras. Our tripled random coincidence point and common fixed point results cannot reduced to the counterparts of the results with one variable. In other words, the method of [22]cannot be utilized to our main results. This is because the generalized Lipchitz constants from our results are vectors. Moreover, the multiplication of the vectors do not satisfy the combinative law. Hence we cannot use a method of reducing our tripled results to the respective results for mappings with one variable.

    Authors’ contributionsAll authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

    日日爽夜夜爽网站| 色播在线永久视频| 日韩精品免费视频一区二区三区| 精品国产国语对白av| 夜夜爽天天搞| 一级a爱视频在线免费观看| 成人黄色视频免费在线看| 日韩视频一区二区在线观看| 国产野战对白在线观看| 天天影视国产精品| 国产无遮挡羞羞视频在线观看| 老司机在亚洲福利影院| 国产精品98久久久久久宅男小说| 久久精品亚洲精品国产色婷小说| 亚洲av成人一区二区三| 成人精品一区二区免费| 国产精品久久久久成人av| 亚洲专区国产一区二区| 另类亚洲欧美激情| 日本a在线网址| 操美女的视频在线观看| 国产伦一二天堂av在线观看| 久久久国产欧美日韩av| av视频免费观看在线观看| 99热只有精品国产| 天堂√8在线中文| 日韩三级视频一区二区三区| 在线观看一区二区三区| 欧美日韩精品网址| 久久久久精品国产欧美久久久| 在线看a的网站| 精品乱码久久久久久99久播| 老熟妇仑乱视频hdxx| 国产亚洲精品综合一区在线观看 | 亚洲欧美精品综合久久99| 国产欧美日韩一区二区三| 成人av一区二区三区在线看| 久久人妻av系列| 亚洲欧美精品综合久久99| 操美女的视频在线观看| 国产色视频综合| 亚洲九九香蕉| 婷婷六月久久综合丁香| 神马国产精品三级电影在线观看 | www国产在线视频色| 精品国产一区二区久久| 男人操女人黄网站| 国产精品秋霞免费鲁丝片| 美女高潮到喷水免费观看| 女生性感内裤真人,穿戴方法视频| 国内毛片毛片毛片毛片毛片| 国产成人精品无人区| 国产av又大| 伦理电影免费视频| 亚洲欧美精品综合一区二区三区| 精品一品国产午夜福利视频| 啪啪无遮挡十八禁网站| 制服人妻中文乱码| 三上悠亚av全集在线观看| 天堂√8在线中文| 国产熟女午夜一区二区三区| 丝袜美足系列| 亚洲国产精品sss在线观看 | 高潮久久久久久久久久久不卡| 激情视频va一区二区三区| 新久久久久国产一级毛片| 91成年电影在线观看| 国产国语露脸激情在线看| 精品卡一卡二卡四卡免费| 韩国精品一区二区三区| 香蕉丝袜av| 午夜精品在线福利| 麻豆一二三区av精品| 老熟妇仑乱视频hdxx| 久久久久久久午夜电影 | 国产精品免费视频内射| 自线自在国产av| 国产又爽黄色视频| 日本欧美视频一区| 欧美日本亚洲视频在线播放| 日本黄色视频三级网站网址| av电影中文网址| xxx96com| 亚洲第一欧美日韩一区二区三区| 精品国产美女av久久久久小说| 韩国av一区二区三区四区| 人人妻人人添人人爽欧美一区卜| 久久久久精品国产欧美久久久| 国产成人欧美在线观看| 国产精品秋霞免费鲁丝片| 1024手机看黄色片| 俺也久久电影网| 亚洲成av人片免费观看| 狂野欧美白嫩少妇大欣赏| 在现免费观看毛片| 性色avwww在线观看| 亚洲av日韩精品久久久久久密| 黄片小视频在线播放| 久久久久久久久大av| 午夜福利18| 九九在线视频观看精品| 又黄又爽又免费观看的视频| 亚洲国产精品合色在线| 成年版毛片免费区| 每晚都被弄得嗷嗷叫到高潮| 一区二区三区高清视频在线| 欧美在线黄色| 久久人人爽人人爽人人片va | 久久久久国内视频| aaaaa片日本免费| 亚洲一区二区三区不卡视频| 国产伦精品一区二区三区视频9| 午夜福利在线观看吧| 久久人妻av系列| 国产高清视频在线播放一区| 狠狠狠狠99中文字幕| 蜜桃久久精品国产亚洲av| 亚洲经典国产精华液单 | 久久久国产成人精品二区| 中文字幕av成人在线电影| 国产精品影院久久| av天堂在线播放| 成人国产一区最新在线观看| 成人国产综合亚洲| 在线观看舔阴道视频| 人妻丰满熟妇av一区二区三区| 欧美成人免费av一区二区三区| 99热6这里只有精品| 免费观看的影片在线观看| 日韩高清综合在线| 舔av片在线| 综合色av麻豆| 亚洲av日韩精品久久久久久密| 国产成人福利小说| 亚洲精品色激情综合| 他把我摸到了高潮在线观看| 色噜噜av男人的天堂激情| 午夜福利18| 91字幕亚洲| 两个人的视频大全免费| 国产精品亚洲一级av第二区| 国产一区二区三区视频了| 欧美日韩综合久久久久久 | 乱人视频在线观看| 日韩欧美三级三区| 超碰av人人做人人爽久久| 最后的刺客免费高清国语| 亚洲一区高清亚洲精品| 啦啦啦观看免费观看视频高清| 欧美不卡视频在线免费观看| 久久国产乱子伦精品免费另类| 99国产精品一区二区蜜桃av| 国产又黄又爽又无遮挡在线| 人妻夜夜爽99麻豆av| 久久久久久大精品| 午夜久久久久精精品| 国产高清视频在线播放一区| 97超视频在线观看视频| 性色av乱码一区二区三区2| 国产成人影院久久av| 成人av在线播放网站| 少妇人妻精品综合一区二区 | 中文资源天堂在线| 亚洲av中文字字幕乱码综合| 亚洲av日韩精品久久久久久密| 草草在线视频免费看| 搡老岳熟女国产| 欧美在线黄色| 日本 av在线| 亚洲精品一区av在线观看| 一级a爱片免费观看的视频| 亚洲真实伦在线观看| 国产精品综合久久久久久久免费| 亚洲一区二区三区色噜噜| 午夜福利在线观看免费完整高清在 | 深夜a级毛片| 日韩欧美国产一区二区入口| 12—13女人毛片做爰片一| 九九在线视频观看精品| 嫩草影视91久久| 国产精品免费一区二区三区在线| 精品免费久久久久久久清纯| 亚洲av免费高清在线观看| 内地一区二区视频在线| 亚洲无线观看免费| 亚洲专区中文字幕在线| 国产欧美日韩精品亚洲av| 欧美乱妇无乱码| 亚洲av电影不卡..在线观看| 一本精品99久久精品77| 欧美激情国产日韩精品一区| 亚洲第一区二区三区不卡| 少妇丰满av| 日日干狠狠操夜夜爽| aaaaa片日本免费| 国产精品野战在线观看| 久久国产精品影院| 亚洲精品成人久久久久久| 欧美黄色片欧美黄色片| 国产精品一区二区三区四区久久| 一个人免费在线观看的高清视频| 亚洲性夜色夜夜综合| www.999成人在线观看| 国产成年人精品一区二区| 亚洲av美国av| 国产一区二区三区在线臀色熟女| 欧美成人a在线观看| 亚洲av熟女| 麻豆成人午夜福利视频| 亚洲成人久久爱视频| 三级毛片av免费| 精品一区二区三区视频在线| 美女 人体艺术 gogo| 99热这里只有精品一区| 91麻豆av在线| 中出人妻视频一区二区| 色av中文字幕| 中出人妻视频一区二区| 中出人妻视频一区二区| 色视频www国产| 亚洲精品456在线播放app | 国产精品久久久久久人妻精品电影| 国产一区二区三区在线臀色熟女| 69av精品久久久久久| 国产真实乱freesex| 久久人妻av系列| 黄色一级大片看看| 国产男靠女视频免费网站| 久久久久久久午夜电影| 能在线免费观看的黄片| 精品国内亚洲2022精品成人| 欧美日韩黄片免| 亚洲熟妇中文字幕五十中出| bbb黄色大片| 伦理电影大哥的女人| 有码 亚洲区| 日本三级黄在线观看| 嫩草影视91久久| 在线观看午夜福利视频| 中文资源天堂在线| 成人三级黄色视频| 岛国在线免费视频观看| 亚洲美女搞黄在线观看 | 老熟妇仑乱视频hdxx| 夜夜看夜夜爽夜夜摸| 老熟妇仑乱视频hdxx| 国产野战对白在线观看| 88av欧美| 国产成人福利小说| 免费在线观看影片大全网站| 亚洲中文字幕日韩| 最好的美女福利视频网| 少妇丰满av| 精品国产三级普通话版| 国产精品一区二区三区四区久久| 两个人视频免费观看高清| 最近最新免费中文字幕在线| 精品熟女少妇八av免费久了| 午夜激情欧美在线| 国产久久久一区二区三区| 国产成人a区在线观看| 丁香六月欧美| 中文资源天堂在线| 亚洲电影在线观看av| 少妇人妻一区二区三区视频| 亚洲美女视频黄频| 久久人人爽人人爽人人片va | 国产一区二区三区在线臀色熟女| 成人av在线播放网站| 99热这里只有是精品50| 亚洲中文字幕一区二区三区有码在线看| 丰满人妻一区二区三区视频av| 首页视频小说图片口味搜索| 日韩免费av在线播放| 夜夜爽天天搞| 亚洲,欧美,日韩| 免费高清视频大片| 精品久久久久久久久久久久久| 久久人人精品亚洲av| 久久九九热精品免费| 成人高潮视频无遮挡免费网站| 综合色av麻豆| 小蜜桃在线观看免费完整版高清| 色综合亚洲欧美另类图片| 日本一二三区视频观看| 脱女人内裤的视频| 身体一侧抽搐| 97超视频在线观看视频| 女人十人毛片免费观看3o分钟| 国产成人aa在线观看| 校园春色视频在线观看| 啦啦啦观看免费观看视频高清| 免费看光身美女| 日韩人妻高清精品专区| 国产主播在线观看一区二区| 90打野战视频偷拍视频| 日本一二三区视频观看| 欧洲精品卡2卡3卡4卡5卡区| 99热精品在线国产| 国内精品一区二区在线观看| 日韩欧美 国产精品| www日本黄色视频网| 69人妻影院| 特大巨黑吊av在线直播| 久久精品国产亚洲av涩爱 | 91在线观看av| 两个人的视频大全免费| 亚洲av美国av| 少妇裸体淫交视频免费看高清| 欧美成人一区二区免费高清观看| 夜夜夜夜夜久久久久| 国产精品电影一区二区三区| 欧美区成人在线视频| 一级a爱片免费观看的视频| 国产三级黄色录像| 桃红色精品国产亚洲av| 日本在线视频免费播放| 一个人看视频在线观看www免费| 久久婷婷人人爽人人干人人爱| 能在线免费观看的黄片| 特级一级黄色大片| 亚洲美女黄片视频| 淫秽高清视频在线观看| 午夜福利免费观看在线| x7x7x7水蜜桃| 老司机深夜福利视频在线观看| 香蕉av资源在线| 久久精品国产99精品国产亚洲性色| 日韩免费av在线播放| 日本免费a在线| 天堂网av新在线| av天堂在线播放| 国产亚洲av嫩草精品影院| 熟妇人妻久久中文字幕3abv| 亚洲国产欧洲综合997久久,| 亚洲男人的天堂狠狠| 日韩人妻高清精品专区| 免费观看的影片在线观看| 国内精品一区二区在线观看| 久久久久久国产a免费观看| 国产又黄又爽又无遮挡在线| 18禁黄网站禁片免费观看直播| 国产精品爽爽va在线观看网站| av黄色大香蕉| 亚洲乱码一区二区免费版| 男插女下体视频免费在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 丰满人妻一区二区三区视频av| 美女高潮的动态| 亚洲第一区二区三区不卡| 日本a在线网址| 免费观看精品视频网站| 久久99热这里只有精品18| 亚洲第一欧美日韩一区二区三区| 97碰自拍视频| 午夜福利视频1000在线观看| 国产精品国产高清国产av| 少妇的逼好多水| 亚洲美女搞黄在线观看 | 久久久久九九精品影院| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久午夜电影| 男女那种视频在线观看| 午夜福利欧美成人| 国产成人av教育| 黄色配什么色好看| 亚洲av日韩精品久久久久久密| 一卡2卡三卡四卡精品乱码亚洲| 日本免费一区二区三区高清不卡| 亚洲aⅴ乱码一区二区在线播放| 中文字幕久久专区| 久久久久久久久大av| 老司机福利观看| 久久人人精品亚洲av| 99在线视频只有这里精品首页| 少妇高潮的动态图| 最近视频中文字幕2019在线8| 欧美极品一区二区三区四区| ponron亚洲| 中国美女看黄片| 18+在线观看网站| 国产成人福利小说| 亚洲av成人精品一区久久| 亚洲精品456在线播放app | 在线播放无遮挡| 国产精品三级大全| 国产成人a区在线观看| 久久久久久久久大av| 亚洲久久久久久中文字幕| 97人妻精品一区二区三区麻豆| 国产成人av教育| 国内少妇人妻偷人精品xxx网站| 免费人成视频x8x8入口观看| 99国产精品一区二区三区| 99国产综合亚洲精品| 午夜视频国产福利| 久久久久久久久久黄片| 欧美3d第一页| 2021天堂中文幕一二区在线观| 熟女人妻精品中文字幕| 我的老师免费观看完整版| 欧美xxxx黑人xx丫x性爽| 欧美日韩瑟瑟在线播放| 欧美一区二区亚洲| 麻豆一二三区av精品| 亚洲精品粉嫩美女一区| 国产大屁股一区二区在线视频| 久久精品久久久久久噜噜老黄 | 桃红色精品国产亚洲av| 99国产精品一区二区三区| 国产精品自产拍在线观看55亚洲| 观看免费一级毛片| 久久久久久久久大av| 日本三级黄在线观看| 一级a爱片免费观看的视频| 国产成人av教育| 日本黄色视频三级网站网址| 狠狠狠狠99中文字幕| 日韩欧美在线乱码| 噜噜噜噜噜久久久久久91| 亚洲一区二区三区不卡视频| 少妇丰满av| 国产亚洲欧美98| 国产乱人伦免费视频| 亚洲中文字幕一区二区三区有码在线看| 欧美性猛交╳xxx乱大交人| 日韩大尺度精品在线看网址| 深夜a级毛片| aaaaa片日本免费| 国产精品一区二区性色av| 国产精品久久久久久人妻精品电影| 免费人成在线观看视频色| 婷婷六月久久综合丁香| 久久久久性生活片| 精品不卡国产一区二区三区| 天堂√8在线中文| 三级毛片av免费| 国产精品99久久久久久久久| 久久精品久久久久久噜噜老黄 | 欧美在线一区亚洲| 国产高清三级在线| 日本五十路高清| 久久性视频一级片| 波多野结衣巨乳人妻| 午夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 搞女人的毛片| 我的女老师完整版在线观看| 1024手机看黄色片| 国产精品不卡视频一区二区 | 能在线免费观看的黄片| 99热这里只有精品一区| 精品国产三级普通话版| 国产中年淑女户外野战色| 成人特级黄色片久久久久久久| 超碰av人人做人人爽久久| 真人做人爱边吃奶动态| 色吧在线观看| 亚洲avbb在线观看| 日韩欧美 国产精品| 成人无遮挡网站| 欧美日韩瑟瑟在线播放| 久久久久久大精品| 亚洲三级黄色毛片| 日韩欧美精品v在线| 天天躁日日操中文字幕| 别揉我奶头 嗯啊视频| 国产激情偷乱视频一区二区| 人人妻,人人澡人人爽秒播| 亚洲熟妇熟女久久| 淫秽高清视频在线观看| 校园春色视频在线观看| 国产av在哪里看| 午夜老司机福利剧场| 久久久久久久久久成人| 天堂动漫精品| 人妻久久中文字幕网| 日本免费一区二区三区高清不卡| 久久久久久久精品吃奶| 天堂av国产一区二区熟女人妻| 精华霜和精华液先用哪个| 久久久久国内视频| av专区在线播放| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人与动物交配视频| 在线观看66精品国产| 欧美精品国产亚洲| 好男人在线观看高清免费视频| 熟女电影av网| 久久亚洲真实| 韩国av一区二区三区四区| 一二三四社区在线视频社区8| 中文字幕免费在线视频6| 神马国产精品三级电影在线观看| 性色avwww在线观看| 特级一级黄色大片| 国产一区二区亚洲精品在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品亚洲一区二区| 欧美色视频一区免费| 久久久久国产精品人妻aⅴ院| 久久久久久国产a免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一区av在线观看| 亚洲av免费高清在线观看| 国产午夜精品论理片| 天堂动漫精品| 亚洲不卡免费看| 人人妻人人澡欧美一区二区| 搡老妇女老女人老熟妇| 亚洲天堂国产精品一区在线| 午夜福利欧美成人| 97超级碰碰碰精品色视频在线观看| 九九在线视频观看精品| 舔av片在线| 免费在线观看日本一区| 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼| 国产精品久久视频播放| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 色av中文字幕| 亚洲真实伦在线观看| 久久九九热精品免费| 亚洲精品在线美女| 99久久无色码亚洲精品果冻| 免费看光身美女| 免费看美女性在线毛片视频| 亚洲aⅴ乱码一区二区在线播放| 国产 一区 欧美 日韩| 免费电影在线观看免费观看| 观看免费一级毛片| 天堂√8在线中文| 人人妻人人看人人澡| 亚洲av一区综合| 老熟妇乱子伦视频在线观看| 18美女黄网站色大片免费观看| 欧美区成人在线视频| 久久久色成人| 又粗又爽又猛毛片免费看| 日本黄色片子视频| 一a级毛片在线观看| 精品人妻一区二区三区麻豆 | xxxwww97欧美| eeuss影院久久| 精品久久久久久久久久久久久| 88av欧美| 精品久久久久久久人妻蜜臀av| 偷拍熟女少妇极品色| 少妇高潮的动态图| 国产成人影院久久av| 一进一出抽搐gif免费好疼| 国产日本99.免费观看| 亚洲欧美日韩无卡精品| 欧美成人免费av一区二区三区| 欧美午夜高清在线| 日韩大尺度精品在线看网址| 国产一区二区亚洲精品在线观看| 久久久久久久久中文| 精品免费久久久久久久清纯| .国产精品久久| 亚洲五月婷婷丁香| 久久热精品热| 国产单亲对白刺激| 精品国产三级普通话版| 真实男女啪啪啪动态图| 色哟哟·www| 国产免费男女视频| 一区二区三区免费毛片| 悠悠久久av| 色视频www国产| 国产伦精品一区二区三区视频9| 成人美女网站在线观看视频| 综合色av麻豆| 久久久久国产精品人妻aⅴ院| www.www免费av| 国内少妇人妻偷人精品xxx网站| 最新在线观看一区二区三区| 日本 av在线| 国内精品久久久久精免费| 我要看日韩黄色一级片| 伦理电影大哥的女人| 男人和女人高潮做爰伦理| 嫩草影视91久久| 亚洲av不卡在线观看| 在线免费观看的www视频| 小蜜桃在线观看免费完整版高清| 亚洲av第一区精品v没综合| 日本成人三级电影网站| 亚洲五月婷婷丁香| 男人舔奶头视频| 亚洲avbb在线观看| 十八禁网站免费在线| 久久久久免费精品人妻一区二区| 亚洲国产精品成人综合色| 国产一区二区三区视频了| 亚洲成a人片在线一区二区| 国产精品av视频在线免费观看| 亚洲三级黄色毛片| 日本免费a在线| 全区人妻精品视频| 免费在线观看亚洲国产| 中文字幕人成人乱码亚洲影| 真实男女啪啪啪动态图| 我要看日韩黄色一级片| 亚洲av二区三区四区| 欧美色视频一区免费| 日本五十路高清| 高清在线国产一区| 琪琪午夜伦伦电影理论片6080| 又黄又爽又免费观看的视频| 一本一本综合久久| 成人三级黄色视频| 国产在线精品亚洲第一网站|