池淏甜,陳實(shí)
基因組學(xué)技術(shù)解碼天然產(chǎn)物合成
池淏甜,陳實(shí)
武漢大學(xué) 藥學(xué)院 組合生物合成與新藥發(fā)現(xiàn)教育部重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430071
天然產(chǎn)物一直以來都是新藥發(fā)現(xiàn)的重要來源。自20世紀(jì)末以來,隨著組學(xué)技術(shù)的不斷發(fā)展,許多生物的基因組被破譯并解析,發(fā)現(xiàn)基因組中潛藏著眾多未知的天然產(chǎn)物生物合成基因簇,而這些基因簇在實(shí)驗(yàn)室生長條件下無法表達(dá)或低表達(dá)。因此,需要綜合運(yùn)用多種學(xué)科深入挖掘生物中潛藏的具有新型結(jié)構(gòu)和生物活性的天然產(chǎn)物,使其廣泛應(yīng)用于人類的生產(chǎn)生活。文中將從天然產(chǎn)物合成基因簇的挖掘、“沉默”天然產(chǎn)物合成途徑的激活和生物底盤構(gòu)建3個(gè)方面簡述基因組學(xué)技術(shù)在天然產(chǎn)物挖掘中的研究進(jìn)展。
基因組學(xué),天然產(chǎn)物,基因挖掘,生物底盤
20世紀(jì)40年代,第一個(gè)抗生素青霉素被發(fā)現(xiàn)并成功運(yùn)用于臨床以后,已有數(shù)千種結(jié)構(gòu)多樣的天然產(chǎn)物被發(fā)現(xiàn)并廣泛應(yīng)用于人類的生產(chǎn)生活中[1]。天然產(chǎn)物已成為抗生素、免疫抑制劑、抗惡性細(xì)胞增生劑、抗高血壓和抗病毒等藥物的重要來源[2-3]。在過去的35年中,美國FDA批準(zhǔn)的藥物超過半數(shù)都是源于天然產(chǎn)物[4]。因此,挖掘生物中的天然產(chǎn)物是制藥產(chǎn)業(yè)的重要支柱之一。
傳統(tǒng)觀點(diǎn)認(rèn)為生物只能產(chǎn)生數(shù)量有限的次級(jí)代謝產(chǎn)物。但隨著DNA測序技術(shù)和生物信息學(xué)的快速發(fā)展,鏈霉菌和曲霉屬真菌的第一個(gè)基因組序列被公布[5-6],生物潛藏的天然產(chǎn)物合成能力被發(fā)現(xiàn)。生物信息學(xué)分析預(yù)測鏈霉菌基因組,發(fā)現(xiàn)其可以產(chǎn)生約150 000多種潛在的抗菌藥物[7-8],然而到2005年只有約7 600個(gè)天然產(chǎn)物被確認(rèn)[4]。在標(biāo)準(zhǔn)的實(shí)驗(yàn)室生長條件下,多數(shù)次級(jí)代謝產(chǎn)物都未能表達(dá)或是低表達(dá)。這些“沉默”的生物合成基因簇(Biosynthetic gene clusters,BGCs) 可能編碼眾多結(jié)構(gòu)新穎的生物活性分子,而這些天然產(chǎn)物可以廣泛用于醫(yī)藥或是畜牧業(yè)[9]。因此,挖掘并喚醒這些“沉默”的次級(jí)代謝途徑可以極大地豐富現(xiàn)有的天然產(chǎn)物庫,為研發(fā)更具臨床應(yīng)用價(jià)值的藥物,解決愈發(fā)嚴(yán)重的抗生素耐藥性問題提供來源[10]。
組學(xué)時(shí)代的來臨,基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白組學(xué)和代謝組學(xué)等學(xué)科研究的不斷深入,有利于挖掘并激活生物中“沉默”的天然產(chǎn)物合成途徑。本文將從天然產(chǎn)物合成基因簇的挖掘、“沉默”天然產(chǎn)物合成途徑激活和生物底盤構(gòu)建3個(gè)方面介紹組學(xué)技術(shù)在天然產(chǎn)物挖掘中的研究進(jìn)展。
16S核糖體RNA (Ribosomal RNA,rRNA)的分析數(shù)據(jù)顯示,只有1%的細(xì)菌可以在實(shí)驗(yàn)室條件下進(jìn)行培養(yǎng)[11]。因此為了獲得活性豐富的天然產(chǎn)物,就需要突破傳統(tǒng)基于生物活性尋找天然產(chǎn)物的方法,尋找新的方法。宏基因組學(xué)則直接從環(huán)境DNA (Environment DNA,eDNA) 中獲取隱藏的編碼天然產(chǎn)物的基因序列[12]?;诳焖俦憬莸臏y序技術(shù)和累積的豐富數(shù)據(jù)信息,這種新方法可以打破傳統(tǒng)篩選模式,挖掘更多結(jié)構(gòu)多樣、生物活性優(yōu)良的天然產(chǎn)物。
宏基因組學(xué)的挖掘工作流程主要分為兩種。傳統(tǒng)方法需要構(gòu)建巨大的cosmid文庫,并對(duì)單個(gè)eDNA克隆進(jìn)行功能篩選。篩選克隆的方法較為多樣,如可視的檢測信號(hào)、生物活性、報(bào)告/生物傳感器或特定的催化反應(yīng)。最新發(fā)展的方法是基于生物合成中保守DNA序列的相似性,選擇性地獲取環(huán)境樣本中潛在的生物合成基因簇。隨后將篩選得到的基因簇進(jìn)行異源表達(dá),最終獲得新的化合物[13]。
傳統(tǒng)方法中,宏基因組文庫是通過提取eDNA、克隆并連接到穿梭載體上,然后轉(zhuǎn)化到合適的異源宿主中而構(gòu)建得到的。篩選陽性克隆的主要方法是觀察表型或色譜分離鑒定,也可以用報(bào)告/生物傳感器篩選系統(tǒng),如代謝調(diào)節(jié)表達(dá)系統(tǒng)(Metabolite-regulated expression,METREX)[14]和基質(zhì)誘導(dǎo)基因表達(dá)篩選系統(tǒng)(Substrate-induced gene expression screening,SIGEX)[15]。然而,這種方法發(fā)現(xiàn)的天然產(chǎn)物較少,結(jié)構(gòu)相對(duì)比較簡單,如抗菌色素(Violacein)[16]、靛玉紅(Indirubin) 及其同分異構(gòu)體(Indigo)[17]、N-?;野彼醄18]等。
最新發(fā)展的方法是從環(huán)境樣品中提取粗eDNA,通過聚合酶鏈反應(yīng)(Polymerase chain reaction,PCR) 擴(kuò)增子特異地針對(duì)天然產(chǎn)物生物合成基因簇內(nèi)的序列進(jìn)行篩選。其中PCR擴(kuò)增子的混合物稱為天然產(chǎn)物序列標(biāo)簽(Natural product sequence tags,NPSTs)?;贜PSTs的系統(tǒng)發(fā)育關(guān)系預(yù)測工具,如天然產(chǎn)物多樣性預(yù)測工具(Environmental surveyor of natural product,eSNaPD)[19]和天然產(chǎn)物結(jié)構(gòu)域檢測工具(Natural product domain search,NaPDos)[20],可以對(duì)DNA序列標(biāo)簽進(jìn)行系統(tǒng)分類和生物合成來源評(píng)價(jià),并與數(shù)據(jù)庫進(jìn)行比較,重組潛在的目標(biāo)生物合成基因簇。新方法構(gòu)建的宏基因組文庫是由重組的生物合成基因簇所組成,可以排除大多數(shù)與生物合成途徑無關(guān)的DNA序列。蛋白酶體抑制劑landepoxin A是通過該方法篩選得到,它是通過比較酮合成酶(Ketosynthase,KS) 結(jié)構(gòu)域序列標(biāo)簽和已知的環(huán)氧酮生物合成基因簇的KS結(jié)構(gòu)域,從宏基因組樣本中識(shí)別環(huán)氧酮蛋白酶抑制劑的衍生物而發(fā)現(xiàn)[21]。Brady等通過該方法篩選到色氨酸二聚體hydroxysporine和reductasporine[22]、細(xì)胞毒性蒽環(huán)霉素arimetamycin A[23]、抗生素tetarimycin A[24]、malacidins A和B[25]、蛋白酶體抑制劑clarepoxcins A-E、landepoxcins A和B[21]。
自20世紀(jì)末對(duì)生物體進(jìn)行基因組分析以來,已有超過7 000個(gè)微生物的基因組信息被報(bào)道。在這之前,人們認(rèn)為產(chǎn)生次級(jí)代謝物的微生物只含有少數(shù)幾種BGCs。然而,阿維鏈霉菌和天藍(lán)鏈霉菌的基因組解碼后發(fā)現(xiàn)有20–37個(gè)未知的生物合成基因簇[6,26–27]。生物信息學(xué)分析顯示天然產(chǎn)物生物合成基因簇超過總基因組的5%–7%[28]。絲狀真菌構(gòu)巢曲霉的基因組具有更大的潛力,推測有56條次級(jí)代謝途徑[29]。此外,分析不同生態(tài)位的生物群落,如人類微生物群[30]和環(huán)境樣本[31],進(jìn)一步揭示了天然產(chǎn)物的多樣性。
隨著新一代測序技術(shù)的應(yīng)用,DNA序列分析的處理速度和準(zhǔn)確性顯著提高,成本大幅度降低。獲得的大量基因組分析數(shù)據(jù)讓公共數(shù)據(jù)庫很好地建立起來,利用BLAST和FASTA可以在一定程度上推斷出未知基因的功能[32-33]。目前,除了利用同源性預(yù)測功能外,隱馬爾可夫模型(Hidden Markov model,HMM) 分析蛋白質(zhì)家族(Protein family,Pfam) 被廣泛應(yīng)用[34]。專門分析預(yù)測BGCs產(chǎn)物的統(tǒng)計(jì)模型antiSMASH也被公開[35]。由于計(jì)算機(jī)處理能力的顯著提高,蛋白質(zhì)功能預(yù)測的精確度也有所提升,BGCs的評(píng)估更加精準(zhǔn)[36]。因此,從基因組序列數(shù)據(jù)中挖掘次級(jí)代謝生物合成基因簇的方法被廣泛應(yīng)用。
分析基因組中可能存在的次級(jí)代謝生物合成酶的編碼基因是挖掘新型天然產(chǎn)物的經(jīng)典方法。雖然次級(jí)代謝物結(jié)構(gòu)豐富多樣,但其生物合成機(jī)理是相對(duì)保守的,尤其是核心酶的氨基酸序列相似度非常高[37]。經(jīng)典挖掘方法運(yùn)用了反向遺傳學(xué)原理,即以一個(gè)或多個(gè)“參考”酶的基因序列來確定目標(biāo)生物基因組序列中的同源基因。常用軟件有BLAST[38]、DIAMOND[39]、HMMer[40]和antiSMASH,其中antiSMASH的3.04版本可以識(shí)別44種不同的基因簇類型[35,41-42]。經(jīng)典挖掘方法找到的生物合成基因簇通常都是較容易識(shí)別的,如泰斯巴汀(Teixobactin)[43]、卷曲霉素(Cypemycin)[44]、瑞斯托霉素(Ristomycin)[45]等。
最新發(fā)展的方法不再專注于參與合成的單一基因,而是通過分析部分或全部基因簇、抗性或調(diào)控基因來深入挖掘新型天然產(chǎn)物。Cimermancic等運(yùn)用雙態(tài)HMM建立了一個(gè)尋找BGCs的算法[46]。首先用677個(gè)已驗(yàn)證的次級(jí)代謝生物合成基因簇和隨機(jī)選取的非次級(jí)代謝生物合成基因序列中的Pfam域字符串驗(yàn)證該模型。然后用該概率模型對(duì)1 154個(gè)原核生物基因組進(jìn)行篩選,得到33 000個(gè)可能的BGCs,其中有10 700個(gè)BGCs的評(píng)分很 高[46]。這些分析數(shù)據(jù)表明挖掘微生物中的新型天然產(chǎn)物潛力巨大。
隨著人們對(duì)天然產(chǎn)物生物合成途徑的認(rèn)識(shí)不斷深入,發(fā)現(xiàn)BGCs不僅含有編碼天然產(chǎn)物合成的生化酶,還有調(diào)控元件、轉(zhuǎn)運(yùn)蛋白和抗性基因等。因此,逐漸發(fā)展出基于抗性或是調(diào)控因子的天然產(chǎn)物挖掘方法。Wright等驗(yàn)證了對(duì)糖肽和安莎霉素類抗生素耐受的微生物更有可能產(chǎn)生類似的化合物,并開發(fā)了基于抗生素耐藥性的挖掘平臺(tái)用于分離特定的抗生素產(chǎn)生菌[47-48]。Moore等則將這種方法進(jìn)一步改良優(yōu)化,開發(fā)了一種靶向基因組挖掘方法[49];他們篩選了86株海洋放線菌屬的菌株,確定了一個(gè)在細(xì)菌脂肪酸合酶附近的非常規(guī)PKS-NRPS基因簇。通過克隆、異源表達(dá)和突變分析,發(fā)現(xiàn)該基因簇與已知的脂肪酸合成酶抑制劑硫拉霉素的生物合成有關(guān)。因此,將假定的耐藥基因與“沉默”的次級(jí)代謝基因簇相關(guān)聯(lián),是一種挖掘天然產(chǎn)物的有效途徑。
宏基因組學(xué)、生物信息學(xué)解析基因組序列發(fā)現(xiàn)的BGCs在特定生長條件下沒有表達(dá)或是表達(dá)量低檢測不到,這些BGCs被稱為“沉默”天然產(chǎn)物生物合成基因簇。目前主要有兩種策略可以激活這些“沉默”BGCs。一是隨機(jī)激活,主要有對(duì)生長條件的經(jīng)驗(yàn)優(yōu)化[50]、添加化學(xué)誘變劑[51-52]、微量金屬離子[53]、提供外源性小分子[54]、核糖體工程[55-57]、與其他生物共培養(yǎng)等方法。二是基于基因組序列的靶向激活[58],主要針對(duì)調(diào)節(jié)基因[59]。
隨機(jī)激活通過高通量篩選獲得目的菌株。改變菌株的生長環(huán)境,如溫度、pH、共培養(yǎng)或添加化學(xué)誘導(dǎo)劑等,均可誘導(dǎo)BGCs表達(dá)[50-51,53-54]。在spp.培養(yǎng)基中加入低濃度稀土元素如鈧和鑭,不僅提高了已知抗生素的產(chǎn)量同時(shí)誘導(dǎo)了新型天然產(chǎn)物的產(chǎn)生[60-61]。2016年,篩選含有 30 569個(gè)小分子的化合物庫,發(fā)現(xiàn)了19個(gè)新的化學(xué)誘變劑[62]。這些誘變劑能夠使天藍(lán)色鏈霉菌菌落的色素沉著,而色素的產(chǎn)生又通常與天然產(chǎn)物的生成有關(guān)。其中ARC2被認(rèn)為是一種極具潛力的化學(xué)誘變劑,其衍生物Cl-ARC用于篩選50株不同的放線菌,有至少23%的BGCs被激活,還有3種罕見的對(duì)細(xì)菌和真核生物具有活性的天然產(chǎn)物[62-63]。煙曲霉菌與鏈霉菌進(jìn)行共培養(yǎng)激活了煙曲霉菌中一個(gè)聚酮類BGC的表達(dá),發(fā)現(xiàn)了一種新型多酚類天然產(chǎn)物并命名為煙環(huán)烷(Fumicyclines)[64]。這類化合物對(duì)的生長有一定抑制作用,并可以在防御真菌時(shí)發(fā)揮作用。
變鉛青鏈霉菌中S12的突變激活抗生素actinorhodin的生物合成途徑,而該BGC在變鉛青鏈霉菌中通常是沉默的[65]。進(jìn)一步研究發(fā)現(xiàn)編碼RNA聚合酶(RNA polymerase,RNAP)、30S核糖體蛋白S12和其他核糖體蛋白的基因突變可以上調(diào)特定BGCs的轉(zhuǎn)錄和翻譯。鳥苷四磷酸 (Guanosine tetraphosphate,ppGpp) 是細(xì)菌適應(yīng)環(huán)境壓力非常重要的信號(hào)素,也可以誘導(dǎo)抗生素的生物合成[66]。S12是細(xì)菌核糖體小亞單位的組成部分,參與翻譯起始并決定翻譯的準(zhǔn)確性。ppGpp可以與RNAP結(jié)合,參與控制rRNA的生物合成同時(shí)調(diào)節(jié)RNAP在不同啟動(dòng)子上啟動(dòng)轉(zhuǎn)錄的能力[67]。因此懷疑RNAP的突變可以使其模仿與ppGpp結(jié)合的構(gòu)象,由此激活沉默BGCs的轉(zhuǎn)錄[68-69]。有研究使用作用于核糖體的抗生素鏈霉素和慶大霉素以及作用于RNAP的抗生素利福平分別對(duì)不同的放線菌進(jìn)行篩選,使編碼S12的基因和編碼RNAP的β-亞基的基因自發(fā)突變。最后發(fā)現(xiàn)中殺菌素鏈霉菌的突變株產(chǎn)生了8個(gè)抗菌天然產(chǎn)物,隨后的結(jié)構(gòu)研究顯示這是一種新型抗生素piperidamycins[55]。假單胞菌、芽孢桿菌、分支桿菌等微生物的核糖體突變都可以激活生物合成基因簇[61,65]。此外,全局調(diào)控因子的改變也會(huì)誘導(dǎo)某些“沉默”BGCs的表達(dá)。如將天藍(lán)色鏈霉菌中多效調(diào)控基因的等位基因?qū)氲疆愒存溍咕校T導(dǎo)產(chǎn)生了具有廣譜抗菌活性的pulvomycin[70]。
靶向激活相較于隨機(jī)激活具有更好的可控性和可預(yù)測性。該方法需要設(shè)計(jì)和實(shí)施特定的策略來激活目標(biāo)BGCs,通量低于隨機(jī)激活。已知天然產(chǎn)物生物合成基因簇內(nèi)或附近編碼轉(zhuǎn)錄調(diào)控因子的基因會(huì)影響天然產(chǎn)物的表達(dá)[58-59,71]。因此,誘導(dǎo)激活因子的表達(dá)或敲除編碼抑制因子的基因都是非常有效的激活“沉默”BGCs的方法。
在產(chǎn)二素鏈霉菌基因組中發(fā)現(xiàn)一個(gè)編碼PKS的基因簇[72]。生物信息學(xué)分析預(yù)測該BGC的代謝產(chǎn)物是一種含有新型碳骨架的聚酮化合物,但qRT-PCR分析顯示該基因簇在實(shí)驗(yàn)室生長條件下低表達(dá)。分析發(fā)現(xiàn)基因簇內(nèi)的基因可能編碼特異性轉(zhuǎn)錄激活因子,該因子屬于LAL家族調(diào)控因子。過表達(dá)可誘導(dǎo)該P(yáng)KS和其他生物合成基因的表達(dá),發(fā)現(xiàn)了一類新型的大環(huán)內(nèi)酯類抗生素stambomycins[72]。TetR家族抑制蛋白含有一個(gè)螺旋的DNA結(jié)合結(jié)構(gòu)域和一個(gè)響應(yīng)小分子配體的受體結(jié)構(gòu)域。在特定的響應(yīng)配體缺失時(shí),TetR二聚體會(huì)與DNA結(jié)合阻止下游基因的轉(zhuǎn)錄[73]。失活TetR家族抑制蛋白可以激活多杰霉素(Jadomycin)[74-75]、卡那霉素(Kinamycin)[76]、aurici[77]、ceoelimycin[78]和gaburedins[79]等多種天然產(chǎn)物的表達(dá)。
目前使用天然啟動(dòng)子、修飾啟動(dòng)子和合成啟動(dòng)子來挖掘天然產(chǎn)物是非常有效的靶向激活方法[58]。啟動(dòng)子可能是激活“沉默”BGCs和提高天然產(chǎn)物產(chǎn)量所必需的。因此有研究小組不斷豐富啟動(dòng)子庫[80]。他們已經(jīng)成功合成了56個(gè)啟動(dòng)子,將其分為強(qiáng)、中、弱3種不同強(qiáng)度的啟動(dòng)子,并驗(yàn)證在多個(gè)放線菌菌株中均有活性[81]。這種合成啟動(dòng)子庫為未來更好地靶向激活生物合成途徑提供了更多選擇。
多數(shù)生物在實(shí)驗(yàn)室生長條件下較難培養(yǎng),遺傳背景復(fù)雜且不易進(jìn)行基因操作,其他代謝途徑也會(huì)影響目標(biāo)BGC的表達(dá)。因此,構(gòu)建具有精簡化基因組的生物底盤,對(duì)于挖掘天然產(chǎn)物至關(guān)重要[82]。目前構(gòu)建生物底盤主要有“自上而下”和“自下而上”兩種策略。
基于對(duì)基因組認(rèn)識(shí)的不斷深入,“自上而下”主要是去除贅余基因,降低非必要代謝途徑和復(fù)雜調(diào)控網(wǎng)絡(luò)的干擾。優(yōu)化細(xì)胞代謝途徑提高對(duì)底物和能量的利用率,增加底盤的可預(yù)測性和可控性[83]。
“自上而下”的構(gòu)建思路主要是通過比較分析來自不同生物的基因組,并結(jié)合已有的實(shí)驗(yàn)數(shù)據(jù),分析出非必需基因[84]。然后,使用質(zhì)粒和線性DNA介導(dǎo)、位點(diǎn)特異性重組酶、轉(zhuǎn)座子和CRISPR/Cas系統(tǒng)等方法進(jìn)行缺失,構(gòu)建基因組精簡的底盤。目前,在大腸桿菌[85-89]、鏈霉菌[82,90-92]、枯草芽孢桿菌[93-95]和假單胞菌[96-98]等生物中開展了底盤構(gòu)建工作。以阿維鏈霉菌SUKA17為例,研究者使用Cre-P重組系統(tǒng)對(duì)阿維鏈霉菌基因組進(jìn)行分步缺失,去除了約20%的基因組,消除了67%的IS序列和78%的轉(zhuǎn)座基因。此外,SUKA17也是首個(gè)用于異源表達(dá)次級(jí)代謝生物合成途徑的放線菌底盤[92]。SUKA17基因組的穩(wěn)定性增加且可以在基礎(chǔ)培養(yǎng)基中正常生長,不產(chǎn)阿維鏈霉菌內(nèi)源次級(jí)代謝物如阿維霉素、寡霉素、菲律賓菌素和萜類化合物等。目前,已有超過30多種不同的生物合成基因簇在SUKA17中進(jìn)行表達(dá),如核苷類、多肽類、氨基糖苷類等[91,99]。多數(shù)BGCs異源導(dǎo)入到底盤后可直接檢測到目標(biāo)代謝物,少數(shù)合成基因簇需要導(dǎo)入調(diào)控基因。如將75 kb含有pladienolide整個(gè)生物合成基因簇的BAC克隆插入到SUKA17中,并沒有產(chǎn)生pladienolide。轉(zhuǎn)錄分析表明,pladienolide生物合成基因簇和SUKA17基因組中并沒有相關(guān)的調(diào)控基因可以激活該代謝途徑。在導(dǎo)入調(diào)控基因后,突變株可以合成pladienolide。此外,SUKA17可以使經(jīng)密碼子優(yōu)化后的合成基因有效表達(dá),產(chǎn)生植物萜類合成中間前體物質(zhì)。阿維鏈霉菌基因敲除后的底盤更適用于表達(dá)多種不同的次級(jí)代謝生物合成基因簇,可能因?yàn)榫喕牡妆P能為新引入的異源代謝途徑提供充足的生物合成前體物[100]。這些充分說明生物底盤的基因組穩(wěn)定性好且系統(tǒng)兼容性強(qiáng),為天然產(chǎn)物的挖掘提供良好的基礎(chǔ)。
“自下而上”構(gòu)建策略則是嘗試從頭合成生物底盤。隨著DNA合成、測序和移植技術(shù)的不斷發(fā)展,使從頭合成復(fù)雜且長的DNA序列成為可 能[101]。該方法主要使用PCR組裝具有同源序列的短片段,最終構(gòu)建得到全合成生物底盤[102-103]。
2004年,使用PCR技術(shù)成功合成了一個(gè)長 32 kb的聚酮合酶基因簇[103]。雖然合成價(jià)格昂貴且錯(cuò)誤率高,但這一成果使制備人工細(xì)胞成為可能。2008年,Venter等合成了第一個(gè)完整的生物體基因組尿道支原體JCVI-1.0[101]。該全合成基因組長582 970 bp,所含基因與野生型尿道支原體G37幾乎完全相同[104]。構(gòu)建流程為化學(xué)合成101個(gè)5–7 kb具有重疊序列的片段,并通過測序進(jìn)行了驗(yàn)證。然后,通過體外重組得到約24 kb、72 kb (1/8基因組) 和144 kb (1/4基因組) 的中間片段。最后在釀酒酵母中組裝得到完整的基因組。
計(jì)算機(jī)設(shè)計(jì)好基因組序列,通過合成、組裝得到1.08 Mb的絲狀支原體基因組JCVI- syn1.0[104-105]。將其移植到山羊支原體受體細(xì)胞中,產(chǎn)生僅受該合成染色體控制的絲狀支原體細(xì)胞。JCVI-syn1.0的組裝是通過體外酶策略和酵母體內(nèi)重組相結(jié)合完成的。JCVI-syn1.0具有預(yù)期的表型特征,能夠持續(xù)自我復(fù)制。隨后基于syn1.0基因組,設(shè)計(jì)并構(gòu)建了531 kb的基因組JCVIsyn3.0,該基因組含有473個(gè)基因,編碼438個(gè)蛋白和 35個(gè)帶注釋的RNA[106]。合成基因組JCVIsyn3.0比任何已知的可以在無菌培養(yǎng)中生長的生物體的基因組都要小。首先,利用Tn5誘變技術(shù)來識(shí)別必要基因、準(zhǔn)必要基因和非必要基因。隨后,驗(yàn)證準(zhǔn)必要基因。最后,通過設(shè)計(jì)、合成和測試,構(gòu)建得到最小基因組JCVIsyn3.0。JCVIsyn3.0是一個(gè)多功能底盤,可以用于研究生命的核心功能和探索全基因組。這樣將為未來天然產(chǎn)物的挖掘提供更多可能。
20世紀(jì)末,生物基因組測序的實(shí)現(xiàn)讓我們了解到基因組中天然產(chǎn)物生物合成基因簇比預(yù)想的多。實(shí)質(zhì)上只有很小部分的天然產(chǎn)物被開發(fā),多數(shù)在實(shí)驗(yàn)室生長條件下是保持“沉默”的。隨著生物信息學(xué)、基因測序、分子遺傳學(xué)等學(xué)科的快速發(fā)展,天然產(chǎn)物合成基因簇的挖掘、代謝途徑的激活和生物底盤的構(gòu)建在天然產(chǎn)物挖掘中得到了廣泛應(yīng)用。我們可以綜合使用各種策略高效地挖掘并喚醒生物中“沉默”的生物合成基因簇(圖1)。
圖1 基因組學(xué)技術(shù)解析天然產(chǎn)物合成的流程
天然產(chǎn)物合成基因簇的挖掘中,宏基因組學(xué)揭示了未經(jīng)培養(yǎng)的生物可以產(chǎn)生結(jié)構(gòu)復(fù)雜并具有生物活性的天然產(chǎn)物,證明eDNA是一個(gè)豐富資源。然而宏基因組學(xué)仍需要突破兩個(gè)局限性問題,一是如何從土壤樣本中分離得到宏基因組學(xué)的DNA樣本庫。因?yàn)槭占行滦蜕锖铣赏緩降膃DNA需要花費(fèi)大量時(shí)間,并且需要懂得基礎(chǔ)的生態(tài)學(xué)知識(shí)。二是如何將宏基因組文庫中的BGCs進(jìn)行異源表達(dá)。多數(shù)BGCs在異源宿主中是沉默的,可能是受密碼子、稀有tRNAs、毒性或穩(wěn)定性等因素的影響。在挖掘到可能的天然產(chǎn)物生物合成途徑后,需要隨機(jī)激活或靶向激活“沉默”基因簇的表達(dá)。通常隨機(jī)激活不需要預(yù)先了解BGC的機(jī)理,且可以進(jìn)行高通量的篩選,但對(duì)激活結(jié)果卻無法預(yù)估。靶向激活則需要預(yù)先對(duì)通路有所了解,其通量較低但是具有可控性和可預(yù)測性。此外,生物底盤的構(gòu)建無論對(duì)于基因組挖掘還是激活“沉默”基因簇的表達(dá)都非常重要。目前有“自上而下”和“自下而上”兩種策略。其中“自上而下”是通過去除贅余基因得到精簡化的生物底盤?!白韵露稀眲t是從頭合成基因組。天然產(chǎn)物挖掘工作充滿挑戰(zhàn),但隨著組學(xué)技術(shù)的不斷發(fā)展,將會(huì)有更多具有新型結(jié)構(gòu)的天然產(chǎn)物被發(fā)現(xiàn)并廣泛用于人們的生產(chǎn)生活中。
[1] Jones D, Metzger HJ, Schatz A, et al. Control of gram-negative bacteria in experimental animals by Streptomycin. Science, 1944, 100(2588): 103–105.
[2] Staunton J, Weissman KJ. Polyketide biosynthesis: a millennium review. Nat Prod Rep, 2001, 18(4): 380–416.
[3] Meier JL, Burkart MD. Proteomic analysis of polyketide and nonribosomal peptide biosynthesis. Curr Opin Chem Biol, 2011, 15(1): 48–56.
[4] Bérdy J. Bioactive microbial metabolites. J Antibiot (Tokyo), 2005, 58(1): 1–26.
[5] Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of. Nature, 2005, 438(7071): 1157–1161.
[6] ōmura S, Ikeda H, Ishikawa J, et al. Genome sequence of an industrial microorganism: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA, 2001, 98(21): 12215–12220.
[7] Girot E. Nurse education in the new millennium. A review of current reports. Br J Perioper Nurs, 2001, 11(8): 352–361.
[8] Challinor VL, Bode HB. Bioactive natural products from novel microbial sources. Ann N Y Acad Sci, 2015, 1354(1): 82–97.
[9] Challis GL, Hopwood DA. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production byspecies. Proc Natl Acad Sci USA, 2003, 100(S2): 14555–14561.
[10] Baltz RH. Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol, 2017, 44(4/5): 573–588.
[11] Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett, 2010, 309(1): 1–7.
[12] Brady SF, Simmons L, Kim JH, et al. Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat Prod Rep, 2009, 26(11): 1488–1503.
[13] Lok C. Mining the microbial dark matter. Nature, 2015, 522(7556): 270–273.
[14] Williamson LL, Borlee BR, Schloss PD, et al. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol, 2005, 71(10): 6335–6344.
[15] Uchiyama T, Abe T, Ikemura T, et al. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol, 2005, 23(1): 88–93.
[16] Brady SF, Chao CJ, Handelsman J, et al. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org Lett, 2001, 3(13): 1981–1984.
[17] Lim HK, Chung EJ, Kim JC, et al. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on. Appl Environ Microbiol, 2005, 71(12): 7768–7777.
[18] Brady SF, Chao CJ, Clardy J. New natural product families from an environmental DNA (eDNA) gene cluster. J Am Chem Soc, 2002, 124(34): 9968–9969.
[19] Reddy BVB, Milshteyn A, Charlop-Powers Z, et al. eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. Chem Biol, 2014, 21(8): 1023–1033.
[20] Ziemert N, Podell S, Penn K, et al. The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS ONE, 2012, 7(3): e34064.
[21] Owen JG, Charlop-Powers Z, Smith AG, et al. Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors. Proc Natl Acad Sci USA, 2015, 112(14): 4221–4226.
[22] Chang FY, Ternei MA, Calle PY, et al. Targeted metagenomics: finding rare tryptophan dimer natural products in the environment. J Am Chem Soc, 2015, 137(18): 6044–6052.
[23] Kang HS, Brady SF. Arimetamycin a: improving clinically relevant families of natural products through sequence-guided screening of soil metagenomes. Angew Chem Int Ed Engl, 2013, 52(42): 11063–11067.
[24] Kallifidas D, Kang HS, Brady SF. Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. J Am Chem Soc, 2012, 134(48): 19552–19555.
[25] Hover BM, Kim SH, Katz M, et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol, 2018, 3(4): 415–422.
[26] Bentley SD, Chater KF, Cerde?o-Tárraga AM, et al. Complete genome sequence of the model actinomyceteA3(2). Nature, 2002, 417(6885): 141–147.
[27] Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism. Nat Biotechnol, 2003, 21(5): 526–531.
[28] Ikeda H. Natural products discovery from micro-organisms in the post-genome era. Biosci, Biotechnol, Biochem, 2017, 81(1): 13–22.
[29] Yaegashi J, Oakley BR, Wang CCC. Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in. J Ind Microbiol Biotechnol, 2014, 41(2): 433–442.
[30] Mousa WK, Athar B, Merwin NJ, et al. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep, 2017, 34(11): 1302–1331.
[31] Milshteyn A, Schneider JS, Brady SF. Mining the metabiome: identifying novel natural products from microbial communities. Chem Biol, 2014, 21(9): 1211–1223.
[32] Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes - a review. Nat Prod Rep, 2016, 33(8): 988–1005.
[33] Medema MH, Fischbach MA. Computational approaches to natural product discovery. Nat Chem Biol, 2015, 11(9): 639–648.
[34] Finn RD, Coggill P, Eberhardt RY, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res, 2016, 44(D1): D279–D285.
[35] Weber T, Blin K, Duddela S, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res, 2015, 43(W1): W237–W243.
[36] Machado H, Tuttle RN, Jensen PR. Omics-based natural product discovery and the lexicon of genome mining. Curr Opin Microbiol, 2017, 39: 136–142.
[37] Weber T, Welzel K, Pelzer S, et al. Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol, 2003, 106(2/3): 221–232.
[38] Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol, 1990, 215(3): 403–410.
[39] Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods, 2015, 12(1): 59–60.
[40] Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res, 2011, 39(S2): W29–W37.
[41] Medema MH, Blin K, Cimermancic P, et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res, 2011, 39(S2): W339–W346.
[42] Blin K, Medema MH, Kazempour D, et al. antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res, 2013, 41(S1): W204–W212.
[43] Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535): 455–459.
[44] Claesen J, Bibb M. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc Natl Acad Sci USA, 2010, 107(37): 16297–16302.
[45] Spohn M, Kirchner N, Kulik A, et al. Overproduction of Ristomycin A by activation of a silent gene cluster inMG417-CF17. Antimicrob Agents Chemother, 2014, 58(10): 6185–6196.
[46] Cimermancic P, Medema MH, Claesen J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 2014, 158(2): 412–421.
[47] Thaker MN, Wang WL, Spanogiannopoulos P, et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat Biotechnol, 2013, 31(10): 922–927.
[48] Thaker MN, Waglechner N, Wright GD. Antibiotic resistance-mediated isolation of scaffold-specific natural product producers. Nat Protoc, 2014, 9(6): 1469–1479.
[49] Tang XY, Li J, Millán-Agui?aga N, et al. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem Biol, 2015, 10(12): 2841–2849.
[50] Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol, 2015, 13(8): 509–523.
[51] Seyedsayamdost MR. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci USA, 2014, 111(20): 7266–7271.
[52] Moore JM, Bradshaw E, Seipke RF, et al. Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters inbacteria. Methods Enzymol, 2012, 517: 367–385.
[53] Locatelli FM, Goo KS, Ulanova D. Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetesMetallomics, 2016, 8(5): 469–480.
[54] Okada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev, 2017, 41(1): 19–33.
[55] Hosaka T, Ohnishi-Kameyama M, Muramatsu H, et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol, 2009, 27(5): 462–464.
[56] Ochi K, Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol, 2013, 97(1): 87–98.
[57] Tanaka Y, Kasahara K, Hirose Y, et al. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance () mutations in actinomycetes. J Bacteriol, 2013, 195(13): 2959–2970.
[58] Rebets Y, Br?tz E, Tokovenko B, et al. Actinomycetes biosynthetic potential: how to bridgeand? J Ind Microbiol Biotechnol, 2014, 41(2): 387–402.
[59] Rigali S, Anderssen S, Na?mé A, et al. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol, 2018, 153: 24–34.
[60] Kawai K, Wang GJ, Okamoto S, et al. The rare earth, scandium, causes antibiotic overproduction inspp. FEMS Microbiol Lett, 2007, 274(2): 311–315.
[61] Tanaka Y, Hosaka T, Ochi K. Rare earth elements activate the secondary metabolite-biosynthetic gene clusters inA3(2). J Antibiot (Tokyo), 2010, 63(8): 477–481.
[62] Craney A, Ozimok C, Pimentel-Elardo SM, et al. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol, 2012, 19(8): 1020–1027.
[63] Pimentel-Elardo SM, S?rensen D, Ho L, et al. Activity-independent discovery of secondary metabolites using chemical elicitation and cheminformatic inference. ACS Chem Biol, 2015, 10(11): 2616–2623.
[64] K?nig CC, Scherlach K, Schroeckh V, et al. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus. Chembiochem, 2013, 14(8): 938–942.
[65] Shima J, Hesketh A, Okamoto S, et al. Induction of actinorhodin production by(encoding ribosomal protein S12) mutations that confer streptomycin resistance inandA3(2). J Bacteriol, 1996, 178(24): 7276–7284.
[66] Bibb MJ. Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol, 2005, 8(2): 208–215.
[67] Srivatsan A, Wang JD. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol, 2008, 11(2): 100–105.
[68] Xu J, Tozawa Y, Lai C, et al. A rifampicin resistance mutation in thegene confers ppGpp-independent antibiotic production inA3(2). Mol Genet Genomics, 2002, 268(2): 179–189.
[69] Artsimovitch I, Patlan V, Sekine SI, et al. Structural basis for transcription regulation by alarmone ppGpp. Cell, 2004, 117(3): 299–310.
[70] McKenzie NL, Thaker M, Koteva K, et al. Induction of antimicrobial activities in heterologous streptomycetes using alleles of thegene. J Antibiot (Tokyo), 2010, 63(4): 177–182.
[71] Zerikly M, Challis GL. Strategies for the discovery of new natural products by genome mining. Chembiochem, 2009, 10(4): 625–633.
[72] Laureti L, Song LJ, Huang S, et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in. Proc Natl Acad Sci USA, 2011, 108(15): 6258–6263.
[73] Orth P, Schnappinger D, Hillen W, et al. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol, 2000, 7(3): 215–219.
[74] Xu GM, Wang J, Wang LQ, et al. “Pseudo”γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem, 2010, 285(35): 27440–27448.
[75] Zhang YY, Zou ZZ, Niu GQ, et al.andact synergistically to repress jadomycin biosynthesis. Sci China Life Sci, 2013, 56(7): 584–590.
[76] Bunet R, Song LJ, van Mendes M, et al. Characterization and manipulation of the pathway-specific late regulator AlpW revealsas a new producer of Kinamycins. J Bacteriol, 2011, 193(5): 1142–1153.
[77] Lee HN, Huang JQ, Im JH, et al. Putative TetR family transcriptional regulator SCO1712 encodes an antibiotic downregulator in. Appl Environ Microbiol, 2010, 76(9): 3039–3043.
[78] Takano E, Kinoshita H, Mersinias V, et al. A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of. Mol Microbiol, 2005, 56(2): 465–479.
[79] Sidda JD, Song LJ, Poon V, et al. Discovery of a family of γ-aminobutyrate ureas via rational derepression of a silent bacterial gene cluster. Chem Sci, 2014, 5(1): 86–89.
[80] Siegl T, Tokovenko B, Myronovskyi M, et al. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng, 2013, 19: 98–106.
[81] Seghezzi N, Amar P, Koebmann B, et al. The construction of a library of synthetic promoters revealed some specific features of strongpromoters. Appl Microbiol Biotechnol, 2011, 90(2): 615–623.
[82] Liu R, Deng ZX, Liu TG.species: ideal chassis for natural product discovery and overproduction. Metab Eng, 2018, 50: 74–84.
[83] Nepal KK, Wang GJ. Streptomycetes: surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv, 2019, 37(1): 1–20.
[84] Foley PL, Shuler ML. Considerations for the design and construction of a synthetic platform cell for biotechnological applications. Biotechnol Bioeng, 2010, 105(1): 26–36.
[85] Umenhoffer K, Fehér T, Balikó G, et al. Reduced evolvability ofMDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microb Cell Fact, 2010, 9: 38.
[86] Iwadate Y, Honda H, Sato H, et al. Oxidative stress sensitivity of engineeredcells with a reduced genome. FEMS Microbiol Lett, 2011, 322(1): 25–33.
[87] Yu BJ, Sung BH, Koob MD, et al. Minimization of thegenome using a Tn5-targeted Cre/P excision system. Nat Biotechnol, 2002, 20(10): 1018–1023.
[88] Cs?rg? B, Fehér T, Tímár E, et al. Low-mutation-rate, reduced-genome: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Fact, 2012, 11: 11.
[89] Couto JM, McGarrity A, Russell J, et al. The effect of metabolic stress on genome stability of a synthetic biology chassisK12 strain. Microb Cell Fact, 2018, 17: 8.
[90] Huang H, Zheng GS, Jiang WH, et al. One-step high-efficiency CRISPR/Cas9-mediated genome editing in. Acta Biochim Biophys Sin (Shanghai), 2015, 47(4): 231–243.
[91] Ikeda H, Shin-Ya K, Omura S. Genome mining of thegenome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J Ind Microbiol Biotechnol, 2014, 41(2): 233–250.
[92] Komatsu M, Uchiyama T, ōmura S, et al. Genome-minimizedhost for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA, 2010, 107(6): 2646–2651.
[93] Zweers JC, Barák I, Becher D, et al. Towards the development ofas a cell factory for membrane proteins and protein complexes. Microb Cell Fact, 2008, 7: 10.
[94] Reu? DR, Altenbuchner J, M?der U, et al. Large-scale reduction of thegenome: consequences for the transcriptional network, resource allocation, and metabolism. Genome Res, 2017, 27(2): 289–299.
[95] Koo BM, Kritikos G, Farelli JD, et al. Construction and analysis of two genome-scale deletion libraries for. Cell Syst, 2017, 4(3): 291–305.E7.
[96] Belda E, van Heck RGA, José Lopez-Sanchez M, et al. The revisited genome ofKT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol, 2016, 18(10): 3403–3424.
[97] Nikel PI, de Lorenzo V.as a functionalfor industrial biocatalysis: from native biochemistry to trans-metabolism. Metab Eng, 2018, 50: 142–155.
[98] Nikel PI, Chavarría M, Danchin A, et al. From dirt to industrial applications:as a Synthetic Biologyfor hosting harsh biochemical reactions. Curr Opin Chem Biol, 2016, 34: 20–29.
[99] Komatsu M, Komatsu K, Koiwai H, et al. Engineeredhost for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol, 2013, 2(7): 384–396.
[100] Yamada Y, Arima S, Nagamitsu T, et al. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineeredhost. J Antibiot (Tokyo), 2015, 68(6): 385–394.
[101] Moya A, Gil R, Latorre A, et al. Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev, 2009, 33(1): 225–235.
[102] Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 2002, 297(5583): 1016–1018.
[103] Kodumal SJ, Patel KG, Reid R, et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci USA, 2004, 101(44): 15573–15578.
[104] Gibson DG, Benders GA, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of agenome. Science, 2008, 319(5867): 1215–1220.
[105] Gibson DG, Benders GA, Axelrod KC, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete syntheticgenome. Proc Natl Acad Sci USA, 2008, 105(51): 20404–20409.
[106] Hutchison III CA, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253.
Genomics approaches decode natural products synthesis
Haotian Chi, and Shi Chen
,,,430071,,
Novel natural products have always been the most important sources for discovery of new drugs. Since the end of the 20th century, advances in genomics technology have contributed to decode and analyze numerous genomes, revealing remarkable potential for production of new natural products in organisms. However, this potential is hampered by laboratory culture conditions. Therefore, the integration of all these new advances is necessary to unveil these treasures, addressing the rise in resistance to antibiotics. In this review, we discuss the strategies of genome mining, inducing the expression of silent biosynthetic gene clusters and construction of biological chassis.
genomics, natural products, genome mining, biological chassis
10.13345/j.cjb.190219
陳實(shí) 楚天學(xué)者特聘教授、科技部中青年科技創(chuàng)新領(lǐng)軍人才、青年千人計(jì)劃專家、湖北省醫(yī)學(xué)領(lǐng)軍人才。先后碩博畢業(yè)于華中農(nóng)業(yè)大學(xué)和上海交通大學(xué);在麻省理工學(xué)院及哈佛大學(xué)進(jìn)行博士后研究,2011年回到武漢大學(xué)任教。任和副主編。以通訊或共同通訊作者在、、、、等發(fā)表論文。主持基金委重點(diǎn)國際合作項(xiàng)目等,擔(dān)任973課題組長。致力于表觀遺傳、基因組修飾與編輯、合成生物學(xué)與藥物發(fā)現(xiàn)等研究。
池淏甜, 陳實(shí). 基因組學(xué)技術(shù)解碼天然產(chǎn)物合成. 生物工程學(xué)報(bào), 2019, 35(10): 1889–1900.
Chi HT, Chen C. Genomics approaches decode natural products synthesis. Chin J Biotech, 2019, 35(10): 1889–1900.
March 18, 2019;
July29, 2019
Supported by:National Natural Science Foundation of China (Nos. 31720103906, 31520103902).
Shi Chen. Tel/Fax: +86-27-68756643; E-mail: shichen@whu.edu.cn
國家自然科學(xué)基金(Nos. 31720103906,31520103902)資助。
(本文責(zé)編 陳宏宇)