• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Chebyshev Polynomials to Efficient Approximation of Frequency-Domain Infinite Depth Green Function

    2019-12-30 06:45:52cn
    船舶力學(xué) 2019年12期

    -,-,-,-cn

    (1.School of Naval Architecture,Ocean&Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;2.Marine Design and Research Institute of China,Shanghai 200011,China;

    3.Shanghai Key Laboratory of Ship Engineering,Shanghai 200011,China)

    Abstract: New research to fast evaluate the Green function and its derivatives without translating in frequency domain is presented. Concerning the classical representation, composed of a semi-infinite integral involving a Bessel function and a Cauchy singularity, the Green function is divided into two parts: relatively simple terms with analytic expressions and slowly-varying residual functions. Economized Chebyshev polynomials are derived in three modified regions to approximate the residual function,and subsequently the Clenshaw’s method is used to fast evaluate the resultant nested multiplications.To guarantee 6D accuracy,the evaluations of derivatives also are implemented concurrently with almost the same polynomial coefficients, more precisely, with several extra or reduced terms. Numerical comparisons show that agreement of computational results between this paper and the famous HydroStar is fairly well, and that the algorithm in this paper can virtually obtain the same efficiency as HydroStar.In conclusion,this method can yield results with high accuracy and efficiency to the practical application.

    Key words:Green function;Chebyshev polynomials;potential theory;frequency domain

    0 Introduction

    Under the assumption of a‘high frequency-low speed’and rigid or hydroelastic body,the infinite depth Green function without translating has been widely applied to the seakeeping analysis and marine structure design in recent several decades. Because of the enlargement trend of ship’s scale in recent years and the onerous analysis task involving structural spectral analysis, a realistic description of wave-body interactions dictates that computations of the Green function between 5×107and 5×1011are required to analyze an individual ship, which is regarded as the main time-consuming part in performing the hydrodynamic analysis.

    The evaluation of Green function and its derivatives have always been a complicated mathematical issue. Numerous practical works have been done on this subject. Noblesse[1]proposed the representation of Green function with the so-called near-field and far-field parts. As to a representation with a semi-infinite integral involving a Cauchy singularity, for the first time Newman[2]advocated the classical fast method combining analytic expansions with two-dimensional Chebyshev polynomial approximations,however,the variety of diverse algorithms and associated branches precludes effective use on every single subdomain.A more systematic numerical approach[3]was derived from approximation of the residual functions in all four rectangular regions with economized polynomials. This approach is the basis of the famous analysis code WAMIT.To some extent,Chen[4]utilized the philosophy of polynomial approximations[3]and the expression of residual functions from Noblesse[1]and developed a new efficient method, which was applied in the notable analysis code HydroStar. In addition, there are also some novel implementations of other representations.Clement[5]outlined the method using classical fourth-order Runge-Kutta method to solve a second-order ordinary differential equation of Green function. Similarly, in 2015, Shen et al[6]investigated the method combinging Numerov type method with Power-series method to solve this equation. New series expansions for different subdomains were proposed by Duan et al[7]. On the basis of that, Shan[8]further proposed highly precise approximation on refined subdomains.All in all,to the best of authors’knowledge,in view of computational efficiency and practical application,the above algorithms[3-4]might be the most effective scheme. However, there are still rooms for research on the selection of the residual function, on the refinement of subdomain division based on economized polynomials methods and on the solution to the resultant Chebyshev polynomial sum.

    This paper presents the implementations of the efficient approximations of free-surface Green function without translating in frequency domain. Firstly, computations are divided into evaluations of relatively simple terms and slowly-varying residual functions, whose expressions are introduced in detail. After the approximation and error analysis of Green function, the efficiency and accuracy of the code are verified by comparing the results with those from Hydro-Star. It is concluded that the algorithms in this paper are accurate and efficient for the wavebody interactions.

    1 Efficient algorithm of infinite depth free-surface Green function

    We consider a field pointp(x,y,z),source pointq(ξ,η,ζ)and an image pointqˉ(ξ,η,-ζ)of the source point relative to the free surface. The following expression is the complex Green function of infinite depth water corresponding to the time exponential item exp(-iωe t),ωeis the encounter frequency.

    F(X,Y)and its first derivatives are defined as follows:

    wherer=[R2+(z-ζ)]1/2,r1=[R2+(z+ζ)]1/2,ν=ωe2g-1,X=νR,R=[(x-ξ)2+(y-η)]1/2is the horizontal distance between p andq,Y=ν|z+ζ|,R1=(X2+Y2)2,gis the gravitational acceleration. Jn(·) is then-th order Bessel function of the first type,Yn(·)is then-th order Bessel function of the second type,and Hn(·)is then-th order Struve function.

    The evaluations of the Rankine sources 1/r+1/r1and the analytic part 2πνexp(-Y)J0(X)can be easily solved. ThusF(X,Y) can temporarily represent the Green function. The main task is reduced to the solution toFandFXin Eq.(2)throughout the quadrant.

    Here we utilize the‘heavy-handed’application of residual function[3], which means that computations of Green function are divided into evaluation of relatively simple terms and slowly-varying residual functions. Unlike the division of Newman’s work with four rectangular regions,we re-derive the modified regions in view of the cyclical variation trend ofFwith continued amplitude attenuation, with one newly-combined region from the original Rregions 2 and 4,and the other two are identical to the original.Furthermore,the slowly-varying residual functionsf(X,Y)andfX(X,Y)ofFandFXrespectively and the rest analytic expression for three regions are introduced explicitly in Eqs.(3~5).

    Region 1:0<X≤3,0<Y≤4

    Region 2:0<X≤3,Y≥4

    Region 3:X≥3,Y>0

    In view ofXandY,it is necessary to define the maximum ofXandYto be 1 800 and 100 respectively if a ship of 400 meters in length is sailing in the heading angle,with the draft of 20 m and a velocity of 20 knots. Numerous tests of numerical computations indicate that special modified partitions atX=1,2,3,4,5,7,10,15,24,40,60,100,200,400,700,1 000 andY=1,2, 3, 4, 5, 7, 10, 15, 22, 35, 60 are explicitly applied. In the final 123 subdomains (non-uniform with respect to the partitions), economized doublepolynomials are adopted to evaluate the residual functionsfwith 6D accuracy.FandFXin Eqs.(3-5) can be evaluated by the Romberg integral. However, considering the efficiency of computing Chebyshev coefficients (to be introduced later),means developed by Shan[8]with 9D accuracy is adopted in this paper.It should be stressed that the inefficient series expansion[3]is also adopted in case the calculation pair(X,Y) is beyond the range of [0, 1 800]×[0, 100], even though it may not happen.

    Fig.1 The division of the whole(X,Y)quadrant

    Besides, considering the origin of (X,Y) quadrant is the singularity of this issue,so whenX→0+,Y→0+,FandFXcan be defined to be zero without influences on results. Furthermore, whenX→0+andY≠0,meaning the field point coincides with the source point only in horizontal direction, it is clear that the above Eqs.(3-5)cannot be adopted directly because of the singularity ofYn(X)andX-1.But there exist the following supplementary relations through simple manipulation[12].

    Finally, a comprehensive algorithm covering the whole (X, Y) quadrant is derived for the evaluation of infinite depth case (see Fig.1), in other words, with 5 regions. Moreover, the approximations of all involved special functions J0(·),J1(·),Y0(·),Y1(·),Ei(·)are also implemented efficiently[9-11].The errorεin this paper to determine whetherXorYequals to 0 is 10-5in the final Fortran subroutine.

    The method to expand a function into a series of Chebychev polynomials needs to be outlined briefly. Based on Chebyshev polynomialsTm(x) of the first kind which lie in the interval[-1,1],and the givenf(X,Y)defined on[a,b]×[c,d],we compute Chebyshev coefficientsai j

    wherezk,zlare Chebyshev interpolation nodes on [-1,1],wklis the evaluation off(X,Y) at approximation nodes on[a,b]and[c,d]intervals,ai j,i=0,…,n1;j=0,…,n2(m≥n1+1,m≥n2+1).

    For bothfandfX, the final achieved coefficient orders (n1,n2) vary from (2, 1) associated with 6 coefficients up to(6,4)with 35 coefficients.Moreover,the coefficients should have a precision of several more decimals than needed in the final approximation and be neglected if the magnitudes of them are smaller than 10-9.

    At last,arriving at approximation off(X,Y)on[a,b]×[c,d]:

    A first possibility for the computation of this nested-multiplication in Eq.(8) is to rewrite the Chebyshev polynomialsTn(x) in terms of powers ofxand then use the H?rner scheme[4].However,this has to be done carefully because for some expansions there is a considerable loss of accuracy due to cancellation effects[13]. In this paper, an alternative and efficient Clenshaw’s method for evaluating this nested-multiplication is adopted. Meanwhile, the derivativefXcan be evaluated as efficiently asf,only with one or two extra or reduced terms(depending on different subdomains)in order to guarantee the same level of accuracy.

    2 Numerical results and discussion

    Based on the above mentioned algorithms and the boundary value problem with the source formulation,codes are developed in Intel visual Fortran 2013 version.Furthermore,the symmetry of Green function[14]is always used in the code. However, the symmetry of body geometry and elimination of the irregular frequencies are not included. All of the numerical tests are run on a personal computer with a CPU clock of 3.6 GHz.

    2.1 Approximations of residual function

    Before we evaluate the residual function with economized polynomials, its variation trend need to be confirmed with straightforward method according to Eqs.(3-5). Fig.2 shows that no matter forf(X,Y) orfX(X,Y), Region 1 has more severe variation than the other two regions.And the newly combined Region 3 is rational because of its slow-varying characteristic. It can also be concluded that approximation for fast-varying Region 1 will need more coefficients than the other two.

    Fig.2 The slowly-varying parts f and fX for ε<X≤15 and ε<Y≤8

    When (X,Y) is located in [ε, 3]×[ε, 4], Fig.3 depicts the approximation error of residual functions with economized Chebyshev polynomials in Region 1 with 3×4=12 subdomains. It can be obviously concluded that accuracy of all the evaluating points with differentXandYcan reach at least 6D accuracy. Now taking the subdomain [ε, 1]×[ε, 1] of Region 1 as an example to explain how the polynomials coefficients are used in the approximation. The used coefficient is illustrated in Tab.1,with three kinds of numbers,which are the normal ones,three bold forn2=5,and one italic forn1=6(the null cell stands for the zero value of coefficients when the magnitudes of them are smaller than 10-9). The normal plus the three bold is adopted for the approximation off,whereas the normal plus the one italic is forfX.Although the precision loss is inherent in numerical differentiation, we observe that the required number of coefficients forfis actually two more than that forfXin order to guarantee the same precision of 6D. Certainly opposite case will happen in other subdomains. All in all, coefficients for approximations offandfXis derived from the same coefficient matrix like Tab.1, which is completely different from Wang[12].

    Fig.3 Evaluation error of residual functions on[ε,3]×[ε,4]based on Chebyshev polynomials

    Tab.1 Coefficients for the approximation of f and fX in subdomain ε≤X≤1 and ε≤Y≤1

    2.2 Numerical comparison of a real ship with HydroStar

    To demonstrate the above developments, numerical computations have been performed for a very large container vessel with length/width/draft=380/52.4/16.0 in meter. Three different discretization of M1, M2, M3 composed of 1 507, 3 015, 8 910 individual panels on the wetted hull (see Fig.4) are used for comparison. The sailing speed is assumed to be 5 knots. The famous subroutine rdf.exe of HydroStar Version 7.3 (2016) is adopted for comparison,which is also for radiation and diffraction computation.

    Fig.4 Different discretization on the same wetted hull

    In this section, the accuracy and efficiency of the codes are validated.The nondimensional added-mass of surgeA11, heaveA33, and pitchA55and damping coefficients of surgeB11, heaveB33, and pitchB55are illustrated in the Fig.5. It is observed that for both small and large values of wave frequency,agreement between these two methods is fairly well.

    Fig.5 Accuracy comparisons of hydrodynamic coefficients with 29 wave frequencies from 0.1 to 1.5 rad/s and one heading angle 180°(ρ is density of sea water,V is displacement,L is ship length)

    From consumed times of 30 regular waves as presented in Tab.2,we can find that the efficiency in this paper is almost equal to that of HydroStar, with 2.5 percent higher efficiency for M1 and about 3 percent lower efficiency for both M2 and M3. For instance, the consumed time of one single regular wave for M2 is only 121/30≈4.03 seconds.

    Tab.2 Efficiency comparison within 30 regular waves composed of 3 heading angles(0°, 90°, 180°) and 10 wave frequencies (0.1~1.9 rad/s with step 0.2)

    3 Summary

    In this paper, new research of efficient algorithm for free-surface Green function in frequency domain is presented in detail. This algorithm can yield results with adequate accuracy to the practical application,and can achieve almost the same efficiency as the famous hydrodynamic code HydroStar. Furthermore, considering the increasing number of cores in CPU as the relevant technology advances, another effective solution to reduce computational time is to adopt high-performance computers alongside code parallelization, which will be the objective for our next phase of work.

    国产精品一区www在线观看| 亚洲综合色惰| 成年女人看的毛片在线观看| 不卡视频在线观看欧美| 亚洲欧美日韩高清在线视频| 精品午夜福利视频在线观看一区| 国产精品嫩草影院av在线观看| 成人午夜高清在线视频| 国产成人福利小说| 一进一出好大好爽视频| 亚洲成人中文字幕在线播放| 欧美一区二区精品小视频在线| 在线a可以看的网站| 日韩,欧美,国产一区二区三区 | 成人av一区二区三区在线看| 日韩精品中文字幕看吧| 中文资源天堂在线| 乱码一卡2卡4卡精品| 国产单亲对白刺激| 非洲黑人性xxxx精品又粗又长| 亚洲精品久久国产高清桃花| 欧美激情在线99| 日本免费a在线| 丰满乱子伦码专区| 床上黄色一级片| 日韩三级伦理在线观看| 久久婷婷人人爽人人干人人爱| 欧美bdsm另类| 精品人妻视频免费看| 婷婷精品国产亚洲av在线| 寂寞人妻少妇视频99o| 国产老妇女一区| 国产精品1区2区在线观看.| 精品少妇黑人巨大在线播放 | АⅤ资源中文在线天堂| 亚洲自偷自拍三级| 99热网站在线观看| 男女下面进入的视频免费午夜| 亚洲欧美日韩无卡精品| 日日啪夜夜撸| 嫩草影视91久久| 国产午夜福利久久久久久| av福利片在线观看| 国产毛片a区久久久久| 久久精品国产亚洲av涩爱 | 国产欧美日韩精品一区二区| 日韩欧美国产在线观看| av黄色大香蕉| 99热这里只有精品一区| 成熟少妇高潮喷水视频| 特大巨黑吊av在线直播| 一级av片app| 久久久久性生活片| 日本黄色片子视频| 美女高潮的动态| 成年免费大片在线观看| 又爽又黄无遮挡网站| 欧美3d第一页| 97超级碰碰碰精品色视频在线观看| 九九热线精品视视频播放| 亚洲三级黄色毛片| 国产日本99.免费观看| 久99久视频精品免费| 在线免费十八禁| 久久九九热精品免费| 97热精品久久久久久| 丝袜美腿在线中文| 嫩草影院新地址| 超碰av人人做人人爽久久| 听说在线观看完整版免费高清| 狂野欧美激情性xxxx在线观看| 十八禁网站免费在线| 亚洲av.av天堂| 国产精品一及| 在线免费观看的www视频| 亚洲18禁久久av| 黑人高潮一二区| 国产男人的电影天堂91| 十八禁网站免费在线| 国产一区二区激情短视频| 久久人人爽人人爽人人片va| 亚洲精品粉嫩美女一区| 精品久久国产蜜桃| 亚洲精品粉嫩美女一区| 色综合站精品国产| 成人漫画全彩无遮挡| 99九九线精品视频在线观看视频| 91久久精品国产一区二区三区| 狂野欧美激情性xxxx在线观看| 听说在线观看完整版免费高清| 18禁在线播放成人免费| 亚洲性夜色夜夜综合| 18禁在线播放成人免费| av在线播放精品| 美女内射精品一级片tv| 成人无遮挡网站| 美女cb高潮喷水在线观看| 日韩亚洲欧美综合| 亚洲国产色片| 国产黄色视频一区二区在线观看 | 免费无遮挡裸体视频| 国产白丝娇喘喷水9色精品| 插逼视频在线观看| 99久久久亚洲精品蜜臀av| 欧美+亚洲+日韩+国产| 人人妻人人澡欧美一区二区| 亚洲精品日韩av片在线观看| 欧美日韩在线观看h| 黄片wwwwww| 久久亚洲精品不卡| 亚洲一级一片aⅴ在线观看| 天堂动漫精品| 国产黄a三级三级三级人| 国产一区二区三区在线臀色熟女| 日韩欧美免费精品| 久久韩国三级中文字幕| 国产精华一区二区三区| 中文字幕精品亚洲无线码一区| 久久99热6这里只有精品| 色av中文字幕| 观看免费一级毛片| 看黄色毛片网站| 欧美绝顶高潮抽搐喷水| 国产毛片a区久久久久| 亚洲中文字幕日韩| 久久久久久九九精品二区国产| 午夜福利在线在线| 18禁黄网站禁片免费观看直播| 精品国产三级普通话版| 国产精品免费一区二区三区在线| 波多野结衣高清作品| 日韩强制内射视频| 欧美激情在线99| 禁无遮挡网站| 男女视频在线观看网站免费| 一本久久中文字幕| 国产人妻一区二区三区在| 国产视频内射| 国产91av在线免费观看| 久久久a久久爽久久v久久| 免费人成在线观看视频色| 国产亚洲精品综合一区在线观看| 搞女人的毛片| 三级男女做爰猛烈吃奶摸视频| 国产一级毛片七仙女欲春2| 日韩av不卡免费在线播放| 大型黄色视频在线免费观看| 日产精品乱码卡一卡2卡三| 91av网一区二区| 国产伦精品一区二区三区视频9| 国产成人91sexporn| 天堂动漫精品| 日韩欧美免费精品| 亚洲精品久久国产高清桃花| 人妻少妇偷人精品九色| 又爽又黄无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 日韩大尺度精品在线看网址| 日韩在线高清观看一区二区三区| 日韩,欧美,国产一区二区三区 | 一区二区三区四区激情视频 | 成人午夜高清在线视频| 一本久久中文字幕| 99热6这里只有精品| 亚洲av不卡在线观看| 一本精品99久久精品77| 亚洲中文日韩欧美视频| 99久久九九国产精品国产免费| 麻豆久久精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 一a级毛片在线观看| 日韩欧美三级三区| 淫秽高清视频在线观看| 亚洲国产精品成人综合色| 国产亚洲精品久久久com| 亚洲一区高清亚洲精品| 久久久久精品国产欧美久久久| 国产精品野战在线观看| 一个人看视频在线观看www免费| 欧美日韩综合久久久久久| 欧美+亚洲+日韩+国产| 一区福利在线观看| 99热只有精品国产| 噜噜噜噜噜久久久久久91| 欧美成人a在线观看| 一进一出抽搐动态| 九九爱精品视频在线观看| 淫妇啪啪啪对白视频| 欧美日本视频| 在线观看免费视频日本深夜| 日韩精品青青久久久久久| 国内揄拍国产精品人妻在线| 麻豆国产97在线/欧美| 美女xxoo啪啪120秒动态图| 国产精品久久久久久av不卡| 日本欧美国产在线视频| 性欧美人与动物交配| 精品一区二区三区av网在线观看| 国产伦在线观看视频一区| 国产熟女欧美一区二区| 99国产极品粉嫩在线观看| 一进一出好大好爽视频| or卡值多少钱| 男插女下体视频免费在线播放| 亚洲成a人片在线一区二区| 老女人水多毛片| 久久精品国产亚洲av涩爱 | 国产老妇女一区| 日韩人妻高清精品专区| 久久婷婷人人爽人人干人人爱| 亚洲国产欧美人成| 六月丁香七月| 色视频www国产| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品合色在线| 成年女人看的毛片在线观看| 欧美日韩精品成人综合77777| 国产国拍精品亚洲av在线观看| 天美传媒精品一区二区| 精品人妻熟女av久视频| 国产乱人偷精品视频| 联通29元200g的流量卡| 国产探花极品一区二区| 国产爱豆传媒在线观看| 搡女人真爽免费视频火全软件 | 99在线视频只有这里精品首页| 亚洲精品456在线播放app| 青春草视频在线免费观看| 网址你懂的国产日韩在线| 久久热精品热| www.色视频.com| 国产黄色小视频在线观看| 亚洲四区av| 日本在线视频免费播放| 日韩欧美在线乱码| 久久精品91蜜桃| 国产不卡一卡二| 久久久久久久午夜电影| 国产精品久久视频播放| 男人狂女人下面高潮的视频| 国产精品电影一区二区三区| 欧美高清成人免费视频www| 99国产极品粉嫩在线观看| 我的女老师完整版在线观看| 观看美女的网站| 乱系列少妇在线播放| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区免费观看 | 亚洲精品一卡2卡三卡4卡5卡| 久久久久久九九精品二区国产| 国产伦精品一区二区三区视频9| 一级毛片久久久久久久久女| 国产淫片久久久久久久久| 直男gayav资源| 日韩成人伦理影院| 变态另类成人亚洲欧美熟女| 欧美日韩在线观看h| 亚洲精品粉嫩美女一区| 性色avwww在线观看| 女的被弄到高潮叫床怎么办| 免费av观看视频| 欧美一区二区精品小视频在线| 草草在线视频免费看| 亚洲av熟女| 国产麻豆成人av免费视频| 国产在线精品亚洲第一网站| 波野结衣二区三区在线| 午夜影院日韩av| 亚洲一级一片aⅴ在线观看| 丝袜美腿在线中文| 亚洲精品456在线播放app| 国产探花在线观看一区二区| 你懂的网址亚洲精品在线观看 | 免费观看的影片在线观看| 中出人妻视频一区二区| 国产av麻豆久久久久久久| .国产精品久久| 美女大奶头视频| 俄罗斯特黄特色一大片| 麻豆国产av国片精品| 国产成人a区在线观看| .国产精品久久| 精品久久久久久久久亚洲| 国产精品女同一区二区软件| 久久久国产成人免费| 久久久a久久爽久久v久久| 人人妻人人澡人人爽人人夜夜 | 日韩成人伦理影院| 国产三级中文精品| 久久精品影院6| 禁无遮挡网站| 一本精品99久久精品77| 三级男女做爰猛烈吃奶摸视频| 亚洲精品成人久久久久久| 久久综合国产亚洲精品| 99热全是精品| 美女被艹到高潮喷水动态| 三级国产精品欧美在线观看| 国产私拍福利视频在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲av电影不卡..在线观看| 日韩,欧美,国产一区二区三区 | 国产日本99.免费观看| 赤兔流量卡办理| 永久网站在线| 久久久成人免费电影| 一区二区三区四区激情视频 | 欧美色视频一区免费| 91精品国产九色| 久久久欧美国产精品| 亚洲激情五月婷婷啪啪| 日本精品一区二区三区蜜桃| 午夜精品在线福利| 国产高清三级在线| av在线亚洲专区| 欧美日韩一区二区视频在线观看视频在线 | 一个人看视频在线观看www免费| 国产真实伦视频高清在线观看| 激情 狠狠 欧美| 午夜激情欧美在线| 中文字幕av在线有码专区| 久久欧美精品欧美久久欧美| 亚洲无线在线观看| 国产真实乱freesex| 欧美最黄视频在线播放免费| 波多野结衣高清无吗| 亚洲精品粉嫩美女一区| 亚洲国产色片| 啦啦啦韩国在线观看视频| 免费在线观看影片大全网站| 有码 亚洲区| 亚洲欧美日韩高清专用| 天堂影院成人在线观看| 色综合色国产| 日韩精品有码人妻一区| 少妇猛男粗大的猛烈进出视频 | 美女免费视频网站| 校园人妻丝袜中文字幕| 成年av动漫网址| 日本成人三级电影网站| 91麻豆精品激情在线观看国产| 18禁裸乳无遮挡免费网站照片| 别揉我奶头 嗯啊视频| 欧美日韩综合久久久久久| 99热网站在线观看| 99久久无色码亚洲精品果冻| 欧美极品一区二区三区四区| 国产黄片美女视频| 日日撸夜夜添| 午夜精品在线福利| 99久久精品一区二区三区| 国产在线精品亚洲第一网站| 寂寞人妻少妇视频99o| 久久久精品94久久精品| 国产成人a∨麻豆精品| 国产大屁股一区二区在线视频| 夜夜看夜夜爽夜夜摸| 99热只有精品国产| 亚洲成人久久爱视频| 丝袜喷水一区| 日本黄色视频三级网站网址| 国产精品一区二区三区四区久久| 亚洲国产精品成人久久小说 | 黄色欧美视频在线观看| 亚洲成人久久性| 欧美一区二区国产精品久久精品| 久久人人爽人人片av| 欧美激情国产日韩精品一区| 色噜噜av男人的天堂激情| 成人无遮挡网站| 中文字幕久久专区| 欧美又色又爽又黄视频| 男女之事视频高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品1区2区在线观看.| 国产高清视频在线观看网站| 人妻少妇偷人精品九色| 久久久久免费精品人妻一区二区| 国产不卡一卡二| 亚洲va在线va天堂va国产| 联通29元200g的流量卡| 国产三级中文精品| 日韩成人av中文字幕在线观看 | 精品人妻偷拍中文字幕| 人人妻人人澡欧美一区二区| 国产高清有码在线观看视频| 久久精品国产亚洲av天美| 99热这里只有是精品50| av在线蜜桃| 亚洲熟妇中文字幕五十中出| 欧美精品国产亚洲| 一个人观看的视频www高清免费观看| 真实男女啪啪啪动态图| ponron亚洲| АⅤ资源中文在线天堂| 18禁在线无遮挡免费观看视频 | 久久久久国产精品人妻aⅴ院| 国产精品久久久久久精品电影| 综合色丁香网| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 国产乱人视频| 91在线精品国自产拍蜜月| 狂野欧美白嫩少妇大欣赏| 成人亚洲精品av一区二区| 中文字幕av在线有码专区| 又粗又爽又猛毛片免费看| 观看美女的网站| 国产av一区在线观看免费| 免费在线观看影片大全网站| 综合色丁香网| 又黄又爽又刺激的免费视频.| 人人妻,人人澡人人爽秒播| 一级毛片电影观看 | 69人妻影院| 日本撒尿小便嘘嘘汇集6| 成人欧美大片| 久久欧美精品欧美久久欧美| 久久久精品94久久精品| 精品久久久久久久末码| 真实男女啪啪啪动态图| 寂寞人妻少妇视频99o| 欧美性猛交╳xxx乱大交人| 久久久国产成人免费| 成人一区二区视频在线观看| ponron亚洲| 有码 亚洲区| 成人无遮挡网站| 波多野结衣巨乳人妻| 欧美一区二区精品小视频在线| 一个人免费在线观看电影| 最新在线观看一区二区三区| 国产精品野战在线观看| 国产真实伦视频高清在线观看| 狂野欧美激情性xxxx在线观看| 99热这里只有精品一区| 人妻制服诱惑在线中文字幕| 美女免费视频网站| 亚洲精品久久国产高清桃花| 国内久久婷婷六月综合欲色啪| 国产乱人视频| 色哟哟·www| 精品久久久久久成人av| 亚洲最大成人中文| 99国产极品粉嫩在线观看| 精品免费久久久久久久清纯| 久久99热6这里只有精品| 免费一级毛片在线播放高清视频| 亚洲成人av在线免费| 亚洲va在线va天堂va国产| 免费看av在线观看网站| 尾随美女入室| 国产av在哪里看| 精品久久久久久久末码| 天堂影院成人在线观看| 又粗又爽又猛毛片免费看| 久久久久久大精品| 国产日本99.免费观看| 免费av不卡在线播放| 亚洲一级一片aⅴ在线观看| 亚洲国产精品成人久久小说 | 午夜免费激情av| 欧美日本视频| 亚洲美女黄片视频| 最近视频中文字幕2019在线8| 亚洲美女搞黄在线观看 | 色播亚洲综合网| 成熟少妇高潮喷水视频| av福利片在线观看| 久久久久久久久大av| 亚洲最大成人手机在线| 国产精品乱码一区二三区的特点| 亚洲国产精品sss在线观看| 亚洲最大成人手机在线| 可以在线观看毛片的网站| 亚洲美女视频黄频| 99riav亚洲国产免费| av在线亚洲专区| 最新中文字幕久久久久| 亚洲av熟女| 亚洲中文日韩欧美视频| 亚洲美女黄片视频| 日本欧美国产在线视频| 欧美一级a爱片免费观看看| 国产爱豆传媒在线观看| 午夜老司机福利剧场| 国产av麻豆久久久久久久| 久久这里只有精品中国| 俺也久久电影网| 日韩国内少妇激情av| 精品国产三级普通话版| 非洲黑人性xxxx精品又粗又长| 久久亚洲国产成人精品v| 精华霜和精华液先用哪个| 成人av在线播放网站| 欧美日韩国产亚洲二区| 国产黄a三级三级三级人| 韩国av在线不卡| 熟女电影av网| 亚洲精品粉嫩美女一区| 女人被狂操c到高潮| 91狼人影院| av.在线天堂| 一个人观看的视频www高清免费观看| av专区在线播放| 国产精品免费一区二区三区在线| 特大巨黑吊av在线直播| 日韩av不卡免费在线播放| 欧美日韩乱码在线| 亚洲中文日韩欧美视频| 国产不卡一卡二| 成年免费大片在线观看| 日韩国内少妇激情av| 国产精品三级大全| 欧美丝袜亚洲另类| 黄色一级大片看看| 国产精品av视频在线免费观看| videossex国产| 亚洲国产精品合色在线| 亚洲国产欧洲综合997久久,| 国产久久久一区二区三区| 麻豆久久精品国产亚洲av| 18禁在线无遮挡免费观看视频 | 日本一本二区三区精品| 欧美日韩精品成人综合77777| 亚洲精品久久国产高清桃花| 特级一级黄色大片| 97超视频在线观看视频| 欧美丝袜亚洲另类| 婷婷精品国产亚洲av| 久久久久久久久久黄片| 午夜精品国产一区二区电影 | 久久精品国产鲁丝片午夜精品| 久久这里只有精品中国| 精品久久久久久久末码| 大香蕉久久网| 精品一区二区免费观看| 国产欧美日韩一区二区精品| 日本成人三级电影网站| 18禁在线播放成人免费| a级一级毛片免费在线观看| 日韩精品有码人妻一区| 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 夜夜爽天天搞| 如何舔出高潮| 插逼视频在线观看| 久久久久久大精品| 精品日产1卡2卡| 婷婷精品国产亚洲av在线| 日韩av在线大香蕉| 久久久久久久久久成人| 国产男人的电影天堂91| 乱系列少妇在线播放| 一个人看视频在线观看www免费| 亚州av有码| 国产综合懂色| 中文字幕av成人在线电影| 日本欧美国产在线视频| 亚洲无线观看免费| 色综合站精品国产| 欧美高清性xxxxhd video| 你懂的网址亚洲精品在线观看 | 久久久精品94久久精品| 啦啦啦韩国在线观看视频| 美女大奶头视频| 干丝袜人妻中文字幕| 九九在线视频观看精品| 91av网一区二区| 国产片特级美女逼逼视频| 精品一区二区三区视频在线观看免费| 欧美日韩乱码在线| 国产午夜精品论理片| 99久久中文字幕三级久久日本| 一级黄片播放器| 看十八女毛片水多多多| 精品乱码久久久久久99久播| 最近最新中文字幕大全电影3| 国产三级中文精品| 简卡轻食公司| 99久久九九国产精品国产免费| 搡老妇女老女人老熟妇| 午夜精品一区二区三区免费看| 我的女老师完整版在线观看| 成人鲁丝片一二三区免费| 亚洲精品日韩在线中文字幕 | 99久久精品热视频| 一级黄片播放器| 欧美+亚洲+日韩+国产| 插阴视频在线观看视频| 夜夜看夜夜爽夜夜摸| 欧美日韩乱码在线| 搞女人的毛片| 亚洲自偷自拍三级| 亚洲在线观看片| 精品国产三级普通话版| 99热6这里只有精品| 欧美潮喷喷水| 久久久久久伊人网av| 久久人妻av系列| 亚洲美女黄片视频| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 热99re8久久精品国产| 国产老妇女一区| 日本一二三区视频观看| 国产免费男女视频| 少妇裸体淫交视频免费看高清| 国产探花在线观看一区二区| 国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式| 婷婷六月久久综合丁香| 99热这里只有是精品在线观看| 亚洲乱码一区二区免费版| 久99久视频精品免费|