• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-step self-calibrating generalized phase-shifting interferometry

    2022-03-12 07:44:22YuZhang張宇
    Chinese Physics B 2022年3期
    關(guān)鍵詞:張宇

    Yu Zhang(張宇)

    1Institute of Materials Physics,College of Science,Northeast Electric Power University,Jilin 132012,China

    2State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130022,China

    Keywords: self-calibrating generalized phase-shifting interferomertry,phase shift,difference interferograms,modulation amplitude

    1. Introduction

    Self-calibrating generalized phase-shifting interferometry(SGPSI) is a technique for extracting the phase map from three or more phase-shifting interferograms without knowing the phase shifts.[1]It removes the restriction that accurate phase-shifting interferometry (PSI) needs accurate phase shifter,thus,it has been widely used in high precision optical metrology. Over the past few decades, many ingenious SGPSIs have been developed,and they can be divided into iterative and non-iterative ones.[2]

    Among the iterative SGPSIs,an overdetermined approach that uses least-squares algorithms has been studied extensively for randomly phase-shifting interferograms. In 2004, Wang proposed an advanced iterative algorithm (AIA), which can obtain accurate phase distribution from more than three randomly phase-shifting interferograms.[3]It resolves the limitation of the existing iterative phase-shifting algorithms(PSAs)and separates the frame-to-frame iteration from the pixel-topixel iteration. After that,many iterative PSAs based on AIA were proposed. In 2008,a new generalized iterative algorithm for extracting phase distribution from randomly and spatially nonuniform phase-shifting interferograms was proposed,it requires only four randomly phase-shifting interferograms, and finally an accurate phase map is extracted by reducing the effects of transition and tilt errors.[4]In 2019,Chenet al.evaluated the performance of AIA,and proposed an enhanced AIA(eAIA)which can control the phase shifts,frame numbers and suppress noise.[5]In general, the iterative SGPSI is relatively accurate, but the convergence of the algorithm requires more time. Moreover,a moderate number of interferograms are required to ensure high performance.

    To save time,lots of non-iterative SGPSIs have been developed. In 2011, Vargaset al.designed a well-evaluated PSI based on the principal component analysis(PCA),which can obtain two orthogonal signals by PCA. It is very fast and requires very low computational requirements, so it can be used for very large images or very large image sets.[6]In 2015, Denget al.presented an advanced principal component analysis method, two difference maps were obtained by a simple subtraction operation easily, and then the phase can be calculated by the traditional PCA.[7]From 2016 to 2017, Yatabeet al. proposed a series of PSAs based on PCA which can accurately extract the phase by integrating spatial information.[8-10]PCA is very fast, however, it needs to subtract the background intensity by acquiring more than three phase-shifting interferograms, and the phase shift should be well distributed between 0 and 2π. In addition, PCA needs to confirm the sign of the phase by extra method. In 2014,Wanget al. designed an advanced Gram-Schmidt orthonormalization algorithm(GS3),it needs only three phase-shifting interferograms. Although it costs less time than PCA, its accuracy is lower than PCA with more than three phase-shifting interferograms.[11]Non-iterative SGPSIs cost less time,however,their accuracies are lower than that of iterative SGPSIs.

    Note that all these SGPSIs here can only deal with accuracy or computational time problem, and they are hard to get high accuracy and high speed at the same time. In order to balance the speed and accuracy,it is essential to study the fast and accurate SGPSI.

    In this paper,a fast and accurate three-step SGPSI to cope with the above problems is proposed.We first discuss the principles of the proposed method and then give its verification by computer simulations and experiments. Moreover, we compare the proposed method with AIA, PCA and GS3 to verify its outstanding performance.

    2. Algorithm description

    The expression of theithframe phase-shifting interferogram is

    whereai(x,y) andbi(x,y) respectively represent the background intensity and modulation amplitude of the interferograms,φ(x,y)is the tested phase,θiis the phase shift,irepresents the image index(i=1, 2, 3), and the size of interferograms isNx×Ny.θ1can be considered to be zero without losing generality. The spatial coordinates have been omitted below for convenience.

    Firstly, we implement the subtraction between the 1stphase-shifting interferogram and theithphase-shifting interferogram. Generally for the background intensity and modulation amplitude distributions, both the fluctuation between different interferograms and the non-uniformity between different pixels exist,however,the subtraction can still filter most of the background intensity. Hence,for simplicity,we assume thatai(x,y)andbi(x,y)are irrelevant to the image index,and only relevant to the pixel position in the subtraction process.

    We calculate the intensity of difference maps between the 1stphase-shifting interferogram and theithphase-shifting interferogram as

    where‖·‖represents the 2-norm.

    Here ?D1and ?D2can be considered as two phase-shifting interference signals with no background intensity,Δis the phase shift,andcrepresents the new modulation amplitude. The difference betweenφandΦ′is a constant,which does not affect the phase distribution,soΦ′can express the tested phase. Because of the fluctuation,non-uniformity of the original modulation amplitudeband the approximation error of Eq.(6),the new modulation amplitudecis both relevant to the pixel position and image index. Hence Eqs. (7) and (8) are rewritten as

    wherem=1, 2 denotes the index of the new phase-shifting interference signals,Δ1=0 andΔ2=Δ.

    To depress the noise, we use the mean of the adjacent pixels to generate the new pixel, then the new phase-shifting interferograms are generated. The distribution diagram of the adjacent pixels is shown in Fig. 1, andMis the number of adjacent pixels.

    Fig.1. Distribution diagram of the adjacent pixels.

    Note that the boundary of new phase-shifting interference signals must be extended properly so thatMadjacent pixels are valid, such as ?Dm(Nx+1,Ny) is out of the range.According to the above eight situations in Fig. 1, we extend the size of the normalized difference maps fromNx×Nyto(Nx+4)×(Ny+4). The values of the 1stand the 2ndrows for the extended maps with the size of(Nx+4)×(Ny+4)are the same as that of the 1strow for the original maps with the size ofNx×Ny. The values of the(Nx+3)thand the(Nx+4)throws for the extended maps are the same as that of theNthxrow for the original maps. Moreover, the values of the 3rdto the(Nx+2)throws for the extended maps are the same as that of the 1stto the (Nx)throws for the original maps. Finally, the extension of the column is the same as the row.

    The expression of the new phase-shifting interferograms can be written as

    where std(·) denotes the standard deviation, and mean(·) denotes the mean value.The normalization to the mean can make this quantity independent of different measurements. According to Eq.(12),CV can be used as a parameter to evaluate the variation of the modulation amplitudeη.ηwill be irrelevant to the pixel position and image index ideally. However, because of the fluctuation, non-uniformity of the original modulation amplitudeb, the approximation error of Eq. (6) and noise depression error,ηis both relevant to the pixel position and image index. Althoughηis not a constant for different pixel positions,the difference between different pixels will also be very small. Hence,when the phase shiftδis accurate,ηis also accurate,and CV will be minimum,so the phase shiftδcan be determined through searching the minimum of CV,

    In order to further save time,a limited of pixels with equal interval can be chosen to take part in the searching process.

    3. Simulation verification

    The validity of the proposed method have been verified by the numerical simulations. In the following,all computations are performed with the CPU of Intel(R) Core(TM) i5-8265U and the 8 GB memory, and we use the Matlab software for coding.

    Figures 2(m)and 2(n)present the new phase-shifting interferograms after suppressing the noise as Fig. 1 (M=25),and we can see that the new phase-shifting interferograms are more clear than the original phase-shifting interferograms.After calculating the CV of the modulation amplitude with different phase shifts(the number of chosen samples is 41×41),Fig. 2(o) is obtained, and the phase shift between Figs. 2(m)and 2(n)corresponding to the valley can be just used to rebuild the phase map. The rebuilt phase map using the found phase shift and phase error map are given in Fig. 2(p) (note that,there are two steps to obtain the phase error map, firstly, we implement the subtraction between the rebuilt phase map and theoretical phase map,then we subtract the minimum from the existing phase error map),and the results of AIA method and PCA/GS3 method are shown in Figs.2(q)and 2(r). We calculate the RMS of phase error and computational time,as listed in Table 1. From Figs. 2(p)-2(r) and Table 1, it can be seen that the accuracy of the proposed method is higher than that of AIA, PCA and GS3, and it costs relatively less time, the accuracy of PCA and GS3 are same,but GS3 costs less time.

    We also study the effect of noise to the optimalM, and the number of chosen pixels is 41×41. Figure 2(s)shows the results, and it can be seen that, if the SNR is 20 dB,whenMis increasing,the phase error is decreasing,and for other situations,whenMis equal to 2,the phase error is maximum due to the asymmetric error of the adjacent pixels(see Fig.1). In fact,for any level of noise,the asymmetric error always exists whenMis equal to 2,however,the effect of 20 dB of noise is larger than that of the asymmetric error. In the actual experiments,the level of noise is unknown,so it is best not to setMequal to 2 to avoid the effect of asymmetric error. In addition,if the SNR is greater than 30 dB, the phase error whenMis equal to 3 is minimum. Therefore,it can be concluded that the optimalMis 25 when the SNR is 20 dB,and the optimalMis 3 if the SNR is greater than 30 dB.Although the optimalMis different for different levels of noise,whenMis equal to 3,the phase error with 20 dB noise is also relatively small,therefore,3 can be chosen as the commonMin different cases.

    Fig. 2. Illustration of the proposed method with simulated circular fringes. (a) and (b) Background intensity and modulation amplitude maps. (c)Theoretical phase map. (d)-(f)Three simulated interferograms(size: 401×401)with phase shifts θ =(0,1,3)rad. (g)and(h)Normalized difference signals as Eqs. (7) and (8). (i) and (j) RMS phase errors and computational time with different M. (k) and (l) RMS phase errors and computational time with different number of chosen pixels. (m)and(n)New phase-shifting interference signals of Eq.(10). (o)Coefficients of variation calculated by Eq.(12). (p)-(r)Reconstructed phase maps and phase error maps from the proposed,AIA,and PCA/GS3 methods,respectively. (s)RMS phase errors with different M for different levels of noise.

    It is interesting to analyze the performance of the proposed method,AIA,PCA and GS3 with various phase shifts.For the proposed method,Mis chosen as 25, the number of chosen pixels is 41×41, and other conditions remain unchanged as the circular fringes. The phase shifts of the 1stand 2ndphase-shifting interference signals remain the same, and the phase shift of the 3rdphase-shifting signal is changed from 1.3 rad to 6.0 rad. Figure 3(a)shows the results,and it can be seen that the phase error varies with the change of the phase shift with regard to different methods,and the closer to 1.3 rad and 6 rad,the larger the RMS phase error is,when the practical phase shift(θ3-θ2)/2 is close to 0 rad orπrad,and the RMS phase error will be significantly large.In addition,the range of phase shift of the proposed method is larger than that of other methods. In the whole range of phase shift, the accuracy of the proposed method is higher than that of other methods,and the accuracies of AIA and PCA/GS3 are similar for most of the phase shifts. Moreover, we also simulate the situation of small phase shifts,such as the phase shifts are set as 0,0.1 rad and 0.2 rad. When the SNR of noise is greater than 50 dB,all methods work,otherwise,they do not work because of the large noise. In the actual experiment, the noise distribution is more complex and must exist, so very small phase shifts are not suitable for general methods, including the proposed method. In the future work,we may find or study a method to slove this problem.[12]

    We also test the proposed method at different levels of noise in Fig. 3(b), compared with the current well-evaluated SGPSI. The accuracy of the proposed method is higher than that of AIA, PCA/GS3, and they are almost stable for different levels of noise. If the SNR of noise is less than 40 dB,the RMS phase error of AIA,PCA/GS3 is decreasing with the decrease of the noise, and if the SNR of noise is greater than 40 dB,they are all stable. Moreover,the RMS phase error of PCA/GS3 is large as AIA when the noise is large,but it can be similar to the proposed method if the SNR of noise is greater than 40 dB.From the above analysis,we can conclude that the proposed method is more insensitive to the noise,and suitable for any levels of noise.

    As mentioned before Eq. (6), the proposed method requires more than one fringe in the interferograms. In fact, if the number of fringes is less than one,the phase error may be relatively large, but it can also reconstruct the phase distribution. To verify this point, we compute the RMS phase errors with different number of fringes from 0 to 4, and the other parameters are same as Figs. 2(d)-2(f). Figure 3(c) presents the results,the RMS phase errors of all methods are almost invariable if the number of fringes is larger than one. However,when there is less than one fringe in the interferograms, the performance of AIA, PCA/GS3 gets worse. By contrast, the proposed method always performs well.

    Fig. 3. Comparisons on the RMS phase errors between different methods. (a) RMS phase errors with different phase shifts θ3 (θ1 =0,θ2=1 rad). (b)RMS phase errors with different levels of noise. (c)RMS phase errors with different number of fringes.

    We also simulate the complex fringes,the phase is set asφ(x,y)=4x2+4y2+4x3+4y3+4peaks(401),other conditions are the same as the circular fringes,and finally the conclusion is the same as the circular fringes. As shown in Fig.4 and Table 1,we can conclude that the proposed method is accurate and efficient for different kinds of fringes.

    Fig. 4. Illustration of the proposed method with simulated complex fringes. (a)-(c) Three simulated interferograms (size: 401×401) with phase shifts θ =(0,1,3) rad. (d) Theoretical phase map. (e) and (f) Normalized difference signals as Eqs. (7) and (8). (g) and (h) New phase-shifting interference signals of Eq.(10). (i)Coefficients of variation calculated by Eq.(12). (j)-(l)Reconstructed phase maps and phase error maps from the proposed,AIA,and PCA/GS3 methods,respectively. (m)RMS phase errors with different M for different levels of noise.

    4. Demonstration with experimental data

    The performance of the proposed method is also verified by the experimental interferograms with different kinds of fringes. Four phase-shifted interferograms with the phase shifts 0,π/2,π,and 3π/2 are acquired by the snapshot phaseshifting interferometer,the phase shift error will be very small because only a single image snapshotted is extracted by the polarization camera, and the highly accurate phase extracted by standard 4-step PSI can be set as the reference phase. According to the conclusion of above simulations, the number of chosen pixels to search the minimum CV with different phase shifts is set as 41×41. The interferograms with circular fringes are shown in Figs. 5(a)-5(d), and the reference phase map is shown in Fig.5(e). The normalized difference signals without the background intensity are presented in Figs. 5(f)-5(g),the curve of RMS phase errors with variousMis plotted in Fig.5(h),and it can be seen that,whenMis equal to 3,the RMS phase error is minimum,and it is the same as the simulation with the SNR of noise greater than 30 dB.Therefore,3 can be chosen as the optimalM. The new phase-shifting interferograms after suppressing the noise are presented in Figs.5(i)and 5(j), after calculating the CV of the modulation amplitude with different phase shifts(Fig.5(j)),the phase shift between the new phase-shifting interferograms corresponding to the valley can be just used to reconstruct the phase map, the difference map between the reference and rebuilt phase maps is regarded as the phase error map,and then subtract the minimum from the existing phase error map,the phase and phase error maps are shown in Fig. 5(l), and the results of AIA,PCA/GS3 are given in Figs.5(m)and 5(n).

    Fig. 5. Experimental phase reconstruction with circular fringes. (a)-(d) Four interferograms (size: 401×401) with phase shifts θ =(0,π/2,π,3π/2)rad. (e)Reference phase map calculated by standard 4-step PSI.(f)and(g)Normalized difference signals as Eqs.(7)and(8).(h)RMS phase errors with different M. (i)and(j)New phase-shifting interference signals of Eq.(10). (k)Coefficients of variation calculated by Eq.(12). (l)-(n)Reconstructed phase maps and phase error maps from the proposed,AIA,and PCA/GS3 methods.

    Fig.6. Experimental phase reconstruction with complex fringes. (a)-(d)Four interferograms(size: 201×201)with phase shifts θ =(0,π/2,π, 3π/2) rad. (e) Reference phase map calculated by standard 4-step PSI. (f) and (g) Normalized difference signals as Eqs. (7) and (8). (h)RMS phase errors with different M. (i)and(j)New phase-shifting interference signals of Eq.(10). (k)Coefficients of variation calculated by Eq.(12). (l)-(n)Reconstructed phase maps and phase error maps from the proposed,AIA,and PCA/GS3 methods.

    We also test the proposed method, AIA, PCA and GS3 with experimental complex fringes from a deformable mirror,as shown in Fig.6,where the optimalMis also 3.The RMS of phase errors and computational time of different methods are listed in Table 1. From Figs. 5, 6 and Table 1, ifM=1, the RMS phase error is so large because the phase map after unwrapping is unsmooth,so the suppression of noise is very important,and the RMS phase errors of AIA,PCA and GS3 are also large due to the same reason as the proposed method with the situation ofM=1. For the experiment,whether the background intensity and modulation amplitude distributions or the noise distribution may be more complex than the simulation,and PCA and AIA generally need more than three interferograms to obtain good performance,hence when the conditions are more complex, they do not work. However, the proposed method is suitable for different experimental conditions,and it can obtain highly accurate phase map and cost relatively less time simultaneously with only three randomly phase-shifting interferograms.

    Table 1. RMS phase errors and computational time via proposed,AIA,PCA and GS3 methods.

    5. Conclusions

    In conclusion,an accurate and timesaving three-step selfcalibrating phase-shifting interferometry is proposed. Both simulated and experimental results indicate that the proposed method can reconstruct the accurate phase map with high efficiency, even compared with the well-evaluated SGPSIs-AIA,PCA and GS3. Moreover,the proposed method performs well in different phase shifts,levels of noise and number of fringes.Lastly, the proposed method is suitable for different kinds of fringes and experimental conditions. We expect this method to be widely used in the future.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61905039), Jilin Scientific and Technological Development Program, China(Grant No. 20190701018GH), Education Department of Jilin Province,China(Grant No.JJKH20190691KJ),and State Key Laboratory of Applied Optics.

    猜你喜歡
    張宇
    張宇作品
    Characteristics of plasma in a novel laserassisted pulsed plasma thruster
    有點“二”的女生也很可愛
    The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant
    娛樂圈神秘貴婦,拒絕劉德華后將丈夫捧成巨星
    Experimental investigation on the plasma morphology of ablative pulsed plasma thruster with tongue-shaped and flared electrodes
    Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy
    連續(xù)流動
    智富時代(2015年9期)2016-01-14 06:47:34
    張宇背后的大女人——十一郎
    張宇背后的大女人
    ——十一郎
    亚洲图色成人| 亚洲精品日韩在线中文字幕| 国产成人免费观看mmmm| 91精品国产国语对白视频| 少妇 在线观看| 国产日韩欧美亚洲二区| av有码第一页| 精品久久久久久久久亚洲| 国产视频首页在线观看| 国产精品一区www在线观看| 亚洲国产精品国产精品| 免费大片黄手机在线观看| 中文天堂在线官网| 国产精品免费大片| 亚洲av免费高清在线观看| 蜜桃久久精品国产亚洲av| 99国产精品免费福利视频| 亚洲av中文av极速乱| 国产男女内射视频| 国产成人aa在线观看| 在线观看人妻少妇| 我的老师免费观看完整版| 成人国产av品久久久| av电影中文网址| 午夜精品国产一区二区电影| videosex国产| 国产成人免费观看mmmm| 久久久久网色| 考比视频在线观看| 大香蕉久久成人网| 亚洲熟女精品中文字幕| 最黄视频免费看| 草草在线视频免费看| 日韩三级伦理在线观看| 最近最新中文字幕免费大全7| 国产伦精品一区二区三区视频9| 少妇人妻久久综合中文| 五月伊人婷婷丁香| 亚洲国产av影院在线观看| 国精品久久久久久国模美| 超碰97精品在线观看| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 97在线视频观看| 男人爽女人下面视频在线观看| 少妇精品久久久久久久| 中文天堂在线官网| 9色porny在线观看| 99热这里只有是精品在线观看| 国产淫语在线视频| 女人久久www免费人成看片| 边亲边吃奶的免费视频| 免费高清在线观看视频在线观看| 日日撸夜夜添| 色哟哟·www| 亚洲欧洲精品一区二区精品久久久 | 高清毛片免费看| 久久久久国产网址| 草草在线视频免费看| 亚洲婷婷狠狠爱综合网| 一级爰片在线观看| 91午夜精品亚洲一区二区三区| 午夜久久久在线观看| 国产老妇伦熟女老妇高清| 天天影视国产精品| 91久久精品电影网| 免费大片18禁| 自线自在国产av| 女性生殖器流出的白浆| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 亚洲丝袜综合中文字幕| av在线观看视频网站免费| 国产精品一区二区在线不卡| 欧美丝袜亚洲另类| 国产成人精品福利久久| 亚洲精品自拍成人| 亚州av有码| 免费观看无遮挡的男女| 久久精品国产亚洲网站| 久久狼人影院| 欧美最新免费一区二区三区| 大香蕉久久成人网| 精品久久国产蜜桃| 日韩免费高清中文字幕av| 国产精品蜜桃在线观看| 免费看不卡的av| 日本黄大片高清| 视频区图区小说| 久久影院123| 亚洲国产色片| tube8黄色片| 国产成人精品在线电影| 哪个播放器可以免费观看大片| 国产精品免费大片| av不卡在线播放| 国产深夜福利视频在线观看| 亚洲在久久综合| 最新的欧美精品一区二区| 有码 亚洲区| 久久久久国产精品人妻一区二区| 国产伦理片在线播放av一区| 搡女人真爽免费视频火全软件| 热re99久久国产66热| 精品亚洲成国产av| 午夜日本视频在线| 亚洲,一卡二卡三卡| 免费黄网站久久成人精品| 国产av精品麻豆| 18禁裸乳无遮挡动漫免费视频| 老司机影院成人| 精品人妻一区二区三区麻豆| 国产伦理片在线播放av一区| 高清午夜精品一区二区三区| 亚洲精品aⅴ在线观看| 亚洲欧洲国产日韩| 各种免费的搞黄视频| 国国产精品蜜臀av免费| 最近中文字幕高清免费大全6| 精品国产国语对白av| 一边摸一边做爽爽视频免费| 亚洲国产欧美日韩在线播放| 国产av一区二区精品久久| 三级国产精品欧美在线观看| 国产精品一区二区在线不卡| 亚洲少妇的诱惑av| 国产精品国产三级专区第一集| 黄片播放在线免费| 高清在线视频一区二区三区| 一级,二级,三级黄色视频| 国产成人av激情在线播放 | 亚洲国产精品一区二区三区在线| 亚洲精品国产色婷婷电影| 另类精品久久| 亚洲成人av在线免费| 在线观看三级黄色| 秋霞在线观看毛片| 黄色一级大片看看| 精品久久久久久久久av| 亚洲国产成人一精品久久久| 日本黄大片高清| 亚洲av电影在线观看一区二区三区| 久久久久久久大尺度免费视频| 亚洲成人av在线免费| 久久久国产一区二区| 少妇熟女欧美另类| 免费高清在线观看日韩| 免费av中文字幕在线| 国产亚洲一区二区精品| 女人久久www免费人成看片| 亚洲精品乱久久久久久| 久久99热6这里只有精品| 精品人妻在线不人妻| 夫妻性生交免费视频一级片| 日本与韩国留学比较| 一边亲一边摸免费视频| 国产成人免费无遮挡视频| 黄色视频在线播放观看不卡| 久久精品国产a三级三级三级| 免费人成在线观看视频色| 色94色欧美一区二区| 亚洲精品色激情综合| 女性被躁到高潮视频| 国产成人午夜福利电影在线观看| 亚洲天堂av无毛| 国模一区二区三区四区视频| 久久亚洲国产成人精品v| 又大又黄又爽视频免费| 精品一区二区三区视频在线| 国产成人精品福利久久| 精品久久久久久久久av| 纯流量卡能插随身wifi吗| 日本免费在线观看一区| 在线观看美女被高潮喷水网站| 99久久人妻综合| 国产女主播在线喷水免费视频网站| 99九九线精品视频在线观看视频| 国产精品一二三区在线看| 丝袜喷水一区| 人人妻人人澡人人爽人人夜夜| 欧美日韩在线观看h| 午夜久久久在线观看| 中文字幕精品免费在线观看视频 | 久久久久久久大尺度免费视频| 国产精品.久久久| 日韩中文字幕视频在线看片| 久久精品久久久久久久性| 免费高清在线观看日韩| 国产综合精华液| 97在线人人人人妻| 一区在线观看完整版| 2021少妇久久久久久久久久久| 国产伦理片在线播放av一区| 亚洲综合色网址| 另类精品久久| 久久热精品热| 美女内射精品一级片tv| a级片在线免费高清观看视频| 草草在线视频免费看| 水蜜桃什么品种好| 精品国产一区二区三区久久久樱花| 激情五月婷婷亚洲| 一个人免费看片子| 又大又黄又爽视频免费| 三级国产精品片| 免费高清在线观看日韩| 校园人妻丝袜中文字幕| 考比视频在线观看| 日韩中文字幕视频在线看片| 国产爽快片一区二区三区| 欧美精品人与动牲交sv欧美| 丰满少妇做爰视频| 亚洲精华国产精华液的使用体验| 大话2 男鬼变身卡| 国产精品免费大片| 99热全是精品| 麻豆成人av视频| 婷婷色综合大香蕉| 卡戴珊不雅视频在线播放| 亚洲少妇的诱惑av| 国产免费一级a男人的天堂| 一级a做视频免费观看| 亚洲精品成人av观看孕妇| 午夜福利,免费看| 少妇丰满av| 亚洲国产最新在线播放| 国产日韩欧美亚洲二区| 观看av在线不卡| 简卡轻食公司| av.在线天堂| 国产黄片视频在线免费观看| 欧美变态另类bdsm刘玥| 爱豆传媒免费全集在线观看| 中文字幕制服av| a级毛片在线看网站| 18禁在线无遮挡免费观看视频| 成年女人在线观看亚洲视频| 亚洲激情五月婷婷啪啪| 午夜福利视频精品| 男女无遮挡免费网站观看| 欧美日韩精品成人综合77777| 免费观看的影片在线观看| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 久久久久久久大尺度免费视频| 母亲3免费完整高清在线观看 | 自线自在国产av| 久久久久久久久久久免费av| 中国三级夫妇交换| 热re99久久国产66热| 高清毛片免费看| 人人妻人人爽人人添夜夜欢视频| 亚洲av国产av综合av卡| 国产视频首页在线观看| 久久精品夜色国产| 成人免费观看视频高清| 成人漫画全彩无遮挡| av在线老鸭窝| 久久久久精品久久久久真实原创| 最近手机中文字幕大全| 又黄又爽又刺激的免费视频.| 精品少妇黑人巨大在线播放| 边亲边吃奶的免费视频| 免费久久久久久久精品成人欧美视频 | 人妻夜夜爽99麻豆av| 97超视频在线观看视频| 午夜精品国产一区二区电影| 日本av免费视频播放| 精品人妻熟女av久视频| 午夜福利网站1000一区二区三区| 一区二区三区乱码不卡18| 久久久久久久久久成人| 久久ye,这里只有精品| 一个人免费看片子| 亚洲av男天堂| 高清毛片免费看| 中文欧美无线码| 曰老女人黄片| 亚洲国产精品一区二区三区在线| 夜夜骑夜夜射夜夜干| 国产精品一区二区三区四区免费观看| 黄色怎么调成土黄色| 日韩欧美一区视频在线观看| 777米奇影视久久| 伊人久久国产一区二区| 草草在线视频免费看| 婷婷色av中文字幕| 蜜臀久久99精品久久宅男| 亚洲精品国产av成人精品| 岛国毛片在线播放| 国产av国产精品国产| 中国美白少妇内射xxxbb| 啦啦啦在线观看免费高清www| 亚洲精品一区蜜桃| 亚洲欧洲国产日韩| 久久久久久人妻| 亚洲色图 男人天堂 中文字幕 | 18禁动态无遮挡网站| 国产极品天堂在线| 国产 精品1| av.在线天堂| 91在线精品国自产拍蜜月| 考比视频在线观看| 丰满乱子伦码专区| 99久久精品一区二区三区| 一区二区av电影网| 蜜桃久久精品国产亚洲av| 亚洲熟女精品中文字幕| 国产一级毛片在线| 免费观看a级毛片全部| 麻豆精品久久久久久蜜桃| 永久免费av网站大全| 日韩欧美精品免费久久| 国产男女超爽视频在线观看| 亚洲欧美日韩卡通动漫| www.av在线官网国产| 亚洲情色 制服丝袜| 久热这里只有精品99| 精品久久蜜臀av无| 国产色婷婷99| 高清av免费在线| 一个人免费看片子| 国产精品人妻久久久影院| 伊人久久国产一区二区| 日本vs欧美在线观看视频| 中文字幕制服av| 国产精品一国产av| 国产日韩欧美视频二区| 22中文网久久字幕| 国产成人aa在线观看| 永久免费av网站大全| 国内精品宾馆在线| 制服丝袜香蕉在线| 中文乱码字字幕精品一区二区三区| 全区人妻精品视频| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区黑人 | 91久久精品国产一区二区成人| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 日本与韩国留学比较| 91精品伊人久久大香线蕉| 中文字幕久久专区| 一区二区三区精品91| 一本久久精品| 欧美人与善性xxx| 精品国产乱码久久久久久小说| 亚洲婷婷狠狠爱综合网| 日韩电影二区| 成人黄色视频免费在线看| av电影中文网址| 午夜免费男女啪啪视频观看| 超色免费av| 久久午夜福利片| 两个人免费观看高清视频| 又大又黄又爽视频免费| 欧美精品亚洲一区二区| 久久精品人人爽人人爽视色| 久久99热这里只频精品6学生| 国产伦理片在线播放av一区| 久久久久久久精品精品| 国产探花极品一区二区| 91久久精品国产一区二区成人| 大香蕉久久网| 亚洲成人手机| 九九在线视频观看精品| 国产亚洲精品久久久com| 夜夜看夜夜爽夜夜摸| 高清欧美精品videossex| 美女脱内裤让男人舔精品视频| 精品少妇内射三级| 午夜免费鲁丝| 亚洲精品一区蜜桃| 国产极品天堂在线| 久久亚洲国产成人精品v| 国产一区亚洲一区在线观看| 亚洲av不卡在线观看| 久久久亚洲精品成人影院| 好男人视频免费观看在线| 伦精品一区二区三区| √禁漫天堂资源中文www| 91成人精品电影| 最黄视频免费看| 国产视频内射| 欧美精品一区二区大全| 国产成人a∨麻豆精品| 免费看不卡的av| 又粗又硬又长又爽又黄的视频| 狠狠精品人妻久久久久久综合| 亚洲精品日韩在线中文字幕| 99久国产av精品国产电影| 免费av不卡在线播放| 综合色丁香网| 亚洲国产精品999| 国产视频首页在线观看| 国产伦理片在线播放av一区| 国精品久久久久久国模美| 久久久国产精品麻豆| 久久97久久精品| 色94色欧美一区二区| 国产免费一区二区三区四区乱码| 国产精品久久久久久久电影| 欧美日韩av久久| 视频在线观看一区二区三区| 国产一级毛片在线| 精品久久久久久电影网| 黄色欧美视频在线观看| 狂野欧美激情性xxxx在线观看| 日韩在线高清观看一区二区三区| 天美传媒精品一区二区| 看十八女毛片水多多多| videossex国产| 欧美xxⅹ黑人| 水蜜桃什么品种好| 国产一区二区三区av在线| 久久久久久久大尺度免费视频| 成人国产麻豆网| 涩涩av久久男人的天堂| 啦啦啦在线观看免费高清www| 久热这里只有精品99| 亚洲av电影在线观看一区二区三区| 久久久久久久久久成人| 美女内射精品一级片tv| 亚洲av日韩在线播放| 国产精品久久久久久精品电影小说| 一级,二级,三级黄色视频| 青春草国产在线视频| 午夜av观看不卡| 免费黄网站久久成人精品| 国产黄频视频在线观看| a 毛片基地| 91精品三级在线观看| 国产男女内射视频| 在线亚洲精品国产二区图片欧美 | 嫩草影院入口| 97超碰精品成人国产| 成人国产麻豆网| 少妇 在线观看| 欧美xxⅹ黑人| 99九九在线精品视频| 晚上一个人看的免费电影| av.在线天堂| 91精品伊人久久大香线蕉| 精品亚洲成国产av| 这个男人来自地球电影免费观看 | 亚洲国产精品一区二区三区在线| 狂野欧美白嫩少妇大欣赏| 国产午夜精品久久久久久一区二区三区| 三上悠亚av全集在线观看| 国产一区二区在线观看av| 日本欧美视频一区| 日韩强制内射视频| 五月开心婷婷网| av电影中文网址| 伊人亚洲综合成人网| 性色av一级| 亚洲av成人精品一二三区| 亚洲欧美色中文字幕在线| 免费av中文字幕在线| 91精品三级在线观看| 王馨瑶露胸无遮挡在线观看| .国产精品久久| 在线 av 中文字幕| 亚洲美女黄色视频免费看| 九九爱精品视频在线观看| 国产精品人妻久久久影院| 久久久欧美国产精品| 免费观看性生交大片5| 欧美最新免费一区二区三区| 欧美日韩av久久| 91aial.com中文字幕在线观看| 久久精品国产亚洲av天美| 亚洲av福利一区| 日本猛色少妇xxxxx猛交久久| 男人添女人高潮全过程视频| 黄片播放在线免费| 成人亚洲欧美一区二区av| 国产片特级美女逼逼视频| 久久99蜜桃精品久久| 99久久人妻综合| 九色成人免费人妻av| 亚洲久久久国产精品| 亚洲高清免费不卡视频| 久久久久久久久久久久大奶| 特大巨黑吊av在线直播| 亚洲国产欧美在线一区| 国产伦理片在线播放av一区| 成人无遮挡网站| a级毛片在线看网站| 欧美 日韩 精品 国产| 一本—道久久a久久精品蜜桃钙片| h视频一区二区三区| 亚洲精品久久午夜乱码| 国产精品久久久久久久电影| 麻豆精品久久久久久蜜桃| 亚洲怡红院男人天堂| 精品一品国产午夜福利视频| 精品少妇久久久久久888优播| 熟女电影av网| 麻豆乱淫一区二区| 亚洲国产av影院在线观看| 精品一品国产午夜福利视频| 天美传媒精品一区二区| 九九在线视频观看精品| 麻豆精品久久久久久蜜桃| 精品久久久久久电影网| 国产午夜精品一二区理论片| 男男h啪啪无遮挡| 成人毛片a级毛片在线播放| 啦啦啦啦在线视频资源| 18禁裸乳无遮挡动漫免费视频| kizo精华| 一区二区三区乱码不卡18| 亚洲av国产av综合av卡| 亚洲国产精品国产精品| 国产高清国产精品国产三级| 久久国产精品大桥未久av| 51国产日韩欧美| 搡女人真爽免费视频火全软件| 精品一品国产午夜福利视频| 啦啦啦视频在线资源免费观看| 亚洲av日韩在线播放| 91精品国产九色| 五月玫瑰六月丁香| 国产成人freesex在线| 国产高清有码在线观看视频| 亚洲丝袜综合中文字幕| 成人国语在线视频| 高清毛片免费看| av免费观看日本| 丰满饥渴人妻一区二区三| 天天躁夜夜躁狠狠久久av| 久久久久精品性色| 母亲3免费完整高清在线观看 | 国产成人精品福利久久| 一区二区三区四区激情视频| 欧美日本中文国产一区发布| 91在线精品国自产拍蜜月| 女性生殖器流出的白浆| videossex国产| 精品熟女少妇av免费看| 中文乱码字字幕精品一区二区三区| 边亲边吃奶的免费视频| 午夜91福利影院| 精品人妻熟女毛片av久久网站| 婷婷色综合www| 中文欧美无线码| 午夜精品国产一区二区电影| 亚洲av男天堂| 日韩一区二区视频免费看| 久久 成人 亚洲| 一级,二级,三级黄色视频| 99久久人妻综合| 久久久久人妻精品一区果冻| 99视频精品全部免费 在线| 天堂俺去俺来也www色官网| 18禁裸乳无遮挡动漫免费视频| 亚洲久久久国产精品| 最近手机中文字幕大全| 国产免费一级a男人的天堂| 亚洲精品国产av蜜桃| 欧美少妇被猛烈插入视频| 伦精品一区二区三区| 精品少妇久久久久久888优播| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 全区人妻精品视频| 亚洲国产色片| 亚洲精品久久久久久婷婷小说| 亚洲一级一片aⅴ在线观看| 精品视频人人做人人爽| 夫妻午夜视频| 亚洲久久久国产精品| 91久久精品国产一区二区成人| 看十八女毛片水多多多| 亚洲高清免费不卡视频| 插逼视频在线观看| 精品一区二区三区视频在线| 亚洲激情五月婷婷啪啪| 超碰97精品在线观看| 搡女人真爽免费视频火全软件| 亚洲国产毛片av蜜桃av| 欧美国产精品一级二级三级| 高清视频免费观看一区二区| 国产成人免费无遮挡视频| 中文字幕人妻丝袜制服| 最近2019中文字幕mv第一页| 日本wwww免费看| 久久亚洲国产成人精品v| 一本一本综合久久| 免费播放大片免费观看视频在线观看| 久久毛片免费看一区二区三区| 日韩免费高清中文字幕av| 五月伊人婷婷丁香| 热99久久久久精品小说推荐| 人妻人人澡人人爽人人| 国产 一区精品| 在线观看免费视频网站a站| 亚洲国产最新在线播放| 男人操女人黄网站| 亚洲丝袜综合中文字幕| 一级毛片我不卡| 欧美人与性动交α欧美精品济南到 | av天堂久久9| 国产免费福利视频在线观看| 欧美成人午夜免费资源| 人人澡人人妻人| 亚洲av欧美aⅴ国产| videos熟女内射| 高清不卡的av网站| 蜜臀久久99精品久久宅男| 男人添女人高潮全过程视频| 精品国产国语对白av| 国产熟女午夜一区二区三区 |