• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global Stability of An Eco-epidemiological Model with Beddington-DeAngelis Functional Response and Delay

    2020-01-07 06:27:54BAIHongfangXURui

    BAI Hong-fang, XU Rui

    (1.Faculty of Science and Technology, University of Macau, Macau Special Administrative Region,China; 2.Complex Systems Research Center, Shanxi University, Taiyuan, 030006, China)

    Abstract: In this paper, an eco-epidemiological model with Beddington-DeAngelis functional response and a time delay representing the gestation period of the predator is studied.By means of Lyapunov functionals and Laselle’s invariance principle,sufficient conditions are obtained for the global stability of the interior equilibrium and the disease-free equilibrium of the system, respectively.

    Key words:Eco-epidemiological model;delay;Laselle’s invariance principle;global stability

    §1. Introduction

    It is necessary to study the effect of epidemiological parameters in the ecological domain from mathematical as well as ecological point of view. As a new branch in mathematical biology, eco-epidemiology merges ecology and epidemiology to understand the dynamics of disease propagation on the prey-predator population.

    The disease factor in predator-prey system was first introduced by Anderson and May [1].Since this pioneering work, great attention has been paid to the modeling and analysis of eco-epidemiological systems recently, and an increasing number of works have been devoted to the study of the relationships between demographic processes among different populations and diseases [2-12]. Such as, Zhang et al. [8]studied the following delayed eco-epidemiological model with Holling type-I response function

    where x(t),S(t),I(t) denote the densities of the prey, the susceptible predator and the infected predator population, respectively.

    The functional response is a key element in all predator-prey interactions. The functional response refers to the number of prey eaten per predator per unit time as a function of prey density.System (1.1) assumes that the per capita rate of predation depends on the prey numbers only.But there is growing explicit biological and physiological evidence that in some situations,especially when predators have to research for food(and therefore have to share or compete for food),a more realistic model should be based on a functional response which is predator-dependent.Such as , ”ratio-dependent” theory [13-15], and in some cases, the Beddington-DeAngelis type functional response performed even better. The Beddington-DeAngelis functional responsewas introduced by Beddington-DeAngelis et al. [16-17]. It is similar to the well-known Holling type II functional response but has an extra term nS(t)in the denominator which models mutual interference between the susceptible predator. When m > 0, n = 0, the Beddington-DeAngelis functional response is simplified to Holing type II functional response.And when m=0, n>0, it expresses a saturation response.

    Motivated by the works of Zhang et al. [8]and Beddington-DeAngelis et al. [16-17], in this paper, we are concerned with the combined effects of the disease transmission, Beddington-DeAngelis functional response and time delay due to the gestation of predator on the global dynamics of a predator-prey system. To this end, we consider the following eco-epidemiological model with delay:

    where x(t), S(t) and I(t) denote the densities of the prey, the susceptible predator and the infected predator population, respectively. r is the intrinsic growth rate of prey population without disease, r/a11is the environmental carrying capacity, a12is the capturing rate of the susceptible predators, a21/a12is the conversion rate of nutrients into the reproduction of the susceptible predators by consuming prey, β is the disease transmission coefficient, r1is the natural death rate of the susceptible predators, r2is the natural and disease-related mortality rate of the infected predator. Here, r1≤r2. τ is a time delay representing a duration of τ time units elapses when an individual prey is killed and the moment when the corresponding addition is made to the predator population. All the parameters are positive.

    We denote by C the Banach space of continuous functions φ:[?τ,0]→R3with norm

    where φ=(φ1, φ2, φ3)∈C. Further, let

    The initial conditions for system (1.3) take the form

    where φ=(φ1, φ2, φ3)∈C+.

    The organization of this paper is as follows. In sec. 2,we present some preliminaries,such as the positivity, and the equilibria of system (1.2). In sec. 3, we consider about the permanence of system (1.2) by using the persistence theory on infinite dimensional systems developed by Hale and Waltman [18]. In sec. 4, by means of suitable Lyapunov functionals and Lasalle’s invariance principle, we establish sufficient conditions for the global asymptotic stability of the interior equilibrium and the disease-free equilibrium of system (1.2). Finally, the paper ends with a summary and discussion.

    §2. Preliminaries

    In this section, we show the positivity of solutions and the equilibria of system (1.2).

    2.1 Positivity of solutions

    Theorem 2.1Suppose that (x(t),S(t),I(t)) is a solution of system (1.2) with initial conditions (1.3). Then x(t)>0, S(t)>0 and I(t)>0 for all t ≥0.

    ProofFrom the first and last equation of system (1.2), we have

    Hence, x(t) and I(t) are positive.

    To show that S(t)is positive on[0,∞),suppose that there exists t2>0 such that S(t2)=0,and S(t)>0 for t ∈[0,t2). Then ˙S(t2)≤0. From the second equation of (1.2), we have

    which is a contradiction.

    Next, we will give the equilibria of system (1.2).

    2.2 equilibriaEquilibria of system (1.2) are obtained by setting the right side of three equations of (1.2) to zeros. Doing this, we get four equilibria in general.

    (i) The trivial equilibrium E0=(0,0,0).

    (ii) The predator-extinction equilibrium E1=(r/a11,0,0).

    (iii) The disease-free equilibrium E2=(x2,S2,0), where

    Obviously, if

    (H1) a21?mr1>a11r1/r,

    then x2>0, S2>0.

    (iv) The interior equilibrium E?=(x?,S?,I?), where

    It can be seen that if

    then system (1.2) has a interior equilibrium E?.

    §3. Permanence

    In this section, we consider about the permanence of system (1.2).

    Definition 3.1System (1.2) is said to be permanent (uniformly persistent) if there are positive miand Mi(i=1,2,3)such that each positive solution(x(t),S(t),I(t))of system(1.2)satisfies

    Let X be a complete metric space with metric d. Suppose that T is a continuous semiflow on X, that is, a continuous mapping T :[0,+∞)×X →X with the following properties

    where Ttdenotes the mapping from X to X given by Tt(x)=T(t,x).

    The distance d(x,Y) of a point x ∈X from a subset Y of X is defined by d(x,Y)=infy∈Yd(x,y).

    Recall that the positive orbit γ+(x) through x is defined asand its ω?limit set is ω(x)=Define Ws(A)the strong stable set of a compact invariant set A as

    Suppose that X0is open and dense in X and X0∪X0= X, X0?. Moreover, the C0-semigroup T(t) on X satisfies

    Let Tb(t)=T(t)|X0and Abbe the global attractor for Tb(t).

    Lemma 3.1rm(Hale and Waltman[19])Suppose that T(t)satisfies(3.1). If the following hold

    (i) there is a t0≥0 such that T(t) is compact for t>t0;

    (ii) T(t) is point dissipative in X; and

    Then X0is a uniform repeller with respect to X0, that is, there is an ε > 0 such that for any x ∈X0,

    In order to study the permanence of system (1.2), we also need following result.

    Lemma 3.2There are positive constants M1and M2such that for any positive solution(x(t), S(t), I(t)) of system (1.2) with initial conditions (1.3),

    ProofLet(x(t),S(t),I(t))be any positive solution of system(1.2)with initial conditions(1.3). Set

    Calculating the derivative of V(t) along positive solution of system (1.2), we get

    where M1=which yields≤M1. If we choose M2= a21M1/a12, then(3.2) follows. This complete the proof.

    We are now in a position to state and prove our result on the permanence of system (1.2).

    Theorem 3.1If βS2>r2and (H1) hold, then system (1.2) is permanent.

    ProofLet C+([?τ,0],R3+)denote the space of continuous functions mapping[?τ,0]into R3+. Define

    Denote C0=C1∪C2, X =C+([?τ,0],R3+) and C0=intC+([?τ,0],R3+).

    In the following, we verify the conditions in Lemma 3.1 are satisfied. By the definition of C0and C0, it is easy to see that C0and C0are positively invariant and the conditions (i) and(ii) in Lemma 3.1 are clearly satisfied. Thus, we need only to show that the conditions (iii)and (iv) hold. Clearly, system (1.2) possesses two constant solutions in C0:corresponding, respectively, to x(t) = r/a11, S(t) = 0, I(t) = 0 and x(t) = x2, S(t) = S2,I(t)=0.

    We now verify the condition (iii) of Lemma 3.1. If (x(t),S(t),I(t)) is a solution of system(1.2) initiating from C1, then ˙x(t)=rx(t)?a11x2(t), which yields x(t)→r/a11as t →+∞. If(x(t),S(t),I(t)) is a solution of system (1.2) initiating from C2with φ1(θ) > 0 and φ2(θ) > 0,then we have

    Using Lemma 3.1 and Lemma 3.2, it is not difficult to prove that if (H1) holds, then system(3.3) is uniformly persistent. Noting that C1∩C2=?, it follows that the invariant setsandare isolated. Hence,is isolated and is an acyclic covering satisfying the condition(iii) in Lemma 3.1.

    §4. Global Stability

    In this section, we give some sufficient conditions for global stability of the interior equilibrium E?and the disease-free equilibrium E2, respectively. The method of proofs is to use global Lyapunov functional and Lasalle’s invariance principle.

    Theorem 4.1If the interior equilibrium E?of system (1.2) exists, then E?is globally asymptotically stable provided that

    ProofAssume that (x(t),S(t),I(t)) is any positive solution of system (1.2) with initial conditions (1.3). Denote φ(x(t),S(t))=Define

    Calculating the derivative of V11(t) along positive solutions of system (1.2), it follows that

    On substituting rx??a11x?2?a12φ(x?,S?) = 0, a21φ(x?,S?)?r1S??βS?I?= 0 and βS?=r2into Eq. (4.2), we derive that

    Define

    Then

    Set V1(t)=V11(t)+V12(t). It follows from (4.1) (4.4) and (4.5) that

    Collecting terms of Eq. (4.6), we get

    On substituting a21φ(x?,S?)=r1S?+βS?I?and βS?I?=r2I?into Eq. (4.7), we derive that

    Noting that

    we derive from (4.8) that

    Because (H2) holds, there is a constant T >0 such that if t ≥T, x(t)>r/(2a11). In this case,we have that, for t ≥T,

    with equality if and only if x = x?. Note that the function f(x) = x ?1 ?ln x is always non-negative for any x>0, and f(x)=0 if and only if x=1. Therefor, we have that if t ≥T,˙V1(t) ≤0, which equality if and only if x = x?,S = S?. We now look for the invariant subset M within the set

    Since x = x?,S = S?on M, we obtain from the second equation of system (1.2) that 0 =which yields I =I?. Hence, the only invariant set in M = {(x,S,I) := 0} is M = (x?,S?,I?). Therefore, the global asymptotic stability of E?follows from Lasalle’s invariance principle for delay differential systems[18]. This completes the proof.

    Theorem 4.2If βS2?r2<0 and (H2) hold, the disease-free equilibrium E2(x2,S2,0) is globally asymptotically stable.

    ProofAssume that (x(t),S(t),I(t)) is any positive solution of system (1.2) with initial conditions (1.3). Denote

    Calculating the derivative of V21(t) along positive solutions of system (1.2), it follows that

    On substituting rx2?a11?a12φ(x2,S2)=0 and a21φ(x2,S2)=r1S2into Eq. (4.13), we derive that

    Define

    Then

    Collecting terms of Eq. (4.17), we get

    On substituting a21φ(x2,S2)=r1S2into Eq. (4.18), we derive that

    Noting that

    we derive from (4.19) that

    Hence, if follow from (4.21) that if βS2?r2< 0 and (H2) hold, then≤0 for t ≥T,with equality if and only if x = x2,S = S2,I = 0. It shows that the only invariant set in M = {(x,S,I) := 0} is M = {(x2,S2,0)}. Using Lasalle’s invariance principle for delay differential systems [18]. This completes the proof.

    §5. Discussion

    In this paper, we have investigated the global dynamics of a delayed predator-prey model with a transmissible disease spreading among the predator population. We noted that system(1.2) has no intra-specific competition terms in the second and the third equations. In this situation, under what conditions will the global stability of a feasible equilibrium of system(1.3) persists independent of the time delay due to the gestation of the predator? To solve this problem, by using Lyapunov functionals and Laselle’s invariance principle, we established global asymptotic stability of the interior equilibrium and the disease-free equilibrium of the system,respectively. According to Theorem 4.1,we can see that if the prey population is always abundant enough, the interior equilibrium of system (1.2) is globally asymptotically stable. By Theorem 4.2, we see that if the susceptible predator population S2< r2/β, that means, the susceptible predator population is not too large, then the disease-free equilibrium of system(1.2) is globally asymptotically stable. In this case, the infected predator will become extinct.

    黄色欧美视频在线观看| 18+在线观看网站| 免费大片黄手机在线观看| 午夜日本视频在线| 国产亚洲最大av| 国产免费一区二区三区四区乱码| 在线免费观看不下载黄p国产| 久久久久久久久久久丰满| 亚洲国产精品999| av.在线天堂| 一区二区av电影网| 美女内射精品一级片tv| 国产爽快片一区二区三区| 中文资源天堂在线| 欧美xxⅹ黑人| 亚洲精品色激情综合| 亚洲成人手机| 午夜激情福利司机影院| 欧美高清成人免费视频www| 国产成人精品久久久久久| 亚洲av男天堂| 亚洲国产最新在线播放| 中文字幕免费在线视频6| 美女中出高潮动态图| 欧美日韩一区二区视频在线观看视频在线| 视频区图区小说| 18禁在线播放成人免费| 青春草国产在线视频| 久久这里有精品视频免费| 色94色欧美一区二区| 亚洲熟女精品中文字幕| 久久精品久久精品一区二区三区| 一级av片app| 国产午夜精品一二区理论片| 这个男人来自地球电影免费观看 | 久久久久久久久大av| 五月玫瑰六月丁香| 老司机亚洲免费影院| 久久久久久久精品精品| 欧美3d第一页| 在线亚洲精品国产二区图片欧美 | 精品国产露脸久久av麻豆| 国产精品一区二区在线观看99| 黄色配什么色好看| 搡女人真爽免费视频火全软件| 日韩制服骚丝袜av| 女人精品久久久久毛片| 国内揄拍国产精品人妻在线| 亚洲av成人精品一二三区| 黑人高潮一二区| 成人特级av手机在线观看| 久久久久久久精品精品| 18禁裸乳无遮挡动漫免费视频| 国产熟女午夜一区二区三区 | 汤姆久久久久久久影院中文字幕| 亚洲精品日韩av片在线观看| 丰满人妻一区二区三区视频av| 亚洲av电影在线观看一区二区三区| av在线播放精品| 欧美日韩国产mv在线观看视频| 少妇人妻精品综合一区二区| 亚洲精品日本国产第一区| 色哟哟·www| 另类精品久久| 色视频www国产| 亚洲欧美中文字幕日韩二区| 婷婷色综合www| 国产乱来视频区| 国产乱来视频区| 极品教师在线视频| tube8黄色片| 99re6热这里在线精品视频| 黄色一级大片看看| 日本-黄色视频高清免费观看| 日本黄大片高清| 欧美亚洲 丝袜 人妻 在线| 七月丁香在线播放| 免费av中文字幕在线| 久久午夜综合久久蜜桃| 六月丁香七月| 欧美 亚洲 国产 日韩一| 丝袜脚勾引网站| 美女中出高潮动态图| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 亚洲欧美日韩另类电影网站| 欧美老熟妇乱子伦牲交| 一区在线观看完整版| 免费大片18禁| 国产精品伦人一区二区| 国产男女超爽视频在线观看| 99热网站在线观看| 国模一区二区三区四区视频| 精品亚洲成国产av| 欧美精品人与动牲交sv欧美| 噜噜噜噜噜久久久久久91| 97精品久久久久久久久久精品| 蜜桃在线观看..| 自拍偷自拍亚洲精品老妇| xxx大片免费视频| 又大又黄又爽视频免费| 欧美 亚洲 国产 日韩一| 少妇的逼好多水| 久久久午夜欧美精品| 一级毛片黄色毛片免费观看视频| 久久免费观看电影| av福利片在线| 日韩av免费高清视频| 卡戴珊不雅视频在线播放| 男人和女人高潮做爰伦理| 欧美xxxx性猛交bbbb| 黑人巨大精品欧美一区二区蜜桃 | 天天躁夜夜躁狠狠久久av| 久久精品久久久久久噜噜老黄| 久久人人爽人人爽人人片va| 午夜免费鲁丝| 五月天丁香电影| 久久久久久久大尺度免费视频| 国产午夜精品一二区理论片| 久久女婷五月综合色啪小说| 亚洲国产av新网站| 国内精品宾馆在线| 亚洲av成人精品一区久久| 大话2 男鬼变身卡| 一级片'在线观看视频| 国产精品一区www在线观看| 国产伦精品一区二区三区四那| 久久久久久久久久久久大奶| 久久97久久精品| 高清毛片免费看| 夫妻性生交免费视频一级片| 成人国产av品久久久| 久久久久精品性色| 少妇被粗大的猛进出69影院 | 在线播放无遮挡| freevideosex欧美| 国产成人a∨麻豆精品| 国产深夜福利视频在线观看| a级毛片在线看网站| 偷拍熟女少妇极品色| 欧美成人精品欧美一级黄| 国产一区二区三区综合在线观看 | 一级,二级,三级黄色视频| 偷拍熟女少妇极品色| 国产爽快片一区二区三区| 全区人妻精品视频| av天堂久久9| 啦啦啦啦在线视频资源| 国产在线视频一区二区| 亚洲av.av天堂| 国产精品久久久久久精品电影小说| 80岁老熟妇乱子伦牲交| 久久精品国产自在天天线| 欧美日韩国产mv在线观看视频| 国产淫语在线视频| 亚洲av国产av综合av卡| 欧美日韩视频高清一区二区三区二| 国产欧美日韩一区二区三区在线 | 亚洲欧洲国产日韩| 丝袜脚勾引网站| 欧美激情国产日韩精品一区| 女人精品久久久久毛片| 三级国产精品片| 国产伦在线观看视频一区| 亚洲国产av新网站| 日韩 亚洲 欧美在线| 人人妻人人爽人人添夜夜欢视频 | 热re99久久精品国产66热6| 免费大片黄手机在线观看| 国产精品国产三级国产av玫瑰| 国产精品久久久久久精品电影小说| 伦精品一区二区三区| 久久久久精品久久久久真实原创| 少妇 在线观看| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看 | 国产黄色免费在线视频| 中文天堂在线官网| 日韩中文字幕视频在线看片| 欧美日韩视频高清一区二区三区二| 色视频www国产| 亚洲欧美成人精品一区二区| 午夜福利在线观看免费完整高清在| 亚洲美女视频黄频| 一区二区三区四区激情视频| 三级国产精品片| 99久久精品一区二区三区| 男人添女人高潮全过程视频| 国产黄片美女视频| 伊人亚洲综合成人网| 国产成人精品婷婷| 国产精品久久久久久精品古装| 亚洲成色77777| 免费av中文字幕在线| 国产欧美日韩一区二区三区在线 | 黑人高潮一二区| 国产乱来视频区| 色网站视频免费| 日韩强制内射视频| 十八禁高潮呻吟视频 | 亚洲人成网站在线播| 精品少妇黑人巨大在线播放| 亚洲综合色惰| 晚上一个人看的免费电影| 国产熟女欧美一区二区| 日本av手机在线免费观看| av黄色大香蕉| 成人黄色视频免费在线看| 亚洲四区av| 国产成人一区二区在线| 精品午夜福利在线看| 中国美白少妇内射xxxbb| 18+在线观看网站| 免费看不卡的av| 妹子高潮喷水视频| 少妇被粗大的猛进出69影院 | 亚洲精品乱码久久久v下载方式| 精品卡一卡二卡四卡免费| 亚洲国产色片| 久久精品国产a三级三级三级| 你懂的网址亚洲精品在线观看| 99久久精品热视频| 欧美少妇被猛烈插入视频| 一区二区三区四区激情视频| 国产成人aa在线观看| 免费看av在线观看网站| 99久久精品一区二区三区| 国产成人精品久久久久久| 大片电影免费在线观看免费| 欧美老熟妇乱子伦牲交| 91久久精品电影网| 亚洲欧美成人综合另类久久久| 嫩草影院新地址| 老司机亚洲免费影院| 国产精品国产三级国产专区5o| 新久久久久国产一级毛片| 人人妻人人爽人人添夜夜欢视频 | 亚洲真实伦在线观看| 看非洲黑人一级黄片| 日本vs欧美在线观看视频 | 国产成人精品一,二区| 成年美女黄网站色视频大全免费 | 久久97久久精品| 亚洲国产毛片av蜜桃av| 欧美日本中文国产一区发布| 美女国产视频在线观看| 国产精品久久久久久久久免| 久久99一区二区三区| 最近中文字幕高清免费大全6| 亚洲精品中文字幕在线视频 | 日本wwww免费看| 国产免费视频播放在线视频| 乱人伦中国视频| 肉色欧美久久久久久久蜜桃| 这个男人来自地球电影免费观看 | 青春草亚洲视频在线观看| 夫妻午夜视频| 欧美日韩在线观看h| 午夜福利视频精品| 久久久久久久大尺度免费视频| 人人妻人人爽人人添夜夜欢视频 | 乱人伦中国视频| 亚洲精品国产av蜜桃| 国产亚洲精品久久久com| 国产老妇伦熟女老妇高清| 成人二区视频| 日韩欧美一区视频在线观看 | 又粗又硬又长又爽又黄的视频| 亚洲色图综合在线观看| 成年av动漫网址| 男的添女的下面高潮视频| 午夜激情久久久久久久| 麻豆精品久久久久久蜜桃| 亚洲国产精品成人久久小说| 18+在线观看网站| 国产精品一区二区性色av| 中国三级夫妇交换| 国产亚洲精品久久久com| 久久久久久人妻| 亚洲欧美精品自产自拍| 又大又黄又爽视频免费| 一级a做视频免费观看| 狂野欧美白嫩少妇大欣赏| 久久久久久久亚洲中文字幕| 日韩av在线免费看完整版不卡| 久久久久精品久久久久真实原创| 免费观看无遮挡的男女| 91久久精品国产一区二区成人| 亚洲人成网站在线播| 欧美日本中文国产一区发布| 一本色道久久久久久精品综合| 我要看黄色一级片免费的| 黄色视频在线播放观看不卡| 18禁动态无遮挡网站| 人妻夜夜爽99麻豆av| 午夜日本视频在线| 国产精品福利在线免费观看| 亚洲怡红院男人天堂| 各种免费的搞黄视频| 丰满迷人的少妇在线观看| 51国产日韩欧美| 尾随美女入室| 亚洲国产精品一区二区三区在线| 亚洲真实伦在线观看| 成人18禁高潮啪啪吃奶动态图 | 色5月婷婷丁香| 99热国产这里只有精品6| 久久久国产一区二区| 韩国高清视频一区二区三区| 蜜桃在线观看..| 亚洲美女视频黄频| 欧美日韩国产mv在线观看视频| 日韩电影二区| 精品国产露脸久久av麻豆| 亚洲国产欧美在线一区| 亚洲国产精品成人久久小说| 亚洲,欧美,日韩| 两个人的视频大全免费| 精品卡一卡二卡四卡免费| 日韩欧美一区视频在线观看 | 如何舔出高潮| 亚洲精品aⅴ在线观看| 一本大道久久a久久精品| 日韩欧美一区视频在线观看 | 日韩精品免费视频一区二区三区 | 免费观看av网站的网址| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| av一本久久久久| 免费人成在线观看视频色| 国产成人免费观看mmmm| 免费黄频网站在线观看国产| 免费不卡的大黄色大毛片视频在线观看| 黑人巨大精品欧美一区二区蜜桃 | 久久久亚洲精品成人影院| 男人和女人高潮做爰伦理| 久久久欧美国产精品| 国产精品三级大全| 一级毛片aaaaaa免费看小| 在线观看三级黄色| 久久狼人影院| 日韩制服骚丝袜av| 新久久久久国产一级毛片| 亚洲美女视频黄频| 超碰97精品在线观看| 免费高清在线观看视频在线观看| 51国产日韩欧美| 久久热精品热| 丰满少妇做爰视频| 成人午夜精彩视频在线观看| a级片在线免费高清观看视频| 永久网站在线| 日韩成人av中文字幕在线观看| 男女无遮挡免费网站观看| 97超视频在线观看视频| 毛片一级片免费看久久久久| 亚洲人成网站在线播| 国产av精品麻豆| 国国产精品蜜臀av免费| 99久久综合免费| 成人美女网站在线观看视频| 日产精品乱码卡一卡2卡三| 国模一区二区三区四区视频| 一级毛片aaaaaa免费看小| 自拍偷自拍亚洲精品老妇| 国语对白做爰xxxⅹ性视频网站| 国产高清三级在线| 黑丝袜美女国产一区| 九色成人免费人妻av| 国内精品宾馆在线| 天堂中文最新版在线下载| 国产免费视频播放在线视频| 亚洲成色77777| 毛片一级片免费看久久久久| 欧美激情国产日韩精品一区| 久久6这里有精品| 国产一区有黄有色的免费视频| 看非洲黑人一级黄片| 美女视频免费永久观看网站| 亚洲真实伦在线观看| 久久精品国产亚洲网站| 两个人的视频大全免费| 亚洲国产精品成人久久小说| 免费观看在线日韩| 精品一区在线观看国产| 国产日韩欧美在线精品| 夫妻午夜视频| 日日摸夜夜添夜夜添av毛片| 一边亲一边摸免费视频| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 熟妇人妻不卡中文字幕| 日韩不卡一区二区三区视频在线| 国产精品一二三区在线看| 久久免费观看电影| 黄色视频在线播放观看不卡| 性高湖久久久久久久久免费观看| 精品国产国语对白av| 国产一区二区三区综合在线观看 | 看十八女毛片水多多多| 久久青草综合色| 久久国产精品男人的天堂亚洲 | av天堂久久9| 青青草视频在线视频观看| 如何舔出高潮| 交换朋友夫妻互换小说| 噜噜噜噜噜久久久久久91| 新久久久久国产一级毛片| 亚洲精品aⅴ在线观看| 天堂8中文在线网| 亚洲国产毛片av蜜桃av| 国产成人精品久久久久久| 日日爽夜夜爽网站| 狠狠精品人妻久久久久久综合| 男女啪啪激烈高潮av片| 偷拍熟女少妇极品色| 乱系列少妇在线播放| 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| 久久久久久久国产电影| 黄色一级大片看看| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片| 久久免费观看电影| 亚洲欧美中文字幕日韩二区| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 精品久久久噜噜| 日韩精品有码人妻一区| 男男h啪啪无遮挡| 久久久国产一区二区| 啦啦啦在线观看免费高清www| 成人18禁高潮啪啪吃奶动态图 | 国产毛片在线视频| 肉色欧美久久久久久久蜜桃| 在线观看三级黄色| 亚洲精品一区蜜桃| 寂寞人妻少妇视频99o| 亚洲婷婷狠狠爱综合网| 国产在线视频一区二区| 亚洲综合色惰| 日韩一区二区三区影片| 亚洲人成网站在线观看播放| 日韩中字成人| 亚洲高清免费不卡视频| 成人毛片60女人毛片免费| 一级黄片播放器| 亚洲精品日韩在线中文字幕| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 国产亚洲一区二区精品| 国产精品偷伦视频观看了| 午夜精品国产一区二区电影| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 一级毛片 在线播放| 欧美成人午夜免费资源| 一本色道久久久久久精品综合| 韩国高清视频一区二区三区| 国产精品秋霞免费鲁丝片| 内地一区二区视频在线| av福利片在线| 国产成人精品一,二区| 一本色道久久久久久精品综合| 99久久精品一区二区三区| 青青草视频在线视频观看| 色5月婷婷丁香| 美女福利国产在线| 亚洲av二区三区四区| 热99国产精品久久久久久7| 日本-黄色视频高清免费观看| 最近的中文字幕免费完整| 一区在线观看完整版| 丰满饥渴人妻一区二区三| 国产亚洲5aaaaa淫片| 极品教师在线视频| 国产精品福利在线免费观看| 高清在线视频一区二区三区| 97在线视频观看| 男人狂女人下面高潮的视频| 99热国产这里只有精品6| 亚洲av成人精品一区久久| 成人影院久久| 日韩成人伦理影院| 国产免费一区二区三区四区乱码| 国产白丝娇喘喷水9色精品| 日韩免费高清中文字幕av| 亚洲精品亚洲一区二区| 在线亚洲精品国产二区图片欧美 | 免费av中文字幕在线| 大又大粗又爽又黄少妇毛片口| 精品久久国产蜜桃| 国产成人freesex在线| 日日摸夜夜添夜夜爱| 大话2 男鬼变身卡| 大香蕉97超碰在线| 精品熟女少妇av免费看| 亚洲婷婷狠狠爱综合网| 男的添女的下面高潮视频| 国产精品久久久久久久久免| 少妇丰满av| 大又大粗又爽又黄少妇毛片口| 18禁在线播放成人免费| 夫妻性生交免费视频一级片| 春色校园在线视频观看| 日韩av在线免费看完整版不卡| 免费看av在线观看网站| 最黄视频免费看| videos熟女内射| 黑人猛操日本美女一级片| 精品一品国产午夜福利视频| 免费观看无遮挡的男女| 久久久久久久久久久免费av| 亚洲精品国产av成人精品| 国产精品国产三级专区第一集| 最近的中文字幕免费完整| 日韩精品有码人妻一区| 久久久久久久大尺度免费视频| 亚洲国产av新网站| 另类亚洲欧美激情| a级毛片免费高清观看在线播放| 欧美+日韩+精品| 久久青草综合色| 日本黄大片高清| 妹子高潮喷水视频| 亚洲欧洲国产日韩| av视频免费观看在线观看| 亚洲av电影在线观看一区二区三区| 老司机影院毛片| 在线免费观看不下载黄p国产| 国产精品偷伦视频观看了| 精品亚洲成国产av| 美女xxoo啪啪120秒动态图| 亚洲无线观看免费| 国产精品久久久久成人av| 日产精品乱码卡一卡2卡三| 嘟嘟电影网在线观看| 亚洲精品乱久久久久久| 久久久久久久久久成人| 欧美国产精品一级二级三级 | 成人毛片60女人毛片免费| 一区二区av电影网| 美女视频免费永久观看网站| 成人国产麻豆网| 老女人水多毛片| 国产国拍精品亚洲av在线观看| 日本欧美视频一区| 夜夜看夜夜爽夜夜摸| 99九九线精品视频在线观看视频| 97在线人人人人妻| 五月玫瑰六月丁香| 黄色欧美视频在线观看| a级毛片免费高清观看在线播放| av视频免费观看在线观看| 天堂8中文在线网| 高清视频免费观看一区二区| 欧美日韩视频高清一区二区三区二| 国产又色又爽无遮挡免| 精品午夜福利在线看| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 涩涩av久久男人的天堂| 日本与韩国留学比较| 香蕉精品网在线| 国产精品无大码| 91精品国产九色| 亚洲av中文av极速乱| 精品一区在线观看国产| 十八禁网站网址无遮挡 | 久久国产亚洲av麻豆专区| 蜜桃在线观看..| 天美传媒精品一区二区| 人妻一区二区av| 久久青草综合色| 精品国产露脸久久av麻豆| 好男人视频免费观看在线| 男女免费视频国产| 国产69精品久久久久777片| 黄片无遮挡物在线观看| 性色av一级| 美女国产视频在线观看| 青春草视频在线免费观看| 少妇被粗大猛烈的视频| 亚洲av不卡在线观看| 久久精品国产亚洲av涩爱| 在线观看国产h片| 久久久久久久久久久丰满| 国产黄频视频在线观看| av一本久久久久| 少妇熟女欧美另类| 欧美三级亚洲精品| 国产成人aa在线观看| 国产精品久久久久久精品古装| 久久99精品国语久久久| 国产无遮挡羞羞视频在线观看| 国产免费一级a男人的天堂| 老司机影院成人| 午夜日本视频在线| 欧美成人精品欧美一级黄| 日本色播在线视频| 新久久久久国产一级毛片| 国产精品秋霞免费鲁丝片| 黄色欧美视频在线观看| 美女xxoo啪啪120秒动态图| 欧美+日韩+精品| 夜夜骑夜夜射夜夜干| 高清黄色对白视频在线免费看 | 午夜激情福利司机影院| 国产有黄有色有爽视频| 最近的中文字幕免费完整| 五月伊人婷婷丁香| 欧美成人精品欧美一级黄| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品国产精品| a级毛片免费高清观看在线播放|