• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrodynamic Analysis of a Spar Platform under Asymmetrical Mooring System

    2019-12-30 06:46:02-,,,,-,-
    船舶力學 2019年12期

    -,,,,-,-

    (State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China)

    Abstract: When mining the oil and gas resources on the continental slope, the seabed topography at the location where the floating platform is located may have a relatively steep gradient,so an asymmetrical mooring system may be deployed. Based on a Spar platform, an asymmetrical mooring system is optimized to match the different anchor depth, and the horizontal stiffness of asymmetrical mooring system is relatively high. The motion response of platform and the dynamic characteristics of mooring system are compared through the coupled numerical simulation model in time domain. The results show that the response amplitude and mooring tension of platform with asymmetrical mooring system in the surge,sway and pitch are all in line with the engineering requirements,and it could improve the global motion performance of Spar platform.

    Key words:asymmetric mooring system;Spar platform;dynamic response;mooring line tension

    0 Introduction

    The South China Sea has about one third of China’s oil reserves. Its depth is generally 500-2 000 m, so the focus of oil and gas development in South China Sea is the deep sea area.The applicable depth of Spar platform is generally 500-3 000 m. It has the advantages of large draught depth, good stability and motion performance, low cost and wide application range,which make it extremely competitive in deep ocean area and ultra-deep water.

    The Spar platform has undergone three generations of development, followed by Classic Spar, Truss Spar and Cell Spar. Nowadays, most of them come into use in Gulf of Mexico. The three-generation platform structures are shown in Fig.1. Mekha et al[1]used the simplified Spar platform model with only three degrees of freedom: surge, heave and pitch. The Morison equation is used to calculate the drag resistance and the three-dimensional potential flow theory is used to calculate the inertial force. The dynamic responses of the platform are calculated and compared between the numerical results and model tests.Ran et al[2]used the numerical and experimental methods to analyze the dynamic response of truss Spar platform under different types of waves.The research shows that the low-frequency surge and pitch responses are significantly greater than the wave-frequency responses, while the presence of the ocean current could reduce the slow drift response of platform. Agarwal et al[3]used the linear Airy wave theory and Morison equation to predict the wave loads on the main body of Spar platform,and solved the iterative equation of dynamic by using the Newmark-βmethod.The integral recovery stiffness matrix is divided into three parts: the stiffness of water plane, the stiffness in the horizontal direction of nonlinear mooring system and the stiffness of vertical spring. Koo et al[4]calculated the heave and pitch responses of Spar platform under regular and irregular waves, then studied the effects of damping and additional stiffness on Matthew’s instability.The study shows that the occurrence of Matthew's instability is greatly affected by the damping, so it is necessary to accurately predict the damping of platform. Considering the effects of first-order and second-order random wave loads and time-varying displacements and transient wave heights, Liu[5]established the coupled equations of motion for the Spar platform to calculate and compare the dynamic responses of platform under different sea conditions.

    Fig.1 Three generations of Spar platform

    The mooring system is used to position the floating platform. The design of mooring system is a complex process, and the layout of mooring system is a very important factor that should be considered. Currently, the layout of mooring systems is mainly based on symmetrical arrangements. Some Spar platforms use asymmetrical arrangements on thex-axis ory-axis[6-9], where each mooring line has the same physical properties,such as material,wet weight,length,diameter,and pretension,as shown in Fig.2.Sometimes,the mooring lines of several different physical properties will also need to be used, while the sea area where the mooring system is located is not flat,thezvalue of mooring line at the seabed point will also be different.For example,Xu et al[10]used this asymmetrical mooring arrangement when studying the installation of the jacket platform, as shown in Fig.3. There is also the use of semi-submersible platforms in shallow water as a floating base near the island reef. Hou et al[11]used the software AQWA to carry out numerical simulation calculations of floating trestle bridges, and conducted comparative analysis with the results of pool tests to predict and research the motion response of single floating bridges near the island reef. Focusing on the complex island reef topography of the South China Sea,Wang et al[12]adopted an asymmetric arrangement of anchor chains and designed a mooring system that adapts to the positioning of the platform under extremely shallow water.The positioning ability is calculated and analyzed, and the feasibility of mooring system is verified. The results could provide reference for the design of platform mooring system in the extremely shallow water environment.

    Fig.2 Layout of an asymmetrical mooring system of Spar

    Fig.3 Layout of mooring system of jacket platform installation

    Through the comparative analysis of the characteristics of various types of floating platforms, combined with the characteristics of the semi-submersible platform and Truss Spar, the Deep Draft Multi-Spar(DDMS)Platform is proposed by a research team in Deepwater Engineering Research Center of Dalian University of Technology[13]. The single large-diameter column from Spar platform is separated into four relatively small-diameter columns and a closed center well is set in the middle to protect the riser from waves and currents. In the lower part of hard tank,the heave plates are arranged to improve the hydrodynamic performance of the platform.A ballast tank is installed at the bottom of platform,and four small columns are connected with the hard tank to provide good stability for the platform.The schematic diagram of DDMS platform is shown in Fig.4.The main structural parameters are shown in Tab.1.Compared with the traditional single-column Spar platform, DDMS has less difficulty of construction, transportation and installation, but larger upper deck platform area. Therefore, the cost-effectiveness of DDMS are relatively high.

    Fig.4 DDMS platform

    Tab.1 Main parameters of DDMS platform

    The research work of this paper is mainly aimed at the DDMS platform with asymmetrical mooring systems.Based on AQWA software,the hydrodynamic model of platform is established,and an asymmetrical mooring system is designed and optimized. The coupling analysis method is used to study the motion responses of DDMS platform and the dynamic characteristics of asymmetrical mooring system under irregular wave,wind and current.Meanwhile,the results are compared with the symmetrical mooring system.

    1 Solving the equation of motion

    1.1 Time-domain coupled equations of motion

    The mooring system and floating platform in the ocean are affected by the coupled effects of irregular wave,wind and current.The time domain coupling equation of motion is shown in Eq.(1).

    where,Mis the mass matrix of floating body structure;mis the additional mass matrix of floating body structure;Lis the delay function matrix of system;Cis the restoring force coefficient matrix;x(t)is the displacement vector of six degree-of-freedom of platform;andare the first-order and second-order wave loads, respectively;FwindandFcurrentare the wind loads and current loads,respectively;Fmooris the force of mooring line to the floating structure.

    1.2 Load solution

    For large-dimensional deep-water floating platforms, the high-order boundary element method is generally used for hydrodynamic solution to obtain the wave force in frequency domain.Through the inverse Fourier transform,the first-order and second-order wave force transfer functions are used to convert the frequency domain calculation results into those in the time domain.The delay function can be obtained by the inverse Fourier transform of the damping coefficients in the frequency domain,as shown in Eq.(2).

    whereλ(ω)is the damping coefficient.

    The wind load acts on the structure above the waterline of entire offshore platform.The calculation of wind load is mainly related to the wind speed and the shape of structure.The general expressions of wind force and the wind torque on the structure are shown in Equations(3)-(4).

    where,ρais the density of air;Cdis the coefficient of wind resistance;Ais the projected area of component in the wind direction;U10is the wind speed at a height of 10m above the sea surface;Lis the distance between the gravity center of platform and the center of wind force.The simplified projected area is chosen to calculate the wind load without considering the voids and mutual obscuration between components.

    Assuming that the current distribution is uniform,the general expressions of the flow forces and flow forces moment on the structure are shown in Eqs.(5)-(6).

    where,ρwis the density of seawater;Cdcis the fluid drag coefficient;Ais the projected area of component in the direction of current;Vis the velocity of current,Lis the distance between the gravity center of platform and the center of current force.

    The force of mooring system on the platform is shown in Eq.(7)

    where,K'andC'are the stiffness and damping matrix at the connection point of mooring line and platform, respectively;T'is the displacement transformation matrix between the platform gravity center and the mooring line connection point;xmis the displacement vector of mooring line and platform connection point.

    1.3 Iterative solution

    The iteration method can be used to solve the motion equation of floating body in the time domain.The motion Eq.(1)is written as the second-order differential equation as shown in Eq.(8).

    The Eq.(8)can be solved by the fourth-order Runge-Kutta method.At timet+ Δt,the displacement and velocity of platform are shown in Eqs.(9)and(10).

    where,

    2 Mooring design

    2.1 Symmetrical mooring arrangement

    At a depth of 1 500 m, a symmetrical semi-taut mooring arrangement is adopted, and 12 mooring lines are used, which are divided into four groups and arranged on four columns, respectively. Each group is separated by 90 degrees. The layout is shown in Fig.5. Each mooring line is combined by three segments that are chain, wire and chain. The material properties of each segment are shown in Tab.2. The pretension is 3 220 kN, and the coordinates of anchor points are shown in Tab.3.

    Tab.2 Material parameters of the mooring line

    Fig.5 Symmetrical mooring system layout

    Fig.6 Asymmetric mooring system layout

    Tab.3 Anchor coordinates of symmetrical mooring system at 1 500 m depth

    2.2 Optimization design of asymmetrical mooring

    The arrangement of asymmetrical mooring systems is similar to the symmetrical mooring systems,except that the anchorage depth of mooring lines#7-12 in Fig.5 is changed from 1 500 m to 1 200 m.The layout is shown in Fig.6.In order to ensure the stability of platform,the initial pretension (3 220 kN) and the pretension angle of deep water side (#1-6 mooring line) and the shallow water side(#7-12 mooring line)should be the same in the design.

    In the static analysis of mooring line, the elastic elongation and the current force on the mooring line are taken into account by using the segmented extrapolation method[14]. An asymmetry mooring system optimization applet is programmed by MATLAB. Keeping the lengths of upper and bottom chain unchanged,the length of middle wire section of mooring line is used as the variable,and the optimized length of middle wire is 1 484 m.The coordinates of anchor points are shown in Tab.4.

    The stiffness of mooring line is nonlinear and the mooring system restoring force curve is plotted to characterize the restoring force of mooring system.The symmetrical mooring system only needs to consider the restoring force inXdirection (orydirection), but the asymmetrical mooring needs to consider both inXandYdirections.As shown in Figs.7-8,it can be seen that the restoring force characteristics of these two mooring systems are relatively consistent inXdirection,whereas the asymmetrical mooring system is much larger in theYdirection. The asymmetrical mooring system has a stronger nonlinear effect,and the stiffness of asymmetrical mooring system inYdirection is much greater than that inXdirection.

    Tab.4 Anchor coordinates of asymmetrical mooring

    Fig.7 Restoring force of mooring system in X direction

    Fig.8 Restoring force of mooring system in Y direction

    3 Results and analysis

    In general[15], under the normal operating sea state conditions, the amplitude of surge response of platform should not exceed 2%-3% of water depth, the amplitude of heave motion should not exceed 3 m, and the amplitude of pitch should be less than 6°. For mooring systems, in accordance with API RP 2SK[16], the safety factor,which is the ratio of mooring line breaking strength to the maximum mooring line tension,should not be less than 1.67.The one-year return period in South China Sea is chosen as the operating sea state conditions,as shown in Tab.5.The JONSWAP wave spectrum,API wind spectrum and the uniform current distribution are used in the numerical simulation.The combinations of wind,wave and current direction are used to analyze the platform response,and the incident angle isXdirection.

    Tab.5 Environmental conditions

    3.1 Free decay test

    The main structure of DDMS platform is symmetrical about theX-axis andY-axis. The analysis mainly considers the motion response of surge,heave and pitch motions.The free decay test results in still water under the symmetrical and asymmetrical mooring systems are shown in Figs.9-11. The first 6 cycles of free decay is used to calculate the natural period and damping ratio.According to Tab.6,the natural period of surge using asymmetrical mooring is significantly smaller than that of the symmetrical mooring, while the heave and pitch are not much different.The natural period of heave motion meets the requirement of larger than 20 s. This is due to the fact that the mooring system provides a great stiffness in the horizontal direction,which can significantly reduce the natural period of surge, while the heave and pitch mainly depend on the hydrostatic stiffness of platform,and the mooring system has little influence.The asymmetricalmooring system contributes significantly to the damping ratio. The damping ratios of surge, heave and pitch increase by 2.39%,14.78% and 7.94% compared to the symmetrical mooring system,respectively.

    Tab.6 Statistics of free decay

    Fig.9 Surge decay

    Fig.10 Heave decay

    Fig.11 Pitch decay

    3.2 Motion response of platform

    The iteration time step used in the numerical simulation is 0.1 s and the simulation duration is 3 h. The motion responses statistics of platform under the symmetrical mooring and asymmetrical mooring systems are given in Tab.7.It can be seen that the motion response amplitude of platform under two types of mooring systems both can meet the engineering requirements,and the surge motion of platform under the asymmetrical mooring system is obviously smaller. Fig.12 shows the time series of motion response and the corresponding spectrum.According to the motion response spectrum, it can be seen that the peak value of motion response is between 0 and 0.2 rad/s in low frequency range, which is very small in the wave frequency range,and indicates obvious low frequency motion characteristics.

    Tab.7 Motion response of platform

    Fig.12 Motion response of platform

    3.3 Tension response of mooring lines

    For symmetrical mooring systems,the maximum mooring line tension is 3.626 MN,and the corresponding mooring number is #4, and the safety factor is 4.744. For asymmetrical mooring systems, the maximum mooring line tension is 4.030 MN, and the corresponding mooring number is#10,and the safety factor is 4.268.Therefore,the safety factor of mooring lines under both mooring systems is greater than 1.67, which meets the engineering requirements. The corresponding time series of mooring line tension and tension spectrum are shown in Fig.13.According to the tension spectrum, it can be seen that the peak value of tension under the symmetrical mooring system is in the low frequency range, while the peak value of tension under the asymmetrical mooring system is concentrated in the wave frequency range and is relatively large.This indicates that the mooring line strength requirements are higher for asymmetrical mooring systems.

    Fig.13 Tension response of mooring line

    4 Conclusions

    The mooring system plays a very important role in ensuring the safe operation of floating platform. This paper researches the response of platform motion and the mooring tension response based on the symmetric and asymmetric mooring systems, and combines them to draw conclusions as follows:

    (1) Keeping the initial pretension and the pretension angle unchanged, the asymmetrical mooring system can be optimized through only changing the length of middle segment, and the stiffness of optimized asymmetrical mooring system is greater than that of initial symmetrical mooring system in bothXandYdirections.

    (2) The asymmetrical mooring system designed in this paper can provide larger damping and obviously reduce the surge motion amplitude of platform. Besides, the motion response of platform has obvious low frequency characteristics.

    (3) The safety factor of optimized asymmetrical mooring system meets the requirements of specification,but the maximum mooring line tension is much larger.Moreover,the peak value of tension response under the symmetrical mooring system is in the low frequency range while the peak value of tension under the asymmetrical mooring system is concentrated in the wave frequency range.

    成人美女网站在线观看视频| 一级黄片播放器| 国产v大片淫在线免费观看| 亚洲在线自拍视频| 成人高潮视频无遮挡免费网站| 999久久久精品免费观看国产| 亚洲精品在线观看二区| 亚洲18禁久久av| 性色avwww在线观看| 欧美极品一区二区三区四区| 看免费成人av毛片| 日韩欧美 国产精品| 午夜免费成人在线视频| a级毛片免费高清观看在线播放| 日韩高清综合在线| 日韩欧美国产在线观看| 欧美人与善性xxx| 男女啪啪激烈高潮av片| 麻豆国产97在线/欧美| 亚洲欧美清纯卡通| 久久久精品大字幕| 999久久久精品免费观看国产| 丰满的人妻完整版| 成人无遮挡网站| 日本黄色片子视频| 人妻久久中文字幕网| 亚洲精华国产精华液的使用体验 | 精品久久久久久成人av| 欧美日韩瑟瑟在线播放| 少妇人妻一区二区三区视频| 一级毛片久久久久久久久女| 成人鲁丝片一二三区免费| 国产色婷婷99| av.在线天堂| 久久这里只有精品中国| 成人无遮挡网站| 九九爱精品视频在线观看| 搡老熟女国产l中国老女人| 九九在线视频观看精品| 国产午夜福利久久久久久| 亚洲国产高清在线一区二区三| 看黄色毛片网站| 99热这里只有是精品50| 黄色欧美视频在线观看| 久久久久久久久中文| 久久久久免费精品人妻一区二区| 欧美激情国产日韩精品一区| 色综合色国产| 三级国产精品欧美在线观看| 欧美一区二区精品小视频在线| 日韩精品青青久久久久久| 国产午夜精品久久久久久一区二区三区 | 亚洲黑人精品在线| а√天堂www在线а√下载| 亚洲成人久久爱视频| 亚洲在线观看片| 亚洲成人免费电影在线观看| 国产精品人妻久久久影院| 一边摸一边抽搐一进一小说| 国产精品永久免费网站| 国产精品1区2区在线观看.| 国产一区二区在线观看日韩| 99久久无色码亚洲精品果冻| 欧美另类亚洲清纯唯美| av福利片在线观看| 免费电影在线观看免费观看| 俺也久久电影网| 欧美国产日韩亚洲一区| 中文亚洲av片在线观看爽| 久久久久久久久大av| 性插视频无遮挡在线免费观看| 久久草成人影院| 亚洲性久久影院| 亚洲精品一区av在线观看| av在线天堂中文字幕| 久久精品国产亚洲网站| 欧美激情国产日韩精品一区| 成人国产一区最新在线观看| 99视频精品全部免费 在线| 国产三级中文精品| 亚洲精品国产成人久久av| 熟女人妻精品中文字幕| 亚洲成av人片在线播放无| 男人舔奶头视频| 成人特级av手机在线观看| 国产精品美女特级片免费视频播放器| 国产亚洲精品av在线| 精品人妻1区二区| 日韩强制内射视频| 成年女人毛片免费观看观看9| 伦精品一区二区三区| 午夜福利18| 我要搜黄色片| 日韩欧美在线二视频| h日本视频在线播放| 国产免费av片在线观看野外av| 啪啪无遮挡十八禁网站| 中文字幕人妻熟人妻熟丝袜美| 一级黄色大片毛片| 深夜精品福利| av女优亚洲男人天堂| 精品国内亚洲2022精品成人| 午夜福利高清视频| 免费观看人在逋| 国产单亲对白刺激| 国产白丝娇喘喷水9色精品| 一区福利在线观看| 欧美成人一区二区免费高清观看| 天堂网av新在线| 国产精品一区二区性色av| 久久人人爽人人爽人人片va| 最新在线观看一区二区三区| 精品不卡国产一区二区三区| 五月玫瑰六月丁香| 久久精品国产亚洲网站| 黄色日韩在线| 哪里可以看免费的av片| 国产日本99.免费观看| 亚洲性久久影院| 久久精品国产自在天天线| 99久久无色码亚洲精品果冻| 精品国内亚洲2022精品成人| 国产 一区精品| 国产伦人伦偷精品视频| 午夜久久久久精精品| 免费观看在线日韩| 亚洲av日韩精品久久久久久密| 久久99热6这里只有精品| 欧美人与善性xxx| 日韩精品有码人妻一区| 午夜精品在线福利| 尾随美女入室| 99久久精品热视频| av女优亚洲男人天堂| 国产亚洲精品av在线| 五月伊人婷婷丁香| 久久久久九九精品影院| 中文资源天堂在线| 草草在线视频免费看| 国模一区二区三区四区视频| 免费一级毛片在线播放高清视频| 人人妻人人澡欧美一区二区| 久久亚洲真实| 成人精品一区二区免费| 亚洲成人中文字幕在线播放| 国产成人影院久久av| 九色国产91popny在线| 三级国产精品欧美在线观看| 日本a在线网址| 欧美高清性xxxxhd video| 在线观看66精品国产| 丰满人妻一区二区三区视频av| 久99久视频精品免费| 国产伦人伦偷精品视频| 性欧美人与动物交配| 欧美日韩瑟瑟在线播放| 久久亚洲精品不卡| 国产精品嫩草影院av在线观看 | 亚洲精品色激情综合| 能在线免费观看的黄片| 又黄又爽又免费观看的视频| 精品午夜福利在线看| 51国产日韩欧美| 伦精品一区二区三区| 久久久成人免费电影| 久久久久国内视频| 亚洲,欧美,日韩| 精品国产三级普通话版| 亚洲av免费高清在线观看| 日韩一区二区视频免费看| 2021天堂中文幕一二区在线观| 国产精品日韩av在线免费观看| 日本 欧美在线| 在线观看午夜福利视频| 国产成人影院久久av| 女人被狂操c到高潮| 久久人妻av系列| 亚洲国产日韩欧美精品在线观看| 在线天堂最新版资源| 在线观看一区二区三区| 亚洲精品国产成人久久av| 成年人黄色毛片网站| 校园春色视频在线观看| 亚洲欧美日韩高清在线视频| 国产视频一区二区在线看| 国产 一区精品| 中文字幕熟女人妻在线| 国内精品宾馆在线| 亚洲天堂国产精品一区在线| 黄色日韩在线| 欧美日韩精品成人综合77777| 日本免费a在线| 亚洲人成网站在线播| 国产免费一级a男人的天堂| 中文字幕熟女人妻在线| 亚洲在线自拍视频| 少妇被粗大猛烈的视频| 真人一进一出gif抽搐免费| 日韩在线高清观看一区二区三区 | 少妇人妻精品综合一区二区 | 又爽又黄无遮挡网站| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 人妻夜夜爽99麻豆av| av在线天堂中文字幕| 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 亚洲性夜色夜夜综合| 亚洲不卡免费看| 夜夜看夜夜爽夜夜摸| 国产亚洲91精品色在线| 精品午夜福利视频在线观看一区| 久久久久久九九精品二区国产| 久久久久久国产a免费观看| 国产69精品久久久久777片| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久伊人网av| 午夜爱爱视频在线播放| 中文亚洲av片在线观看爽| 色哟哟·www| 日本撒尿小便嘘嘘汇集6| 日韩国内少妇激情av| 亚洲美女视频黄频| 亚洲欧美日韩卡通动漫| 午夜激情欧美在线| 在线观看舔阴道视频| 亚洲真实伦在线观看| 色综合亚洲欧美另类图片| 亚洲精品国产成人久久av| 亚洲欧美激情综合另类| 午夜激情福利司机影院| 人妻丰满熟妇av一区二区三区| 国产黄片美女视频| 精品久久久久久,| 免费大片18禁| 亚洲人成伊人成综合网2020| 午夜精品一区二区三区免费看| 日本-黄色视频高清免费观看| 一区福利在线观看| 国产成人影院久久av| av黄色大香蕉| 国产黄片美女视频| 国产免费av片在线观看野外av| videossex国产| 国产精品久久电影中文字幕| 波野结衣二区三区在线| 69人妻影院| 成人美女网站在线观看视频| www.色视频.com| 久久精品国产亚洲网站| 一进一出抽搐gif免费好疼| 毛片一级片免费看久久久久 | 久久久久久久久久黄片| 精品99又大又爽又粗少妇毛片 | 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 亚洲五月天丁香| 赤兔流量卡办理| 国产精品,欧美在线| 国产亚洲欧美98| 国产一区二区三区视频了| 国产伦人伦偷精品视频| 日韩在线高清观看一区二区三区 | 欧美高清性xxxxhd video| 神马国产精品三级电影在线观看| 在现免费观看毛片| 日韩精品中文字幕看吧| 丰满乱子伦码专区| 天堂网av新在线| 搡女人真爽免费视频火全软件 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品成人久久久久久| 18禁黄网站禁片午夜丰满| 波野结衣二区三区在线| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点| 偷拍熟女少妇极品色| 亚洲av成人精品一区久久| 一级a爱片免费观看的视频| 国产精品嫩草影院av在线观看 | 国产伦人伦偷精品视频| 日日摸夜夜添夜夜添av毛片 | 国产成人一区二区在线| 亚洲熟妇中文字幕五十中出| 天堂影院成人在线观看| 久久精品国产亚洲av香蕉五月| 国产69精品久久久久777片| 成人av一区二区三区在线看| 午夜福利视频1000在线观看| 国产精品98久久久久久宅男小说| 制服丝袜大香蕉在线| 1024手机看黄色片| 欧美最新免费一区二区三区| 欧美激情在线99| 18+在线观看网站| 99热只有精品国产| 日韩欧美在线二视频| 久久国产乱子免费精品| 国产单亲对白刺激| 国产真实伦视频高清在线观看 | 在线观看一区二区三区| 午夜福利成人在线免费观看| 成人三级黄色视频| 桃色一区二区三区在线观看| 欧美一区二区精品小视频在线| 禁无遮挡网站| 国内精品一区二区在线观看| 深爱激情五月婷婷| 午夜视频国产福利| 欧美性猛交黑人性爽| 久久久精品大字幕| 欧美精品国产亚洲| 日本一本二区三区精品| 亚州av有码| 亚洲不卡免费看| 欧美区成人在线视频| 亚洲熟妇中文字幕五十中出| a在线观看视频网站| 校园春色视频在线观看| 久久香蕉精品热| 深夜精品福利| 乱系列少妇在线播放| 亚洲av成人精品一区久久| 久久久久久九九精品二区国产| or卡值多少钱| 亚洲人成伊人成综合网2020| 色综合婷婷激情| 精华霜和精华液先用哪个| 男女之事视频高清在线观看| 黄色丝袜av网址大全| 精品一区二区三区人妻视频| 国产黄a三级三级三级人| 精品无人区乱码1区二区| 伦精品一区二区三区| 国产蜜桃级精品一区二区三区| 好男人在线观看高清免费视频| 在线国产一区二区在线| 熟女电影av网| 国产精品一区二区三区四区久久| 最近在线观看免费完整版| 国产精品人妻久久久久久| 婷婷色综合大香蕉| 真人一进一出gif抽搐免费| 久久久久免费精品人妻一区二区| 男女做爰动态图高潮gif福利片| 给我免费播放毛片高清在线观看| 中国美白少妇内射xxxbb| 亚洲精华国产精华液的使用体验 | 国产精品98久久久久久宅男小说| 亚州av有码| 国产视频内射| 淫妇啪啪啪对白视频| 婷婷六月久久综合丁香| 在线免费十八禁| 欧美日本视频| 亚洲国产欧洲综合997久久,| 色视频www国产| 亚洲国产高清在线一区二区三| 最近视频中文字幕2019在线8| 国产日本99.免费观看| 欧美区成人在线视频| 国产精品一及| 春色校园在线视频观看| 乱码一卡2卡4卡精品| 老熟妇仑乱视频hdxx| 琪琪午夜伦伦电影理论片6080| 午夜福利视频1000在线观看| 欧美绝顶高潮抽搐喷水| 国产免费av片在线观看野外av| 午夜精品久久久久久毛片777| 亚洲欧美日韩东京热| 国产91精品成人一区二区三区| 亚洲成人久久爱视频| .国产精品久久| 丰满人妻一区二区三区视频av| 日韩 亚洲 欧美在线| 欧美绝顶高潮抽搐喷水| 九九久久精品国产亚洲av麻豆| 久99久视频精品免费| 日本熟妇午夜| 久久久久久久午夜电影| 国产综合懂色| 91av网一区二区| a级毛片a级免费在线| 少妇的逼水好多| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久人妻蜜臀av| 国产精品爽爽va在线观看网站| 日韩欧美在线乱码| 一级毛片久久久久久久久女| 亚洲国产精品合色在线| 久久6这里有精品| 内射极品少妇av片p| 欧美激情在线99| 国语自产精品视频在线第100页| 亚洲七黄色美女视频| 国产av麻豆久久久久久久| 久久久久久伊人网av| 国产高清三级在线| 国产精品,欧美在线| 极品教师在线视频| 色在线成人网| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久精品电影| 九色国产91popny在线| 波多野结衣高清作品| 国产精品野战在线观看| 综合色av麻豆| 成人永久免费在线观看视频| 免费搜索国产男女视频| 久久精品91蜜桃| 国产真实乱freesex| 亚洲成人久久性| 熟女人妻精品中文字幕| 国产午夜精品久久久久久一区二区三区 | 国产精品久久视频播放| 身体一侧抽搐| 日本撒尿小便嘘嘘汇集6| 国产 一区精品| 99热这里只有精品一区| 美女高潮喷水抽搐中文字幕| 亚洲中文日韩欧美视频| 狠狠狠狠99中文字幕| 国产白丝娇喘喷水9色精品| 日韩高清综合在线| 22中文网久久字幕| 免费看日本二区| 国产高清激情床上av| 九色国产91popny在线| 国产黄a三级三级三级人| 亚洲午夜理论影院| 亚洲七黄色美女视频| 亚洲av二区三区四区| 久久久久国内视频| 久久热精品热| 99久国产av精品| 久久99热这里只有精品18| 日韩欧美国产在线观看| 亚洲国产欧美人成| 国产精品乱码一区二三区的特点| 99riav亚洲国产免费| 成年女人看的毛片在线观看| 可以在线观看的亚洲视频| 人人妻人人澡欧美一区二区| 日韩欧美在线二视频| 亚洲自偷自拍三级| 日韩在线高清观看一区二区三区 | 国产精品不卡视频一区二区| 一个人免费在线观看电影| 亚洲av二区三区四区| 一本一本综合久久| 自拍偷自拍亚洲精品老妇| 精品99又大又爽又粗少妇毛片 | 日日摸夜夜添夜夜添av毛片 | 国产高潮美女av| 99热这里只有是精品在线观看| 精品人妻视频免费看| 中国美女看黄片| 欧美最黄视频在线播放免费| 精品久久久久久,| 亚洲人成伊人成综合网2020| 婷婷亚洲欧美| 亚洲性夜色夜夜综合| 级片在线观看| 搡女人真爽免费视频火全软件 | 少妇人妻一区二区三区视频| 亚洲五月天丁香| 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 91精品国产九色| 夜夜看夜夜爽夜夜摸| 成人午夜高清在线视频| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| videossex国产| 国产免费男女视频| 日本精品一区二区三区蜜桃| 乱码一卡2卡4卡精品| 黄色女人牲交| 97超级碰碰碰精品色视频在线观看| 动漫黄色视频在线观看| 两个人视频免费观看高清| 欧美激情国产日韩精品一区| 久久久久久久久大av| 亚洲第一电影网av| 91午夜精品亚洲一区二区三区 | 国产探花在线观看一区二区| 亚洲av美国av| 精品午夜福利视频在线观看一区| 亚洲欧美日韩无卡精品| 精品欧美国产一区二区三| 欧美三级亚洲精品| 亚洲黑人精品在线| 日韩,欧美,国产一区二区三区 | 成人特级av手机在线观看| 99热这里只有是精品50| 亚州av有码| 欧洲精品卡2卡3卡4卡5卡区| 男女做爰动态图高潮gif福利片| 女的被弄到高潮叫床怎么办 | 亚洲在线观看片| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲av涩爱 | 精品久久久久久久久亚洲 | 精品久久国产蜜桃| 在线国产一区二区在线| 色精品久久人妻99蜜桃| 亚洲精品亚洲一区二区| 夜夜夜夜夜久久久久| 久久精品国产亚洲av香蕉五月| 日韩一区二区视频免费看| 久久久精品欧美日韩精品| 国产精品1区2区在线观看.| 久99久视频精品免费| 国产av在哪里看| 国产在视频线在精品| 久久亚洲精品不卡| 国产av麻豆久久久久久久| 欧美zozozo另类| 亚洲精品一卡2卡三卡4卡5卡| bbb黄色大片| 国产主播在线观看一区二区| 精品久久久久久久久久免费视频| 日本免费a在线| 亚洲第一区二区三区不卡| 午夜激情欧美在线| 他把我摸到了高潮在线观看| 国产亚洲精品av在线| 两个人视频免费观看高清| 在线观看免费视频日本深夜| 别揉我奶头~嗯~啊~动态视频| av专区在线播放| 2021天堂中文幕一二区在线观| 国内精品宾馆在线| 无遮挡黄片免费观看| 亚洲人成网站高清观看| 亚洲国产欧美人成| 国产在视频线在精品| 麻豆国产97在线/欧美| 日韩精品中文字幕看吧| 高清毛片免费观看视频网站| 国产爱豆传媒在线观看| 99在线视频只有这里精品首页| 精品久久久久久久久亚洲 | 欧美黑人欧美精品刺激| 在线播放无遮挡| 偷拍熟女少妇极品色| 又紧又爽又黄一区二区| 18禁黄网站禁片午夜丰满| av天堂在线播放| 亚洲第一电影网av| 欧美性感艳星| 欧美激情久久久久久爽电影| 国产美女午夜福利| 99热网站在线观看| 高清在线国产一区| av在线天堂中文字幕| 动漫黄色视频在线观看| 美女 人体艺术 gogo| 在线观看一区二区三区| 国产色爽女视频免费观看| 十八禁网站免费在线| 不卡视频在线观看欧美| 亚洲最大成人手机在线| 日本与韩国留学比较| 欧美国产日韩亚洲一区| 久久精品国产清高在天天线| 老司机深夜福利视频在线观看| 99久久精品国产国产毛片| 亚洲第一区二区三区不卡| 亚洲精品456在线播放app | 亚洲第一电影网av| 亚洲性夜色夜夜综合| 国产午夜福利久久久久久| 午夜激情欧美在线| 精品乱码久久久久久99久播| 亚洲欧美日韩东京热| 日本一二三区视频观看| 精品久久久久久久久亚洲 | 综合色av麻豆| 欧美三级亚洲精品| 精品午夜福利视频在线观看一区| 香蕉av资源在线| 久久久久久久久中文| 舔av片在线| 久久香蕉精品热| 极品教师在线视频| 国产伦精品一区二区三区视频9| 真人做人爱边吃奶动态| 久久久久九九精品影院| 精品一区二区三区人妻视频| 欧美高清性xxxxhd video| 听说在线观看完整版免费高清| 又黄又爽又免费观看的视频| 精品无人区乱码1区二区| 深夜精品福利| 欧美日本视频| 99在线视频只有这里精品首页| 久久这里只有精品中国| 国产探花在线观看一区二区| 午夜福利在线观看吧| 亚洲精品一区av在线观看| 久久久久精品国产欧美久久久| 校园人妻丝袜中文字幕| 久久精品人妻少妇| 欧美日韩亚洲国产一区二区在线观看| 精品久久国产蜜桃| 亚洲中文字幕日韩| 久久99热6这里只有精品| 亚洲国产欧洲综合997久久,| 婷婷精品国产亚洲av| 亚洲精品乱码久久久v下载方式| 乱人视频在线观看| 悠悠久久av|