• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pulse generation of erbium-doped fiber laser based onliquid-exfoliated FePS3?

    2019-08-16 01:20:38QingYin陰晴JinWang汪進(jìn)XinYaoShi史鑫堯TaoWang王濤JieYang楊潔XinXinZhao趙新新ZhenJiangShen沈振江JianWu吳堅(jiān)
    Chinese Physics B 2019年8期
    關(guān)鍵詞:陰晴楊潔王濤

    Qing Yin(陰晴), Jin Wang(汪進(jìn)), Xin-Yao Shi(史鑫堯), Tao Wang(王濤),Jie Yang(楊潔), Xin-Xin Zhao(趙新新), Zhen-Jiang Shen(沈振江), Jian Wu(吳堅(jiān)),?,

    Kai Zhang(張凱)3,§, Pu Zhou(周樸)2, and Zong-Fu Jiang(姜宗福)2

    1Nano Science and Technology Institute,University of Science and Technology of China,Suzhou 215123,China

    2College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    3i-Lab,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China

    4College of Physics and Electronic Engineering,Hainan Normal University,Haikou 571158,China

    Keywords: fiber laser,Q-switched,FePS3

    1. Introduction

    In the past decade, pulsed fiber lasers have been widely used, such as optical communication, military, material processing, and so on.[1,2]To achieve a simple structure, high beam qualities, and high stability pulsed laser, the saturable absorbers (SAs) have been used. Since the discovery of graphene in 2004, two-dimensional (2D) materials have attracted great attention because of their unique layered structures with weak van-der-Waals forces and excellent mechanical, electrical, and optical properties. In the past few years,various novel 2D materials have achieved rapid development and could be performed as promising SA for ultrafast broadband laser generation on account of their simple fabrication, outstanding saturable laser generation, and outstanding saturable absorption properties, such as ultrafast recovery time and controllable modulation depth.[1,3,4]There are already a series of 2D materials,such as graphene,black phosphorus (BP),[5-8]transition metal chalcogenides (TMDCs,e.g.,MoS2and WS2),[9,10]transition metal carbide(MXenes,e.g., Ti3C2Tx),[11-13]and topological insulators (TIs, e.g.,Bi2Se3).[14]

    According to different bandgaps and crystal structures of these 2D materials, it is possible to generate mode-locked or Q-switched pulses at different bands, such as 1 μm, 1.5 μm,2 μm, 2.8 μm, and 3.4 μm.[15-19]For example, in 2009,Bao et al. first used graphene as an SA to achieve modelocked fiber lasers with broadband and short recovery time.[20]However,graphene is a zero-band-gap material with poor absorption of light (single layer absorption coefficient is only 2.3%), which severely limits its light modulation capability and its application in the field of strong light and matter interactions.[21]Then,TMDC semiconductors represented by MoS2have also been widely used as SA in fiber lasers.TMDCs have broadband tunable band gaps and exhibit excellent third-order nonlinear optical properties,but the optical response occurs mainly in the visible to the near-infrared range,which limits its further application.[22,23]In recent years, BP has become a promising candidate for SAs in wide spectral range due to its tunable direct band gap by adjusting the number of layers(from 0.3 eV(bulk)to 1.73 eV(monolayer),corresponding to a wavelength range from 4μm to 0.7μm).[24-26]However, black phosphorus is very easily oxidized, which makes it difficult to be widely used in the semiconductor industry and optoelectronic devices.[27,28]Therefore, it makes sense to develop other new and superior 2D materials used as SA in mode-locked and Q-switched fiber laser.

    More interestingly, the ternary layered 2D materials are highly expected to exhibit more novel electrical, optical, and magnetic properties compared with those unary and binary 2D layered materials because of higher chemical diversity and structural complexity.[29]As a family of representative ternary layered 2D materials, metal phosphorus trichalcogenides (MPX3, M = Fe, Ni, Mn, Co, Zn, Cd, etc., and X =S or Se) have received tremendous attention and could be applied in various fields.[30,31]There are several obvious characteristics for MPX3. (i) These materials show a layered monoclinic crystal structure and each unit cell includes two cations and one[P2X6]4-cluster,forming a hexagonal lattice.(ii)Anisotropic properties and magnetic or antiferromagnetic properties.[32](iii)Due to the changes of the metal and chalcogenide atoms, the band gaps of MPX3bulks can range from 1.3 eV to 3.5 eV (FePS3: 1.5 eV,[33]MnPS3: 3.0 eV,[34,35]NiPS3: 1.6 eV,[36]ZnPS3: 3.4 eV,[37]CdPS3: 3.5 eV,[37]FePSe3: 1.3 eV,[38]MnPSe3: 2.5 eV[39,40]), which suggests their optical and electrical applications of photo-detection and photo-catalysis in a broad wavelength range. However,MPX3has not been used as SA in fiber lasers yet.

    In this work,we report and demonstrate a Q-switched Erdoped fiber laser at 1.5μm based on an innovative FePS3saturable absorber. High-quality single crystals of FePS3are first prepared by chemical vapor transport(CVT)method and then prepared into SA by electrochemical stripping. The experiment demonstrates that the new 2D material FePS3served as SA provides a valid method to realize passively Q-switched laser. When the pump power is in the range of 20 mW-120 mW, the stable pulse train can be observed on the oscilloscope. By properly rotating the polarization controller,we could achieve the output of dual-wavelength pulse,which can be applied extensively in industrial processing and medical devices.[41,42]

    2. Sample preparation and characterization of FePS3 saturable absorber

    2.1. Crystal growth and characterize of FePS3

    The high-quality FePS3crystals were fabricated by a CVT method,using iodine as a transport agent. The stoichiometric amount of iron powder (Fe, 99.99%), red phosphorus(RP,99.999%),and sulfur(S,99.99%)corresponding to 2 g of FePS3and iodine(I2, 1 mg/mL)were put in a quartz ampule(20 mm×150 mm; thickness: 2 mm) and sealed under high vacuum(under 1×10-3Pa)using oxygen/hydrogen welding torch,as shown in Fig.1(a). Then,the ampule was placed in a tube furnace with dual temperature zones and heated at 700°C for two weeks. Both the heating rate and the cooling rate were 2°C/min. After it cooled down to room temperature, black hexagonal crystal flakes with metallic luster could be obtained.It can be distinctly seen from the scanning electron microscopy(SEM) image in Fig. 1(c) that FePS3has a layered structure and the layers are connected together according to the van der Waals interaction so that the FePS3nanosheet can be obtained by mechanical peeling or liquid phase stripping. To determine the elemental composition of the prepared FePS3crystals, a piece of FePS3is randomly selected (Fig. 1(b) (i)-(iv)), and the energy dispersive spectrometer (EDS) element mappings show that the composition of FePS3is homogenous and the stoichiometric ratio of FePS3is similar to 1:1:3.

    Fig.1. (a)Schematic diagram of the preparation process of FePS3 crystals.(b)EDS element mappings for: (i)Fe,(ii)P,and(iii)S,as well as(iv)SEM image of a randomly selected FePS3 crystal. (c)The side view SEM image of single-crystalline FePS3.

    To further determine the crystal quality of FePS3, the microstructure information and composition information of FePS3were detected by transmission electron microscopy(TEM) and EDS. The TEM image in Fig. 2(a) shows that the FePS3nanosheet has a regular shape, consistent with the SEM results. The high-resolution TEM (HRTEM) image in Fig.2(b)exhibits clear lattice points and the interplanar spacing is 2.84 A?, corresponding to (131) planes of FePS3. Figure 2(c)is the corresponding selected area electron diffraction(SAED)pattern recorded along the[101]zone axis;the regular diffraction spots imply that FePS3flakes are single crystals with excellent quality. Moreover,the high-angle annular dark field(HADDF)image(Fig.2(c))and EDS element mappings for Fe, P, and S (Figs. 2(e)-2(g)) indicate that FePS3flakes have homogeneously composition in the whole scanning area(marked by the yellow region in Fig.2(d)).

    A Raman spectrum is also used to characterize the FePS3flakes, as shown in Fig. 3(a). Obviously, there are fvie characteristic vibration modes located at 154 cm-1, 222 cm-1,244 cm-1,276 cm-1,and 377 cm-1. The Egvibration mode at 154 cm-1is attributed to the vibration of the Fe atoms inside the crystal, while the vibration modes of the remaining four positions including the two Egvibrations and the two A1gvibrations are caused by the vibration of the [P2S6]4-cluster, which is consistent with those reported in previous experiments.[43]Figure 3(b)is an x-ray diffraction(XRD)pattern of FePS3flakes,which is in full agreement with the standard powder diffraction file(PDF)card 30-0663.[44]The most dominant diffraction planes in Fig. 3(b) are at 13.8°, 27.7°,42.4°,and 57.6°,which correspond to the(001),(002),(003),and(004)crystal planes of FePS3,respectively. This indicates that FePS3flakes have good crystallinity. To estimate the optical properties of the FePS3flakes grown by a two-step CVT method,the ultraviolet-visible absorption spectrum was used.The results (shown in Fig. 3(c)) show that the FePS3flakes have a large amount of absorption of ultraviolet light,and these flakes also have a certain absorption at the wavelength near 1550 nm.

    Fig. 2. (a) The TEM image of a piece of FePS3 nanosheet by random search. (b) The HRTEM image for this FePS3 nanosheet. (c) The corresponding SAED pattern. (d)The corresponding HAADF image of the FePS3 nanosheet. (e)-(g)EDS element mappings for Fe,P,and S.

    (g)

    Fig. 3. (a) Raman spectrum and (b) XRD of FePS3 flakes grown by a two-step CVT method. (c) The ultraviolet-visible absorption spectrum of FePS3 nanosheets.

    Fig. 4. Nonlinear transmission of the FePS3 film under different incident power intensities.

    The saturable absorption properties of FePS3thin film were also characterized. As illustrated in Fig. 4, the transmittance of the SA under different incident light power intensity was recorded. The laser source we used is a home-made mode-locked Er-doped fiber laser, which has the wavelength of 1559.5 nm, the repetition rate of 150.2 MHz, and a pulse duration of 1 ps. The fitted modulation depth and saturated intensities are 5%and 0.16 MW/cm2,respectively.

    2.2. Preparation of FePS3 SA

    The crystals were soaked in ethanol for 2 h to remove the transport agent I2. After that, clean crystals were put in about 30-mL N-methyl-2-pyrrolidone (NMP) and then sonicated for at least 2 hours. Then, the solution of few-layers FePS3nanoflakes could be obtained. Finally, NMP solvent was removed by centrifugation and FePS3nanoflakes were redistributed in ethanol.The obtained FePS3nanoflakes solution was then dripped onto the end face of a fiber adapter to form the SA device.

    Figure 5(a)is an atomic force microscopy(AFM)image of FePS3nanoflakes. The FePS3nanoflakes not only have a size of about 5μm and a uniform thickness, but also the surface of the samples is clean and free of holes or impurities.The thickness of the sample,as shown in Fig.5(b),is approximately 31 nm.

    Fig. 5. (a) AFM image of FePS3 nanoflakes; (b) the corresponding height and optical microscope image.

    3. Generation of an ultrashort fiber laser

    3.1. Experiment setup

    A schematic of the configuration of the passively Q-switched ring fiber laser is shown in Fig.6. The total length of the ring cavity is 15 m,including a piece of 2-m-long erbiumdoped fiber (EDF) which plays the role as the gain medium.The fiber laser is pumped by a 980-nm laser diode (LD)with the maximum output power of 900 mW. As a connector, a 980/1550-nm wavelength division multiplexer (WDM)links the seed laser and the EDF together. At the same time,the WDM is connected to the laser cavity, ensuring that the light can propagate in the fiber laser. After the EDF, the polarization-insensitive isolator (ISO) is connected. On the one hand, the ISO ensures the generated signal laser spread through single direction;while on the other hand,it can reduce the filtering effect which exists in the ring cavity with the cavity birefringence. In order to change the polarization state of the circulating,we can adjust the polarization controller(PC)by properly rotating it. At the end of the PC, a 10/90-output coupler is connected to the saturable absorber,the structure of which looks like a sandwich device by smearing the FePS3on the adapter of the fiber connector. 10% of the energy enters a 20/80-output coupler which is used to test the signal laser by the optical spectrum analyzer and an oscilloscope. Meanwhile, the remaining 90% of the energy passes through the SA.

    Fig.6. Schematic diagram of the Er-doped all-fiber ring cavity pulsed laser based on FePS3 thin-film SA.

    3.2. Single wavelength output

    In the experiment, when the pump power is increased to 20 mW,the pulse trains can be observed on the oscilloscope.By increasing the pump power, stable passively Q-switched performance is realized when the pump power is in the range of 20 mW-120 mW. However, the passively Q-switched operation would become unstable if we continue to increase the pump power. In our previous publication, we identified some of the reasons for this phenomenon,including the oversaturation of the FePS3SA at high pump power. Another possible reason is that the SA has been damaged under the high pump power.The experiment has been repeated six times to examine whether the FePS3SA is destroyed. Through repeated experiments,when the pump power is between 20 mW and 120 mW,the stable passively Q-switched performance can always be obtained, which means that the over-saturation of the SA at high incident intensity leads to the instability.

    Figure 7 illustrates the performance of the output pulse at a pump power of 100 mW.As shown in Fig.7(a), the central wavelength is 1559.9 nm with the 3-dB bandwidth of 0.04 nm.Figures 7(b) and 7(c) show the pulse trains and single pulse profile, respectively. The period of pulse trains is 16.67 μs with the single pulse duration of 2.74 μs, giving a repetition rate of 60 kHz (Fig. 7(d)). Figure 7(d) shows the stability of the passively Q-switched pulse with a signal-to-noise ratio of~62.98 dB. And the inset of Fig. 7(d) shows the radio frequency (RF) spectrum over a large range of 600 kHz. Figure 8(a)shows the relationship between the output power and the pump power. It is found that there is a positive correlation between them.Figure 8(b)illustrates the changes in the repetition rate and pulse duration as the pump power increases. This shows that the repetition rate rises as the pump power rises.In contrast, the pulse duration decreases as the pump power increases.

    Fig.7. The performance of the output pulse at a pump power of 100 mW.(a)Emission spectrum of single wavelength. (b)Pulse trains. (c)Single-pulse shape. (d)RF spectrum at f =60 kHz;inset: RF spectrum over a large range of 600 kHz.

    Fig.8. The properties of the single wavelength pulse: (a)output power as a function of pump power;(b)pulse repetition rate and pulse duration as a function of pump power.

    3.3. Dual-wavelength output

    In the experiment,when we change the polarization state of the circulating by adjusting the PC, the pulse train can be observed in the oscilloscope with the dual-wavelength displayed on the OSA when the pump power increases to 5 mW.However,the pulse train is unstable because of the low pump power. To the best of our knowledge,the SA has a modulation depth. When the pump power is under 15 mW, the modulation is unstable and the pump power is too low to provide enough energy to generate a stable pulse train. As the pump power increases to 15 mW, stable passively Q-switched performance is achieved and the output power increases linearly as the pump power increases,which is illustrated in Fig.10(a).Simultaneously,similar phenomenons have been described in the previous articles.[45,46]To gain a stable dual-wavelength,the pump power continues to increase. At a pump power of 15 mW,we obtain a stable dual-wavelength Q-switched laser.Figure 9(a) shows the dual-wavelength at the pump power of 35 mW, and the output pulse has two peak wavelengths 1559.7 nm and 1560.3 nm with the 3-dB bandwidth of 0.04 nm and 0.03 nm, respectively. As illustrated in Fig. 9(b), the interval of the pulse trains is 27.33μs with the full width at half maximum (FWHM) of 5.66 μs (Fig. 9(c)). Figure 9(d) displays the RF spectrum which demonstrates the temporal stability of the passively Q-switched pulse with a signal-to-noise ratio of ~58.72 dB.

    Figure 10(a) illustrates the linear fit of the output power and pump power, and Fig. 10(b) displays the repetition rate,which increases from 19.21 kHz to 48.94 kHz as the pump power increases from 15 mW to 50 mW.

    Fig.9. The properties of pulse at the power pump of 35 mW.(a)Emission spectrum of dual-wavelength. (b)Pulse trains. (c)Single pulse shape. (d)RF spectrum of the dual-wavelength at f =36.6 kHz;inset: RF spectrum over a large range of 280 kHz.

    Fig. 10. The properties of the dual-wavelength pulse. (a) The output power as a function of pump power. (b)Pulse repetition rate and pulse duration as a function of pump power.

    4. Conclusion and perspectives

    In summary, the new 2D material FePS3has been successfully prepared and employed in a passively Q-switched erbium-doped fiber laser. By repeated experiments, we confirm that the single wavelength pulse signal can always be received when the pump power is in the range of 20 mW to 120 mW. Meanwhile, the dual-wavelength pulse has been achieved by adjusting the state of the PC.The FePS3film SA is sandwiched between two fiber ferrules to be used as a passively Q-switched device.

    Under the condition of single wavelength pulse,the minimum pulse duration of Q-switched pulse is about 2.37 μs and the repetition rate can be varied from 18.36 kHz to 59.98 kHz, which changes completely as the pump power increases. When the pump power is 100 mW, the central wavelength is 1559.9 nm and the signal-to-radio of RF spectrum is measured to be 62.98 dB, which shows high stability of the passively Q-switched pulse. Under the condition of dual-wavelength pulse, the minimum pulse duration is about 5.27 μs with 8.33 μs as the maximum duration. For the repetition rate, it changes from 19.21 kHz to 48.94 kHz as the pump power increases. Moreover, one of the central wavelength is 1559.7 nm and another is 1560.3 nm with the pump power at 25 mW. At the same time, the signal-to-noise radio of RF spectrum is measured to be 58.72 dB. The experiment demonstrates that the new 2D material FePS3served as SA provides a valid method to realize passively Q-switched laser.The highlight is the achievement of a dual-wavelength pulse,which can be applied extensively in industrial processing and medical devices.

    Acknowledgment

    We off our thanks for thesupport provided by the Suzhou Institute of Nano-bionics,Nano-tech and Platform for Characterization&Test,Chinese Academy of Sciences(CAS).

    猜你喜歡
    陰晴楊潔王濤
    綿師學(xué)人
    ——王濤
    月有陰晴
    Transition to chaos in lid–driven square cavity flow?
    忘憂草
    Humanistic Learning and Its Application in Community Language Learning
    王濤作品
    淡天刷墨曉陰晴
    丹青少年(2017年3期)2018-01-22 02:50:16
    楊潔書法作品
    詩歌月刊(2016年10期)2016-12-16 00:51:50
    動物知陰晴
    小布老虎(2016年10期)2016-12-01 05:46:39
    STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES E QUATIONS WITH DENSITY-DEPENDENT VISCOSITY?
    中亚洲国语对白在线视频| 19禁男女啪啪无遮挡网站| 亚洲美女黄片视频| 不卡一级毛片| 国产精品一区二区精品视频观看| 欧美精品啪啪一区二区三区| 好看av亚洲va欧美ⅴa在| 欧美日韩国产mv在线观看视频| 真人做人爱边吃奶动态| 国产精品野战在线观看 | 女人爽到高潮嗷嗷叫在线视频| 丁香六月欧美| 国产伦一二天堂av在线观看| 久久久久国产精品人妻aⅴ院| 精品福利观看| 国产精品98久久久久久宅男小说| 国产精品乱码一区二三区的特点 | av电影中文网址| 中文字幕最新亚洲高清| 女人被狂操c到高潮| 欧美丝袜亚洲另类 | 久久影院123| svipshipincom国产片| 级片在线观看| 亚洲欧美日韩高清在线视频| 50天的宝宝边吃奶边哭怎么回事| 黑人欧美特级aaaaaa片| 啦啦啦在线免费观看视频4| 高清欧美精品videossex| 在线观看免费视频日本深夜| 久久久久亚洲av毛片大全| 一区二区日韩欧美中文字幕| 丰满的人妻完整版| 无遮挡黄片免费观看| 免费看a级黄色片| 涩涩av久久男人的天堂| 亚洲成人免费av在线播放| 涩涩av久久男人的天堂| 国产精品免费一区二区三区在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲情色 制服丝袜| 亚洲精品av麻豆狂野| 窝窝影院91人妻| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩瑟瑟在线播放| 欧美精品亚洲一区二区| www日本在线高清视频| 看片在线看免费视频| 国产成人免费无遮挡视频| xxxhd国产人妻xxx| 成人精品一区二区免费| 亚洲自偷自拍图片 自拍| 国产精品免费视频内射| 久久婷婷成人综合色麻豆| 91成人精品电影| 日韩欧美一区视频在线观看| 国产一区二区激情短视频| 欧美日韩乱码在线| 国产成人影院久久av| 人人妻人人澡人人看| 亚洲男人的天堂狠狠| 男男h啪啪无遮挡| ponron亚洲| 99在线人妻在线中文字幕| 后天国语完整版免费观看| 高潮久久久久久久久久久不卡| 妹子高潮喷水视频| 国产精品日韩av在线免费观看 | 久久青草综合色| 老汉色∧v一级毛片| 99热只有精品国产| 无人区码免费观看不卡| 欧美人与性动交α欧美软件| 国产高清激情床上av| 18美女黄网站色大片免费观看| 伦理电影免费视频| 欧美日韩亚洲高清精品| 国产有黄有色有爽视频| 美女扒开内裤让男人捅视频| 国产视频一区二区在线看| 久久天堂一区二区三区四区| 亚洲人成电影免费在线| 亚洲自偷自拍图片 自拍| 国产又爽黄色视频| av网站免费在线观看视频| 日本vs欧美在线观看视频| 一区二区三区国产精品乱码| 亚洲午夜精品一区,二区,三区| 亚洲专区国产一区二区| a级毛片黄视频| 欧美日韩黄片免| 欧美亚洲日本最大视频资源| 欧美日本亚洲视频在线播放| 在线看a的网站| 高清av免费在线| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影视91久久| av在线播放免费不卡| 成人三级黄色视频| 国产精品国产av在线观看| 91av网站免费观看| 女警被强在线播放| 亚洲情色 制服丝袜| 手机成人av网站| 国产精品影院久久| 男女床上黄色一级片免费看| 亚洲欧美一区二区三区黑人| 人人妻人人澡人人看| 国产亚洲欧美精品永久| 法律面前人人平等表现在哪些方面| 久久久久国产一级毛片高清牌| 久久青草综合色| 国产精品乱码一区二三区的特点 | 欧美日韩黄片免| 纯流量卡能插随身wifi吗| 国产av一区二区精品久久| 丝袜美腿诱惑在线| 69精品国产乱码久久久| 天堂影院成人在线观看| 欧美激情久久久久久爽电影 | 国产91精品成人一区二区三区| 亚洲国产精品一区二区三区在线| 亚洲欧美激情综合另类| xxxhd国产人妻xxx| 日韩中文字幕欧美一区二区| 法律面前人人平等表现在哪些方面| 免费观看精品视频网站| 一边摸一边做爽爽视频免费| 欧美在线黄色| 俄罗斯特黄特色一大片| 久99久视频精品免费| 91老司机精品| 一级黄色大片毛片| 久久国产精品男人的天堂亚洲| 日本精品一区二区三区蜜桃| 久久精品91无色码中文字幕| 波多野结衣一区麻豆| 女警被强在线播放| 免费av中文字幕在线| 久久精品国产综合久久久| 夜夜看夜夜爽夜夜摸 | 久久精品国产亚洲av高清一级| 免费在线观看黄色视频的| 最近最新中文字幕大全电影3 | 精品久久久久久久毛片微露脸| 桃红色精品国产亚洲av| 成年女人毛片免费观看观看9| 丝袜美足系列| 亚洲精品国产区一区二| 宅男免费午夜| 91国产中文字幕| 成年女人毛片免费观看观看9| 又黄又粗又硬又大视频| 亚洲激情在线av| 一级作爱视频免费观看| 美国免费a级毛片| 久久亚洲精品不卡| 人人妻人人澡人人看| 不卡av一区二区三区| 80岁老熟妇乱子伦牲交| 操出白浆在线播放| 一边摸一边抽搐一进一出视频| 亚洲第一青青草原| 桃色一区二区三区在线观看| 在线十欧美十亚洲十日本专区| 亚洲第一青青草原| 久久久国产成人精品二区 | 国产国语露脸激情在线看| 好看av亚洲va欧美ⅴa在| 久热这里只有精品99| 久久香蕉激情| av免费在线观看网站| 一二三四社区在线视频社区8| 很黄的视频免费| 又黄又爽又免费观看的视频| 日韩三级视频一区二区三区| 首页视频小说图片口味搜索| 777久久人妻少妇嫩草av网站| 国产又色又爽无遮挡免费看| 日本黄色日本黄色录像| 日本免费a在线| 后天国语完整版免费观看| 日本wwww免费看| 校园春色视频在线观看| 91九色精品人成在线观看| 不卡一级毛片| 国产免费av片在线观看野外av| 男女下面插进去视频免费观看| 十分钟在线观看高清视频www| 一级毛片高清免费大全| 欧美亚洲日本最大视频资源| 久久中文看片网| av超薄肉色丝袜交足视频| 久久久国产成人精品二区 | 99国产综合亚洲精品| 99香蕉大伊视频| 精品国内亚洲2022精品成人| 久久国产精品男人的天堂亚洲| 国产精品偷伦视频观看了| 黑人操中国人逼视频| 午夜福利一区二区在线看| 操出白浆在线播放| 亚洲中文字幕日韩| 日日干狠狠操夜夜爽| 人妻丰满熟妇av一区二区三区| 国产三级在线视频| 国产熟女午夜一区二区三区| 亚洲专区国产一区二区| 一夜夜www| 亚洲情色 制服丝袜| 国产三级在线视频| 99在线视频只有这里精品首页| 欧美 亚洲 国产 日韩一| 国产精品一区二区三区四区久久 | 亚洲精品中文字幕一二三四区| 亚洲在线自拍视频| 一a级毛片在线观看| 在线观看日韩欧美| 麻豆成人av在线观看| 国产一区二区三区在线臀色熟女 | 国产精品日韩av在线免费观看 | 在线观看免费视频日本深夜| 午夜福利,免费看| 欧美日韩视频精品一区| 亚洲国产中文字幕在线视频| 可以在线观看毛片的网站| 不卡一级毛片| 精品国产美女av久久久久小说| 一个人免费在线观看的高清视频| 欧美日韩福利视频一区二区| 精品一区二区三区av网在线观看| 不卡一级毛片| 99国产精品免费福利视频| 在线观看日韩欧美| 亚洲精品久久午夜乱码| 成年版毛片免费区| 国产一区在线观看成人免费| 国产精品自产拍在线观看55亚洲| 99香蕉大伊视频| 中文字幕av电影在线播放| 不卡一级毛片| 亚洲精品一二三| 十八禁人妻一区二区| av天堂久久9| 在线观看免费视频日本深夜| 精品国产美女av久久久久小说| 超色免费av| 人妻丰满熟妇av一区二区三区| 男人舔女人的私密视频| 香蕉丝袜av| 国产aⅴ精品一区二区三区波| 亚洲自拍偷在线| 91国产中文字幕| 国产熟女xx| av欧美777| 国产人伦9x9x在线观看| 精品国产超薄肉色丝袜足j| 天堂√8在线中文| 桃色一区二区三区在线观看| 久久精品国产综合久久久| 亚洲国产精品sss在线观看 | 在线av久久热| 一本大道久久a久久精品| 波多野结衣av一区二区av| 满18在线观看网站| 色尼玛亚洲综合影院| 亚洲欧美日韩另类电影网站| www.999成人在线观看| 性欧美人与动物交配| 黄色 视频免费看| 日韩欧美国产一区二区入口| 国内毛片毛片毛片毛片毛片| 亚洲精品av麻豆狂野| 美女午夜性视频免费| 午夜精品久久久久久毛片777| 黄色成人免费大全| cao死你这个sao货| 欧美乱色亚洲激情| 国产精品自产拍在线观看55亚洲| 精品高清国产在线一区| 日本黄色日本黄色录像| 亚洲在线自拍视频| 午夜福利,免费看| 午夜久久久在线观看| 国产男靠女视频免费网站| 一区在线观看完整版| 又紧又爽又黄一区二区| 免费搜索国产男女视频| 不卡av一区二区三区| 久久久久久大精品| 麻豆一二三区av精品| 欧美老熟妇乱子伦牲交| 久久久久精品国产欧美久久久| 亚洲国产精品999在线| 午夜老司机福利片| 色哟哟哟哟哟哟| 午夜福利在线观看吧| 免费在线观看视频国产中文字幕亚洲| 久久久国产精品麻豆| 国产日韩一区二区三区精品不卡| 午夜免费观看网址| 婷婷丁香在线五月| 亚洲精品在线美女| av在线天堂中文字幕 | 国产高清videossex| 热re99久久精品国产66热6| 成在线人永久免费视频| 久久久精品国产亚洲av高清涩受| 香蕉久久夜色| 国产xxxxx性猛交| 18禁裸乳无遮挡免费网站照片 | a级片在线免费高清观看视频| 波多野结衣一区麻豆| 91九色精品人成在线观看| 两个人免费观看高清视频| 国产熟女午夜一区二区三区| 亚洲国产欧美网| 亚洲成人免费av在线播放| 色精品久久人妻99蜜桃| 看免费av毛片| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 美国免费a级毛片| 久久久国产精品麻豆| 免费观看精品视频网站| 亚洲久久久国产精品| 国产片内射在线| av在线播放免费不卡| 久久久国产成人精品二区 | e午夜精品久久久久久久| 亚洲五月色婷婷综合| 国产一区二区在线av高清观看| 婷婷丁香在线五月| 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 少妇的丰满在线观看| 中文亚洲av片在线观看爽| 女性生殖器流出的白浆| 高清av免费在线| 免费在线观看影片大全网站| 大型av网站在线播放| 99精品在免费线老司机午夜| 国产又爽黄色视频| 亚洲欧美一区二区三区黑人| 成熟少妇高潮喷水视频| 国产视频一区二区在线看| 国产一区二区激情短视频| 免费久久久久久久精品成人欧美视频| 色哟哟哟哟哟哟| 午夜福利免费观看在线| 国产亚洲欧美98| 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 一级作爱视频免费观看| 搡老熟女国产l中国老女人| 精品一区二区三卡| 欧美色视频一区免费| 精品国产国语对白av| 亚洲精品久久成人aⅴ小说| 一区在线观看完整版| 午夜91福利影院| 精品一区二区三卡| 在线观看日韩欧美| 十分钟在线观看高清视频www| 精品一区二区三区av网在线观看| 久久精品亚洲精品国产色婷小说| 新久久久久国产一级毛片| 色综合站精品国产| 国产精品亚洲av一区麻豆| 亚洲五月色婷婷综合| 黄色视频,在线免费观看| 成人18禁高潮啪啪吃奶动态图| 国产精品影院久久| 久久久久国内视频| 欧美精品啪啪一区二区三区| 老鸭窝网址在线观看| 欧美不卡视频在线免费观看 | 国产免费男女视频| 国产成人精品无人区| 岛国在线观看网站| 午夜福利在线观看吧| 精品少妇一区二区三区视频日本电影| 91国产中文字幕| 亚洲精品在线美女| 欧美日韩福利视频一区二区| 婷婷精品国产亚洲av在线| 免费在线观看亚洲国产| 亚洲欧美日韩无卡精品| 成人三级做爰电影| 一区二区日韩欧美中文字幕| 9色porny在线观看| 天堂√8在线中文| 日日夜夜操网爽| 亚洲精品粉嫩美女一区| 久久精品国产综合久久久| 99精国产麻豆久久婷婷| 又黄又粗又硬又大视频| 亚洲黑人精品在线| 成人特级黄色片久久久久久久| 久久性视频一级片| 一级毛片高清免费大全| 久久精品人人爽人人爽视色| 一本大道久久a久久精品| 亚洲欧美一区二区三区黑人| 亚洲专区国产一区二区| 制服诱惑二区| 亚洲成人久久性| 在线观看日韩欧美| 国产男靠女视频免费网站| 成人国语在线视频| 日韩欧美一区视频在线观看| 精品第一国产精品| 国产黄a三级三级三级人| 一级毛片高清免费大全| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| 黄片小视频在线播放| 久久久久国产一级毛片高清牌| 激情视频va一区二区三区| 99精国产麻豆久久婷婷| 精品国内亚洲2022精品成人| 国产一区在线观看成人免费| 日韩有码中文字幕| 国产精品98久久久久久宅男小说| 俄罗斯特黄特色一大片| 脱女人内裤的视频| 欧美午夜高清在线| 久久久国产成人精品二区 | 波多野结衣一区麻豆| 在线观看66精品国产| 国产亚洲精品久久久久5区| 午夜91福利影院| 亚洲精品中文字幕一二三四区| www日本在线高清视频| 亚洲精华国产精华精| 欧美成人午夜精品| 亚洲一卡2卡3卡4卡5卡精品中文| 女人高潮潮喷娇喘18禁视频| 校园春色视频在线观看| 国产成年人精品一区二区 | 亚洲一码二码三码区别大吗| 亚洲成人免费电影在线观看| av福利片在线| 亚洲国产精品sss在线观看 | 99re在线观看精品视频| 国产精品99久久99久久久不卡| 亚洲av第一区精品v没综合| 777久久人妻少妇嫩草av网站| 黄片大片在线免费观看| 欧美+亚洲+日韩+国产| 女人被狂操c到高潮| 国产主播在线观看一区二区| 夜夜躁狠狠躁天天躁| 90打野战视频偷拍视频| 国产精品国产高清国产av| 丝袜人妻中文字幕| 男人舔女人的私密视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费视频网站a站| 精品第一国产精品| 午夜福利在线免费观看网站| 老熟妇乱子伦视频在线观看| 欧美色视频一区免费| 人人妻,人人澡人人爽秒播| 欧美成人免费av一区二区三区| 日韩欧美一区二区三区在线观看| 一级毛片精品| 一夜夜www| 国产精品亚洲一级av第二区| 国产成人av教育| 巨乳人妻的诱惑在线观看| 中文字幕最新亚洲高清| 色综合站精品国产| a级毛片黄视频| 国产色视频综合| 神马国产精品三级电影在线观看 | www.999成人在线观看| 亚洲av片天天在线观看| 久久久久久久久久久久大奶| 少妇粗大呻吟视频| 性欧美人与动物交配| 另类亚洲欧美激情| 一级毛片精品| 男女下面插进去视频免费观看| 亚洲中文字幕日韩| 97超级碰碰碰精品色视频在线观看| 精品一品国产午夜福利视频| 国产99久久九九免费精品| 国内毛片毛片毛片毛片毛片| 女同久久另类99精品国产91| 精品国产一区二区久久| 午夜福利欧美成人| 看免费av毛片| 狠狠狠狠99中文字幕| 亚洲中文字幕日韩| 两人在一起打扑克的视频| 婷婷六月久久综合丁香| 91精品国产国语对白视频| 久久99一区二区三区| 亚洲中文字幕日韩| 桃色一区二区三区在线观看| 欧美午夜高清在线| 99久久99久久久精品蜜桃| 母亲3免费完整高清在线观看| 欧美日韩黄片免| 十分钟在线观看高清视频www| 精品国产美女av久久久久小说| 麻豆一二三区av精品| 69av精品久久久久久| 欧美日韩黄片免| 国产精品亚洲av一区麻豆| 久久精品国产清高在天天线| 黑人操中国人逼视频| 一级,二级,三级黄色视频| 国产成人欧美| 中文字幕色久视频| 天堂动漫精品| 热99国产精品久久久久久7| 成人手机av| 村上凉子中文字幕在线| 久久人妻av系列| 露出奶头的视频| 欧美精品亚洲一区二区| 三级毛片av免费| 波多野结衣av一区二区av| 国产亚洲欧美精品永久| 男女做爰动态图高潮gif福利片 | 高清黄色对白视频在线免费看| 欧美精品亚洲一区二区| 这个男人来自地球电影免费观看| 精品福利观看| 亚洲aⅴ乱码一区二区在线播放 | 在线视频色国产色| 精品欧美一区二区三区在线| 国产又爽黄色视频| 午夜久久久在线观看| 国产蜜桃级精品一区二区三区| 免费在线观看日本一区| 久久99一区二区三区| 免费在线观看影片大全网站| 成熟少妇高潮喷水视频| 国产午夜精品久久久久久| 国产精品国产高清国产av| 99精品久久久久人妻精品| 国产精品香港三级国产av潘金莲| 免费一级毛片在线播放高清视频 | 男女高潮啪啪啪动态图| 亚洲狠狠婷婷综合久久图片| 在线观看免费视频日本深夜| 国产亚洲欧美98| 免费在线观看完整版高清| 亚洲专区字幕在线| 欧美日韩视频精品一区| 精品一区二区三卡| 91精品国产国语对白视频| 最近最新免费中文字幕在线| 午夜免费成人在线视频| 两个人看的免费小视频| 亚洲欧美一区二区三区黑人| 国产精品综合久久久久久久免费 | 99久久精品国产亚洲精品| 亚洲国产毛片av蜜桃av| 十分钟在线观看高清视频www| 亚洲成人精品中文字幕电影 | 国产精品99久久99久久久不卡| 国产色视频综合| 乱人伦中国视频| 性欧美人与动物交配| 亚洲国产精品sss在线观看 | 999久久久精品免费观看国产| 亚洲一区二区三区欧美精品| 色老头精品视频在线观看| 精品国产乱码久久久久久男人| 久久精品国产综合久久久| 国产成人精品无人区| 欧美日韩精品网址| 免费搜索国产男女视频| 亚洲欧美日韩另类电影网站| 在线观看免费日韩欧美大片| 亚洲成人久久性| 亚洲欧美激情综合另类| 巨乳人妻的诱惑在线观看| 色尼玛亚洲综合影院| 日本精品一区二区三区蜜桃| 看黄色毛片网站| 免费女性裸体啪啪无遮挡网站| 黄网站色视频无遮挡免费观看| 久久久久久亚洲精品国产蜜桃av| 国产精品二区激情视频| 老熟妇乱子伦视频在线观看| 老司机午夜十八禁免费视频| 日本精品一区二区三区蜜桃| 欧美不卡视频在线免费观看 | 国产精品一区二区精品视频观看| 色婷婷av一区二区三区视频| 午夜福利,免费看| 国产精品国产高清国产av| 国产麻豆69| 欧美黑人欧美精品刺激| 亚洲av五月六月丁香网| 精品国产一区二区久久| 88av欧美| 精品福利观看| 亚洲一区高清亚洲精品| 欧美激情极品国产一区二区三区| 在线观看免费视频日本深夜| 亚洲第一欧美日韩一区二区三区| 国产精品日韩av在线免费观看 | 宅男免费午夜| 久久久久国产精品人妻aⅴ院| 国产麻豆69| 99国产精品免费福利视频| 国产精品1区2区在线观看.| 成人国语在线视频| 亚洲男人天堂网一区|