• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Numerical Simulation for Flexible Pipes Carcass Wet Collapse

    2019-12-30 06:45:52-,-,-
    船舶力學 2019年12期

    -,-,-

    (Naval Architecture and Ocean Engineering R&D Center of Guangdong Province,South China University of Technology,Guangzhou 510641,China)

    Abstract:As a typical failure mode of flexible pipes,it is essential to investigate the carcass collapse.Considering the influence of an inner sheath layer, the carcass wet collapse finite element model with an inner sheath layer was created in this paper.Nonlinear numerical simulation of collapse behavior is carried out based on the arc-length method. The influence of the initial ovality, contact nonlinearity and material nonlinearity on carcass collapse characteristics is systemically investigated. Moreover,the results were also compared with those of the pure carcass collapse model without an inner sheath layer under the same condition. The research results indicate that the critical collapse load decreases with the increase of initial ovality,which shows a negative correlation.It will have a great influence on the critical collapse load considering the contact nonlinearity and material nonlinearity. And the specific performance is that the critical collapse load will increase with the increase of frictional coefficient and the yield stress of material, which shows a positive correlation. The critical collapse load increases slightly considering the influence of inner sheath layer,which shows that the inner sheath layer plays a role on bearing the external pressure,but has little influence on the carcass critical collapse load.

    Key words:flexible pipe;carcass;collapse failure;nonlinear numerical simulation

    0 Introduction

    Flexible pipes have been widely applied in the marine oil and gas field due to their superior mechanical properties and convenience in transportation and installation. The structure of flexible pipes is complex since they are composed of many metal layers and polymer layers,each of which has their own function. Carcass, the innermost layer of flexible pipes, is used to bear the outer pressure and prevent the collapse failure. The collapse can be classified into the wet-collapse and dry-collapse. In the wet-collapse, it is assumed that when the outer sheath layer is damaged, the water will enter the annulus area, and inner sheath layer and carcass will bear all outer pressure. Thus the wet-collapse is a more dangerous failure condition compared with the dry-collapse.Therefore,the investigation of the carcass wet collapse is of great significance.

    Some scholars studied the collapse behavior of flexible pipes and also obtained some important results. As for the analytical calculation, most scholars assume that the cross section of the flexible pipes is equivalent to a homogeneous cylinder, and then solve the critical collapse load based on the Timoshenko elastic stability theory[1]. Generally, there are four equivalent methods used at present. Zhang et al[2]made use of cross section area equal method to simplify the carcass to a homogeneous cylinder and then get the critical collapse load. de Sousa et al[3]took unit area bending stiffness equal method and assumed that the unit area bending stiffness is equal between the initial model and equivalent model. Neto et al[4]took the same bending stiffness equal method, but assumed that the bending stiffness of unit axial length is equal between the initial carcass and equivalent cylinder. In addition, Tang et al[5]proposed the strain energy equivalent method to transform a Representative Volume Element (RVE) of the carcass layer into a homogeneous shell with an equivalent thickness. Although the theoretical methods are easy to operate, the simulation results by different equivalent methods differ significantly.On the other hand, only the critical collapse load under ideal condition can be obtained by the analytical method, because the method cannot take into account the influence of carcass geometric defects, contact conditions and material nonlinearity. Thus some of scholars used some numerical analysis tools to analyze the carcass collapse. Neto et al modeled two carcass collapse finite element models, the carcass lay angle was considered respectively and ignored in the two models. The results show that the carcass lay angle has little influence on the critical collapse load and the theoretical methods cannot accurately predict the critical collapse load[6]either. The similar conclusions were also drawn by Cooke[7]. Nogueia et al presented a simplified numerical model based on beam element. Although it is convenient for calculation, the result is inaccurate due to the hypothetical restriction of element itself[8].Loureiro Jr and Pasqualino[9]evaluated the collapse behaviors of flexible pipes under combined bending and external pressure,and thought it was more practical with respect to collapse under curved pipes.Tang et al[10]ignored the carcass lay angle and established the quarter carcass finite element model based on ANSYS software. It is concluded that the pipe initial ovality and materials elasticplasticity will have a great impact on the critical collapse load. However, the effect of inner sheath layer on collapse characteristics is not considered.

    Due to the fact that the theoretical method cannot consider the influence of carcass geometric defects,contact conditions and material nonlinearity,the finite element numerical analysis method is adopted in the paper and the carcass collapse numerical model is created by ABAQUS software. Since the FE models in the literature contain only carcasses, the influence of an inner sheath layer is taken into account in this paper and the collapse model is built with the carcass and inner sheath layer included.Based on the created FE models,the nonlinear numerical simulation for flexible pipes carcass collapse was done and the influence of the initial ovality, contact nonlinearity and material nonlinearity on the carcass collapse characteristics is investigated. Moreover, the results are also compared with those of the carcass collapse model without an inner sheath layer.

    1 Pipeline collapse theory

    The theoretical method for solving the pipeline critical collapse load is mainly based on the classical Timoshenko elastic stability theory[1].Timoshenko analyzed the elastic collapse instability of the annulus structure in detail in his work. And he assumed that the radial deflection is small deformation and the tangential direction of the thin rod is neglected in the derivation process.

    whereωis the deflection of a circular ring,θis the circular angle,Mis the moment on the circular section,EIis the bending stiffness on the circular section, andRis the ring curvature radius.

    Assuming that the plane ring is subjected to uniform external pressureq, the analytic solution of the elastic instability can be obtained based on Eq.(1).As shown in Fig.1,assuming that there is initial maximum radial deflectionω1, thus the initial displacement at the other section of the ring can be expressed asωi=ω1cos(2θ). The radial displacement is recorded asωunder the uniform outer pressureq, thus the bending moment at any cross section can be expressed as:

    Fig.1 Schematic diagram of plane ring with initial imperfection

    Substituting Eq.(2)into Eq.(1),the following is reached

    Based on the boundary continuous conditions of differential equation at the points A, B, C and D,the analytical solution of Eq.(3)can be obtained.

    Eq.(4) is just the analytical expression for the radial displacement of a plane ring elastic buckling under uniform external pressure.qcris the first-order critical collapse load of a plane ring.

    For the case of rectangular ring cross section,the bending stiffness can be further expanded and the critical collapse load formula can be obtained.

    wheretis the thickness of the plane ring.

    Tab.1 Equivalent thickness calculating methods

    The real carcass cross section is complex.As a result,the key point is how to get the equivalent thickness of carcass cross section in order to use Eq.(6) for solving the critical collapse load.It is mentioned above that there are four main thickness equivalent methods.These equivalent thickness calculating methods are shown in Tab.1. It should be noted that although there are the four main thickness equivalent analytic methods,the consistent conclusion for the accuracy of different methods was not obtained. Moreover, the analytic method cannot take into account the influence of carcass geometric defects,contact conditions and material nonlinearity.

    2 Collapse numerical model

    The disadvantage of the theoretical method in evaluation of the collapse behavior mentioned above is that the influence of contact nonlinearity and material nonlinearity is ignored.Thus the finite element tool is chosen to simulate the carcass collapse in the paper.

    2.1 Geometric parameters and material properties

    Based on the model set-up in Ref.[6], the numerical collapse model having the carcass and inner sheath layer is established. Fig.2 shows the carcass cross section shape. Tab.2 and Tab.3 show the detailed carcass geometric and material parameters, respectively. The inner sheath layer geometric and material parameters are shown in the Tab.4.

    The carcass lay angle has little influence on the critical collapse value under uniform external pressure[6-7].Therefore,the carcass lay angle is not considered in the model creation.Considering the symmetry of structure at the same time, the 2-pitch quarter carcass collapse numerical model was established as shown in Fig.3.

    Fig.2 Carcass cross section shape

    Tab.2 Carcass cross section parameters

    Tab.3 Carcass geometric and material parameters

    Tab.4 Inner sheath layer geometric and material parameters

    Fig.3 Carcass collapse finite element model

    Fig.4 Diagram of boundary condition and load

    2.2 Boundary condition and load

    Fig.4 shows the scheme of model boundary condition and load. The displacement ofXdirection is limited atX=0 and the displacement ofYdirection is limited atY=0. At the same time,a node freedom degree at the end is restricted in theZdirection in order to avoid axial displacement of rigid body. As for the load application, the outer pressure directly exerts on the outer surface of the inner sheath layer.

    2.3 Contact and nodes coupling

    The red lines in Fig.5 denote the contact position of the carcass with respect to inner sheath layer and the adjacent surfaces of carcass.The carcass collapse behavior under different contact conditions was analyzed in the paper, including bonded contact, surface to surface frictional contact and frictionless contact.The detailed analysis results are reported in Section 3.2.

    Fig.5 Contact between layers and nodes coupling

    Some nodes need to be coupled in order to set up the cyclic symmetric boundary conditions and ensure the same pitch. Four groups of coupling nodes, A1-A2, B1-B2, C1-C2 and D1-D2, were arranged as shown in the Fig.5. The equation coupling method in ABAQUS was chosen to ensure equal freedom degree inX,YandZdirections.

    3 Results and discussion

    3.1 Eigenvalue buckling analysis

    The carcass eigenvalue buckling analysis is firstly carried out without considering the initial ovality defect and material nonlinearity to obtain the critical collapse load. The load is regarded as the input value of the external pressure load for the next nonlinear buckling analysis. The first order eigenvalue buckling results are focus at present. Thus the eigenvalue extraction number is set as 1 and the calculated first order eigenvalue is 67.137. The eigenvalue of 67.137 means that the carcass critical collapse load under the eigenvalue buckling analysis is 67.137 MPa.The carcass first-order eigenvalue buckling mode is shown in the Fig.6.It can be seen that the carcass first buckling mode is elliptical.

    Fig.6 Carcass first order eigenvalue buckling mode

    3.2 Nonlinear buckling analysis

    Based on the eigenvalue buckling analysis results, the arc length method is used to analyze the carcass nonlinear buckling characteristic by considering the large deformation and nonlinear options. The load-displacement curves under different conditions are obtained, among which the ordinateUis the displacement and the coordinate LPF is just the load proportionality factor.It can be found that the displacement changes very little with the outer pressure increasing at the initial stage of the curves. With the increase of outer pressure, the carcass buckling failure occurs, where a small load increment will cause a large displacement change. Thus the corresponding transverse coordinate value right now can be set as the critical collapse load.

    3.2.1 Collapse characteristics under different initial ovality

    The real carcass usually has a certain initial ovality due to the influence of manufacturing error and the radial compression in the pipeline installation process. Thus it is necessary to study the effect of this geometric defect on the carcass collapse characteristics.

    The formula for calculating ovality defined by API(American Petroleum Institute)is[12]:

    whereDmaxandDminrepresent the maximum and minimum inner diameter,respectively.

    The carcass collapse characteristics under the initial ovality of 0.2%, 1%, 2% and 3%were analyzed in this paper, of which 0.2% is the default initial ovality from the specifications of API Recommended Practice for Flexible Pipe[12]. The contacts between layers and between strips are set as bonded and the material is regarded to be linearly elastic. The application of initial defect ellipticity is based on the deformation of eigenvalue buckling analysis, and the modal scaling factor is adjusted in the Risk analysis.The initial ovality is applied by changing the modal scaling factor in the Risk analysis of ABAQUS based on the deformation results of eigenvalue buckling analysis. Fig. 7 shows the collapse curves (load-displacement curves) under different initial ovalities. Tab.5 shows the critical collapse values under different initial ovalities according to Fig.7. It can be found that the carcass critical collapse load shows small amplitude reduction with the increase of the initial ovality.

    Tab.5 Critical collapse values under different initial ovalities

    3.2.2 Collapse characteristics under contact condition

    Fig.7 Load-displacement curves under different initial ovalities

    Fig.8 Load-displacement curves under different contact conditions

    Based on the analysis results above,with the initial ovality set as 2%,the carcass collapse characteristics under different contact conditions were analyzed. Three kinds of contact conditions including bonded contact,frictional contact and frictionless contact were considered to analyze the impact of contact nonlinearity on the carcass collapse behavior.The contact tangential behavior was simulated by Coulomb friction model with the frictional contact and the friction coefficient set respectively at 0.1 to 0.5. Fig.8 shows the collapse curves (load-displacement curves)under different contact conditions.Tab.6 shows the critical collapse values under different contact conditions according to Fig.8.It can be found that the carcass critical collapse value reduces greatly considering the contact nonlinearity, and the carcass critical collapse value increases with the increase of the friction coefficient.

    Tab.6 Critical collapse values under different contact conditions

    3.2.3 Collapse characteristics considering the material nonlinearity

    The materials of carcass and inner sheath layer above were considered to be in the linear elastic stage.But the real carcass and inner sheath layer would have obvious elastoplastic deformation under the real working state,which may have a pronounced influence on the carcass collapse behavior.Thus it is necessary to investigate the collapse characteristics under the material elastoplastic condition. The carcass material stress-strain relationship is described by the Ramberg-Osgood equation with the yield stress set to be 320 MPa and 420 MPa, respectively[11].The carcass material stress-strain curve is shown in Fig.9.For the internal sheath layer,a multi-linear elastic material model was selected, Fig.10 shows the material stress-strain curve of internal sheath layer.

    Ramberg-Osgood equation:whereεis the strain,σis the stress,Eis the modulus of elasticity,σyis the yield stress,c1andc2are 3/7 and 10,respectively.

    Fig.9 Carcass material stress-strain curves

    Fig.10 Inner sheath layer material stress-strain curve

    The initial ovality was set as 2% and the contact condition was set as frictional contact with a frictional coefficient of 0.2.Then the carcass collapse characteristics considering the material nonlinearity were analyzed. Fig. 11 shows the collapse curves (load-displacement curves) considering the material nonlinearity. Tab. 7 shows the critical collapse values considering the material nonlinearity according to Fig.10. It can be found that the carcass critical collapse value reduces greatly considering the material nonlinearity. Moreover,the carcass critical collapse value increases with the increase of the yield stress.

    Fig.11 Load-displacement curves considering the material nonlinearity

    Tab.7 Critical collapse values considering the material nonlinearity

    4 Comparative analysis between models with and without an inner sheath layer

    To investigate the function of an inner sheath layer for bearing the outer collapse load, the carcass collapse model without an inner sheath layer (Model I)was created to compare with the model with an inner sheath layer (Model II). The collapse characteristics under three kinds of conditions between the two models were analyzed and the collapse curves (load-displacement curves) are shown in the Fig.12. It can be found that the critical collapse values slightly increase considering the influence of the inner sheath layer,which indicates that the inner sheath layer plays a role on bearing the outer collapse load, but it has little influence on solving the carcass critical collapse value.

    Fig.12 Comparison of collapse curves between Model I and Model II under different conditions

    5 Conclusions

    The carcass wet collapse model including an inner sheath layer was modeled in this paper,and the influence of the initial ovality,contact nonlinearity and material nonlinearity on the carcass collapse characteristics was also considered separately.Moreover,the comparison between the model with an inner sheath layer and the pure carcass model without an inner sheath layer was carried out.The following conclusions are reached:

    (1) The initial ovality will reduce the collapse resistance of the pipeline, thus the carcass initial ovality should be limited as much as possible during the manufacturing and installation process.

    (2) The contact condition and material nonlinearity have a great influence on the carcass critical collapse load, which should be taken into consideration in pipeline design process. The specific performance is that the critical collapse load decreases greatly when considering the friction contact and the material elastic-plastic.The critical collapse load increases with the increase of the friction coefficient and the critical collapse load also increases with the increase of the yield stress.

    (3) The critical collapse load increases slightly considering the influence of an inner sheath layer, which shows that the inner sheath layer plays a role on bearing the outer collapse load,but it has little influence on the carcass critical collapse load.

    精品一区二区三区视频在线| 免费无遮挡裸体视频| 国产精品久久久久久久电影| 99国产极品粉嫩在线观看| .国产精品久久| 一进一出抽搐动态| 日韩精品青青久久久久久| 插阴视频在线观看视频| 日韩精品中文字幕看吧| 日本欧美国产在线视频| 亚洲国产精品sss在线观看| а√天堂www在线а√下载| 黄色配什么色好看| 成人午夜高清在线视频| 小说图片视频综合网站| 国产高清三级在线| 高清毛片免费观看视频网站| 看黄色毛片网站| 成人特级av手机在线观看| 久久久久久久久久成人| 岛国在线免费视频观看| 3wmmmm亚洲av在线观看| 亚洲精品久久国产高清桃花| 日韩人妻高清精品专区| 精品午夜福利视频在线观看一区| 日韩欧美三级三区| 在线天堂最新版资源| 黄色欧美视频在线观看| 国产精品,欧美在线| 精品无人区乱码1区二区| 国产高清激情床上av| 可以在线观看毛片的网站| 一个人观看的视频www高清免费观看| www日本黄色视频网| 欧美成人一区二区免费高清观看| 日韩欧美精品v在线| 精品日产1卡2卡| 午夜精品在线福利| 日韩三级伦理在线观看| 国产av一区在线观看免费| 亚洲精品国产av成人精品 | 精品日产1卡2卡| 淫秽高清视频在线观看| 亚洲av中文av极速乱| 波多野结衣巨乳人妻| 亚洲欧美中文字幕日韩二区| 亚洲av免费在线观看| 在线免费观看的www视频| 99热只有精品国产| av天堂在线播放| 精品日产1卡2卡| 欧美成人a在线观看| 97碰自拍视频| 免费观看精品视频网站| 午夜福利视频1000在线观看| 一级毛片电影观看 | 久久久久久久久久黄片| 精品福利观看| a级毛片免费高清观看在线播放| 国产视频内射| 蜜桃亚洲精品一区二区三区| 国产伦精品一区二区三区四那| 国产在线男女| 天堂网av新在线| 最近的中文字幕免费完整| 久久亚洲精品不卡| 亚洲经典国产精华液单| 老司机福利观看| 日本精品一区二区三区蜜桃| 美女黄网站色视频| 国产男人的电影天堂91| av在线播放精品| 亚洲无线在线观看| 国产欧美日韩精品亚洲av| 亚洲性久久影院| 国产av一区在线观看免费| 亚洲欧美清纯卡通| 美女黄网站色视频| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 成人美女网站在线观看视频| 伊人久久精品亚洲午夜| 日韩在线高清观看一区二区三区| aaaaa片日本免费| 欧美成人a在线观看| 黄片wwwwww| 黄色日韩在线| 成人欧美大片| 欧美不卡视频在线免费观看| 内射极品少妇av片p| 午夜福利视频1000在线观看| 久久精品人妻少妇| 色综合色国产| 直男gayav资源| 午夜老司机福利剧场| 精品人妻熟女av久视频| 欧美潮喷喷水| av.在线天堂| 亚洲av中文av极速乱| 蜜臀久久99精品久久宅男| 少妇的逼水好多| 亚洲最大成人手机在线| 丰满乱子伦码专区| 免费无遮挡裸体视频| 国产日本99.免费观看| 国产人妻一区二区三区在| 日本撒尿小便嘘嘘汇集6| 中文字幕熟女人妻在线| 亚洲激情五月婷婷啪啪| 欧美3d第一页| 两个人视频免费观看高清| 欧美一区二区国产精品久久精品| 久久婷婷人人爽人人干人人爱| 九九在线视频观看精品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av电影不卡..在线观看| 久久韩国三级中文字幕| 久久热精品热| 国产亚洲精品av在线| 日本在线视频免费播放| 精品国内亚洲2022精品成人| 欧美日韩一区二区视频在线观看视频在线 | 日韩精品青青久久久久久| 又爽又黄无遮挡网站| 在线观看午夜福利视频| 亚洲一区高清亚洲精品| 国产单亲对白刺激| 最近的中文字幕免费完整| 99九九线精品视频在线观看视频| 在线播放无遮挡| 亚洲五月天丁香| 国产女主播在线喷水免费视频网站 | 成人性生交大片免费视频hd| 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 麻豆乱淫一区二区| 精品久久久久久久久av| av中文乱码字幕在线| 国产高潮美女av| 黄片wwwwww| 深夜精品福利| 婷婷六月久久综合丁香| 午夜激情福利司机影院| 国产精品爽爽va在线观看网站| 国产欧美日韩精品一区二区| 欧美色视频一区免费| 久久精品综合一区二区三区| 最近在线观看免费完整版| 国产精品一区二区三区四区久久| 日产精品乱码卡一卡2卡三| 联通29元200g的流量卡| 午夜亚洲福利在线播放| 亚洲成人av在线免费| 大又大粗又爽又黄少妇毛片口| 桃色一区二区三区在线观看| 国产亚洲精品综合一区在线观看| 亚洲欧美成人综合另类久久久 | 日本免费一区二区三区高清不卡| 久久久久久九九精品二区国产| 1000部很黄的大片| 亚洲精品日韩在线中文字幕 | 国产毛片a区久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 少妇裸体淫交视频免费看高清| 波多野结衣高清无吗| 蜜臀久久99精品久久宅男| 国产 一区精品| 精华霜和精华液先用哪个| 免费观看在线日韩| 亚洲人成网站在线播放欧美日韩| www.色视频.com| 亚洲五月天丁香| 国产91av在线免费观看| 美女被艹到高潮喷水动态| 又爽又黄a免费视频| 国产单亲对白刺激| 天堂影院成人在线观看| 丝袜喷水一区| 国产欧美日韩精品一区二区| 可以在线观看毛片的网站| 人人妻人人看人人澡| 亚洲精品亚洲一区二区| 日本 av在线| 国产精品免费一区二区三区在线| 日韩欧美 国产精品| 婷婷亚洲欧美| 久久久久国产网址| 波多野结衣巨乳人妻| 亚洲中文日韩欧美视频| 色5月婷婷丁香| 免费av不卡在线播放| 三级经典国产精品| 国产高清视频在线播放一区| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| 精品不卡国产一区二区三区| 国产色婷婷99| 免费看光身美女| 亚洲经典国产精华液单| 波多野结衣高清无吗| 一a级毛片在线观看| 国产不卡一卡二| 人人妻人人澡欧美一区二区| 国产伦精品一区二区三区视频9| 亚洲自偷自拍三级| 亚洲熟妇中文字幕五十中出| 日韩三级伦理在线观看| 性色avwww在线观看| 国产色婷婷99| 日产精品乱码卡一卡2卡三| 色综合站精品国产| 禁无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 欧美丝袜亚洲另类| 国产成人影院久久av| 欧美中文日本在线观看视频| 91精品国产九色| 赤兔流量卡办理| 老女人水多毛片| 欧美一级a爱片免费观看看| 嫩草影视91久久| 狂野欧美激情性xxxx在线观看| 亚洲四区av| 国产精品一区www在线观看| 偷拍熟女少妇极品色| 97超视频在线观看视频| 亚洲性夜色夜夜综合| 听说在线观看完整版免费高清| 综合色丁香网| 一本久久中文字幕| 99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 长腿黑丝高跟| 能在线免费观看的黄片| 国产在线男女| 国产乱人视频| 我的女老师完整版在线观看| 黑人高潮一二区| 成年女人永久免费观看视频| or卡值多少钱| 岛国在线免费视频观看| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲网站| 亚洲av成人精品一区久久| 国产女主播在线喷水免费视频网站 | 久久热精品热| 亚洲国产精品sss在线观看| 一级a爱片免费观看的视频| 国产高清视频在线观看网站| av在线天堂中文字幕| 免费观看的影片在线观看| 如何舔出高潮| 久久久久久久亚洲中文字幕| 国产在线精品亚洲第一网站| 午夜福利在线在线| 成人漫画全彩无遮挡| 精品一区二区三区视频在线| 最近最新中文字幕大全电影3| 国产精品一区二区免费欧美| 午夜日韩欧美国产| 91久久精品电影网| 久久精品久久久久久噜噜老黄 | 乱系列少妇在线播放| 亚洲不卡免费看| 国产精品一区二区性色av| 久久6这里有精品| 看片在线看免费视频| 色吧在线观看| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 91久久精品国产一区二区三区| 午夜老司机福利剧场| 亚洲一区高清亚洲精品| 久久久久国内视频| 97在线视频观看| 亚洲av熟女| 在线免费十八禁| 高清毛片免费看| 国产高清不卡午夜福利| 午夜亚洲福利在线播放| 麻豆一二三区av精品| 日韩制服骚丝袜av| 欧美另类亚洲清纯唯美| www日本黄色视频网| 国产精品女同一区二区软件| 日本黄色片子视频| 国产精品电影一区二区三区| 国内精品一区二区在线观看| 日韩国内少妇激情av| 久久精品人妻少妇| 91麻豆精品激情在线观看国产| 亚洲va在线va天堂va国产| 国产精品一区二区免费欧美| 久久这里只有精品中国| 91精品国产九色| 午夜福利在线在线| 人妻少妇偷人精品九色| 在线观看66精品国产| 91在线精品国自产拍蜜月| 老女人水多毛片| 亚洲av二区三区四区| av国产免费在线观看| 国产精品久久久久久精品电影| 亚洲综合色惰| 我要搜黄色片| 日本一二三区视频观看| 国产乱人偷精品视频| av天堂中文字幕网| 国产精品av视频在线免费观看| 在线看三级毛片| 寂寞人妻少妇视频99o| 亚洲精品影视一区二区三区av| 成人美女网站在线观看视频| 日本黄大片高清| 美女 人体艺术 gogo| 免费在线观看成人毛片| 欧美另类亚洲清纯唯美| 国产亚洲精品综合一区在线观看| 日韩在线高清观看一区二区三区| 国产老妇女一区| 在线观看一区二区三区| 欧美一区二区国产精品久久精品| 简卡轻食公司| 亚洲色图av天堂| 日韩成人av中文字幕在线观看 | 久久精品国产清高在天天线| 亚洲av免费高清在线观看| 免费看日本二区| 国产探花在线观看一区二区| 白带黄色成豆腐渣| 久久99热这里只有精品18| 午夜亚洲福利在线播放| 最近的中文字幕免费完整| 天堂网av新在线| 精品人妻偷拍中文字幕| or卡值多少钱| 久久精品国产亚洲av天美| 成人三级黄色视频| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| eeuss影院久久| 国产精品久久久久久精品电影| 国产精品三级大全| 在线看三级毛片| 久久亚洲国产成人精品v| 日日啪夜夜撸| 天堂动漫精品| 成人av在线播放网站| 联通29元200g的流量卡| 亚洲精品一区av在线观看| 人妻少妇偷人精品九色| 亚洲av五月六月丁香网| 国产黄a三级三级三级人| 高清毛片免费观看视频网站| 免费黄网站久久成人精品| 免费一级毛片在线播放高清视频| 国产精品综合久久久久久久免费| 亚洲自偷自拍三级| 一级毛片我不卡| 久久人妻av系列| 成年女人看的毛片在线观看| a级毛片免费高清观看在线播放| 色尼玛亚洲综合影院| 国产av在哪里看| 久久久久九九精品影院| 又爽又黄a免费视频| 国产午夜精品论理片| 国产精品无大码| 一级毛片电影观看 | 亚洲人与动物交配视频| 精品久久久久久久久久免费视频| 一级黄色大片毛片| 嫩草影院入口| 在线a可以看的网站| 最后的刺客免费高清国语| 少妇熟女aⅴ在线视频| 国产精品久久久久久精品电影| 亚洲国产色片| 国产精品野战在线观看| 一个人看的www免费观看视频| 久久精品国产自在天天线| 1024手机看黄色片| 小蜜桃在线观看免费完整版高清| 国产伦精品一区二区三区视频9| 如何舔出高潮| 国内揄拍国产精品人妻在线| 亚洲第一电影网av| 国产私拍福利视频在线观看| 老女人水多毛片| 亚洲综合色惰| 亚洲人成网站高清观看| 麻豆国产97在线/欧美| 亚洲美女搞黄在线观看 | 校园人妻丝袜中文字幕| 亚洲av电影不卡..在线观看| 在线播放无遮挡| 亚洲欧美日韩无卡精品| 91久久精品国产一区二区成人| 九九爱精品视频在线观看| 久久精品91蜜桃| 精品久久久久久久末码| 国产高清不卡午夜福利| 亚洲va在线va天堂va国产| 国产精品亚洲一级av第二区| 天天躁日日操中文字幕| 一级黄色大片毛片| 美女cb高潮喷水在线观看| 免费观看在线日韩| 亚洲欧美日韩高清专用| 男女啪啪激烈高潮av片| 久久99热6这里只有精品| 国产成人精品久久久久久| 国产精品精品国产色婷婷| 国产日本99.免费观看| 97超碰精品成人国产| 亚洲av中文av极速乱| 日本爱情动作片www.在线观看 | 国内精品一区二区在线观看| 精品久久久久久久久亚洲| 久久综合国产亚洲精品| 成人美女网站在线观看视频| 精品一区二区免费观看| 国产又黄又爽又无遮挡在线| 精品一区二区免费观看| 观看免费一级毛片| 有码 亚洲区| 免费人成在线观看视频色| 久久精品国产清高在天天线| 晚上一个人看的免费电影| 精品一区二区三区视频在线观看免费| 十八禁网站免费在线| 欧美xxxx黑人xx丫x性爽| 乱码一卡2卡4卡精品| 我的老师免费观看完整版| 天堂√8在线中文| 亚洲va在线va天堂va国产| 久久亚洲国产成人精品v| 精品久久久久久久久亚洲| 国产精品一区www在线观看| 精品一区二区三区视频在线观看免费| 欧美xxxx性猛交bbbb| av在线观看视频网站免费| 最近在线观看免费完整版| 看免费成人av毛片| 国产精品三级大全| 久久草成人影院| 国产在线男女| 自拍偷自拍亚洲精品老妇| 舔av片在线| 精品日产1卡2卡| 寂寞人妻少妇视频99o| 美女黄网站色视频| 国产黄色视频一区二区在线观看 | 黄色视频,在线免费观看| 久久久久精品国产欧美久久久| 久久精品久久久久久噜噜老黄 | 日韩欧美精品免费久久| 日本黄色视频三级网站网址| 国产成人aa在线观看| 日韩欧美精品v在线| 国产美女午夜福利| 又黄又爽又免费观看的视频| 在线免费观看的www视频| 亚洲精品456在线播放app| 三级经典国产精品| 国产精品爽爽va在线观看网站| 在线播放国产精品三级| 亚洲中文字幕一区二区三区有码在线看| 成人漫画全彩无遮挡| 精品人妻一区二区三区麻豆 | 国产精品,欧美在线| 精品无人区乱码1区二区| 中文字幕久久专区| 永久网站在线| 久久久国产成人免费| 欧美日韩一区二区视频在线观看视频在线 | 男插女下体视频免费在线播放| 可以在线观看毛片的网站| 一级a爱片免费观看的视频| 国产黄色视频一区二区在线观看 | 69av精品久久久久久| 少妇的逼水好多| 免费高清视频大片| 看片在线看免费视频| 一个人免费在线观看电影| 国产毛片a区久久久久| 给我免费播放毛片高清在线观看| 国产精品久久久久久亚洲av鲁大| 在线免费观看不下载黄p国产| 寂寞人妻少妇视频99o| 最后的刺客免费高清国语| 内射极品少妇av片p| 99九九线精品视频在线观看视频| 观看免费一级毛片| 日韩精品有码人妻一区| 亚洲一区高清亚洲精品| 老熟妇仑乱视频hdxx| 美女cb高潮喷水在线观看| 亚洲av五月六月丁香网| 国产精品三级大全| 国产av麻豆久久久久久久| 十八禁网站免费在线| 午夜福利成人在线免费观看| 午夜福利在线在线| 久久精品夜色国产| 亚洲美女黄片视频| 国产 一区 欧美 日韩| 床上黄色一级片| 人妻制服诱惑在线中文字幕| 俺也久久电影网| 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看| 小说图片视频综合网站| 深爱激情五月婷婷| 亚洲中文日韩欧美视频| 国产精品一及| 国产91av在线免费观看| 97碰自拍视频| 俺也久久电影网| 久久久久国产网址| 一个人免费在线观看电影| 男女那种视频在线观看| 搡女人真爽免费视频火全软件 | 久久久久久久久久久丰满| 成人国产麻豆网| 亚洲国产精品国产精品| 草草在线视频免费看| 免费人成在线观看视频色| 校园人妻丝袜中文字幕| 99视频精品全部免费 在线| 久久久久性生活片| 久久人人精品亚洲av| 成年免费大片在线观看| 日韩精品青青久久久久久| 最近在线观看免费完整版| 国产高清视频在线播放一区| 免费搜索国产男女视频| 免费av观看视频| 露出奶头的视频| 国产色爽女视频免费观看| 最新中文字幕久久久久| 高清毛片免费看| 日本色播在线视频| 99热这里只有是精品在线观看| av天堂在线播放| 午夜激情欧美在线| 国内少妇人妻偷人精品xxx网站| 简卡轻食公司| 国产精品久久久久久亚洲av鲁大| 热99re8久久精品国产| 久久精品夜夜夜夜夜久久蜜豆| 国内精品久久久久精免费| 国产男人的电影天堂91| 欧美潮喷喷水| 欧美一区二区国产精品久久精品| av专区在线播放| 国产黄a三级三级三级人| 精品久久久噜噜| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 欧美+亚洲+日韩+国产| 最近2019中文字幕mv第一页| 成年女人看的毛片在线观看| 亚洲va在线va天堂va国产| 在线a可以看的网站| av在线播放精品| 国产白丝娇喘喷水9色精品| 欧美日韩乱码在线| 亚洲成av人片在线播放无| 少妇裸体淫交视频免费看高清| 看免费成人av毛片| 久久国内精品自在自线图片| 日本免费一区二区三区高清不卡| 亚洲人与动物交配视频| 免费看a级黄色片| 美女 人体艺术 gogo| 免费看a级黄色片| 亚洲成a人片在线一区二区| 悠悠久久av| 毛片女人毛片| 国产精品一区二区性色av| 国产淫片久久久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 综合色av麻豆| 亚洲av成人精品一区久久| 天堂√8在线中文| 看片在线看免费视频| a级毛片免费高清观看在线播放| 人妻制服诱惑在线中文字幕| 成人av在线播放网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲中文日韩欧美视频| 禁无遮挡网站| 人妻夜夜爽99麻豆av| 久久久久性生活片| 成人三级黄色视频| 日本在线视频免费播放| 久久久久久久久久黄片| 久久精品国产鲁丝片午夜精品| 高清日韩中文字幕在线| 久久久久精品国产欧美久久久| av专区在线播放| 欧美性猛交黑人性爽| 亚洲欧美成人精品一区二区| 日本免费a在线| 国产白丝娇喘喷水9色精品| 国产成人影院久久av| 亚洲欧美精品自产自拍| 久久久久九九精品影院| 不卡一级毛片| 少妇人妻精品综合一区二区 | 午夜免费男女啪啪视频观看 | 在线天堂最新版资源| 中出人妻视频一区二区| 国国产精品蜜臀av免费|