• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice?

    2019-08-06 02:06:16XinLi李欣RongYu俞榕andQimiaoSi
    Chinese Physics B 2019年7期
    關(guān)鍵詞:李欣

    Xin Li(李欣), Rong Yu(俞榕), and Qimiao Si

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices,

    Renmin University of China,Beijing 100872,China

    4Department of Physics&Astronomy,Rice Center for Quantum Materials,Rice University,Houston,Texas 77005,USA

    Keywords: heavy fermion system,Kondo insulator,spin-orbit coupling

    1. Introduction

    Exploring novel quantum phases and the associated phase transitions in systems with strong electron correlations is a major subject of contemporary condensed matter physics.[1-3]In this context, heavy fermion (HF) compounds play a crucial role.[3-7]In these materials, the coexisted itinerant electrons and local magnetic moments (from localized f electrons) interact via the antiferromagnetic exchange coupling, resulting in the famous Kondo effect.[8]Meanwhile, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, namely the exchange coupling among the local moments mediated by the itinerant electrons, competes with the Kondo effect.[9]This competition gives rise to a rich phase diagram with an antiferromagnetic (AFM) quantum critical point (QCP) and various emergent phases nearby.[3,10]

    In the HF metals,experiments[11,12]have provided strong evidence for local quantum criticality,[13,14]which is characterized by the beyond-Landau physics of Kondo destruction at the AFM QCP. Across this local QCP, the Fermi surface jumps from large in the paramagnetic HF liquid phase to small in the AFM phase with Kondo destruction. A natural question arises: how does this local QCP connect to the conventional spin density wave(SDW)QCP described by the Hertz-Millis theory?[15,16]A proposed global phase diagram[17-20]makes this connection via the tuning of the quantum fluctuations in the local-moment magnetism. Besides the HF metals,it is also interesting to know whether a similar global phase diagram can be realized in Kondo insulators(KIs),where the chemical potential is inside the Kondo hybridization gap when the electron filling is commensurate. The KIs are band insulators where the band gap originates from nontrivial strong electron-correlation effects. A Kondo-destruction transition is expected to accompany the closure of the band gap. The question that remains open is: do the local moments immediately order or do they form a different type of magnetic state,such as spin liquid or valence bond solid(VBS),when the Kondodestruction takes place?

    Recent years have seen extensive studies about the effect of a fine spin-orbit coupling(SOC)on the electronic bands.In topological insulators(TIs),the bulk band gap opens due to a non-zero SOC,and there exist gapless surface states.The nontrivial topology of the band structure is protected by the time reversal symmetry(TRS).Even for a system with broken TRS,the conservation of combination of TRS and translational symmetry can give rise to a topological antiferromagnetic insulator(T-AFMI).[21]In general,these TIs and TAFIs can be tuned to topologically trivial insulators via topological quantum phase transitions. But how the strong electron correlations influence the properties of these symmetry dictated topological phases and the related phase transitions is still under active discussion.

    The SOC also has important effects in HF materials.[20]For example, the SOC can produce a topologically nontrivial band structure and induce exotic Kondo physics.[22,23]It may give rise to a topological Kondo insulator(TKI),[24]which has been invoked to understand the resistivity plateau of the heavyfermion SmB6at low temperatures.[25]

    From a more general perspective, the SOC provides an additional tuning parameter enriching the global phase diagram of the HF systems.[20,26]Whether and how the topological nontrivial quantum phases can emerge in this phase diagram is a timely issue. Recent studies have advanced a Weyl-Kondo semimetal phase.[27]The new heavy fermion compound Ce3Bi4Pd3displays thermodynamic[28]and zerofield Hall transport[29]properties that provide evidence for the salient features of the Weyl-Kondo semimetal. These measurements probe the linearly dispersing electronic excitations with a velocity that is renormalized by several orders of magnitude and singularities in the Berry-curvature distribution.

    Theoretical studies are also of interest for a Kondo lattice model defined on a honeycomb lattice,[30]which readily accommodates the SOC.[31]In the diluted carrier limit, this model supports a nontrivial Dirac-Kondo semimetal(DKSM)phase,which can be tuned to a TKI by increasing the SOC.[32]In Ref. [30], it was shown that, at half-filling, increasing the Kondo coupling induces a direct transition from a TI to a KI.A related model,with the conduction-electron part of the Hamiltonian described by a Haldane model[33]on the honeycomb lattice,was subsequently studied.[34]

    Here we investigate the global phase diagram of a spinorbit-coupled Kondo lattice model on the honeycomb lattice at half-filling. We show that the competing interactions in this model give rise to a very rich phase diagram containing a TI,a KI, and two AFM phases. We focus on discussing the influence of magnetic frustration on the phase diagram. In the TI,the local moments develop a VBS order. In the two AFM phases, the moments are ordered, respectively, in the plane of the honeycomb lattice(denoted as AFMxy)and perpendicular to the plane (AFMz). Particularly in the AFMzphase,the conduction electrons may have a topologically nontrivial band structure, although the TRS is explicitly broken. This T-AFMzstate connects to the trivial AFMzphase via a topological phase transition as the SOC is reduced.

    The remainder of the paper is organized as follows. We start by introducing the model and our theoretical procedure in Section 2. In Section 3,we discuss the magnetic phase diagram of the Heisenberg model for the local moments.Next,we obtain the global phase diagram of the full model in Section 4.In Section 5,we examine the nature of the conduction-electron band structures in the AFM states,with a focus on their topological characters. We discuss the implications of our results in Section 6.

    2. Model and method

    The model that we consider here is defined on an effective double-layer honeycomb lattice. The top layer contains conduction electrons realizing the Kane-Mele Hamiltonian.[31]The conduction electrons are Kondo coupled(i.e.,via AF exchange coupling JK)to the localized magnetic moments in the bottom layer. The local moments interact among themselves through direct exchange interaction,as well as the conduction electron mediated RKKY interaction; the interactions are described by a simple J1-J2model. Both the conduction bands and the localized bands are half-filled. This Kondo-lattice Hamiltonian takes the following form on the honeycomb lattice:

    We use the spinon representation for Si, i.e., rewriting Si= f?iσσσσ′fiσ′along with the constraint ∑σf?iσfiσ= 1,where f?iσis the spinon operator. The constraint is enforced by introducing the Lagrange multiplier term ∑iλi(∑σf?iσfiσ-1)in the Hamiltonian. To study both the non-magnetic and magnetic phases, We decouple the Heisenberg Hamiltonian into two channels

    Here x is a parameter that is introduced in keeping with the generalized procedure of Hubbard-Stratonovich decouplings and will be fixed to conveniently describe the effect of quantum fluctuations. The corresponding valence bond(VB)parameter Qijand sublattice magnetization Miare Qij=〈∑αf?iαfjα〉 and Mi= 〈Si〉, respectively. Throughout this paper, we consider the two-site unit cell, thus excluding any states that break the lattice translation symmetry. Under this construction, there are three independent VB mean fields Qi,i = 1,2,3 for the NN bonds and six independent VB mean fields Qi, i=4,5,...,9 for the NNN bonds, which are illustrated in Fig.1.We consider only AFM exchange interactions,J1>0 and J2>0, and will thus only take into account AFM order with M =Mi∈A=-Mi∈B.

    Fig.1.(a),(b)Definition of nearest neighboring and next nearest neighboring valence bond mean fields Qij. Filled and empty circles denote the two sublattices A and B,respectively. Different bond directions are labeled by different colors. (c) First Brilluion zone corresponds to the two-sublattice unit cell.

    To take into account the Kondo hybridization and the possible magnetic order on an equal footing,we follow the treatment of the Heisenberg interaction as outlined in Eq. (2) and decouple the Kondo interaction as follows:

    Here we have introduced the mean-field parameter for the Kondo hybridization,, and the conduction electron magnetization mi=〈si〉. For nonzero b,the conduction electrons will Kondo hybridize with the local moments and the system at half-filling is a KI.On the other hand,when b is zero and M is nonzero, magnetization (m/=0) on the conduction electron band will be induced by the Kondo coupling,and various AFM orders can be stabilized depending on the strength of the SOC.Just like the parameter x in Eq.(2)is chosen so that a saddle-point treatment captures the quantum fluctuations in the form of spin-singlet bond parameters,[19]the parameter y will be specified according to the criterion that the treatment at the same level describes the quantum fluctuations in the form of Kondo-insulator state.

    3. Phase diagram of the Heisenberg model for the local moments

    Because of the complexity of the full Hamiltonian, we start by setting JK=0 and discuss the possible ground-state phases of the J1-J2Heisenberg model for the local moments.By treating the problem at the saddle-point level in Eq.(2),we obtain the phase diagram in the x-J2/J1plane shown in Fig.2.Here,the x-dependence is studied in the same spirit as that for the Shastry-Sutherland lattice in Ref. [19]. In the parameter regime explored, an AFM ordered phase (labeled as “AFM”in the figure)and a valence bond solid(VBS)phase are stabilized. The AF order stabilized is the two-sublattice N′eel order on the honeycomb lattice, and the VBS order refers to covering of dimer singlets with |Qi|=Q/=0 for one out of the three NN bonds(e.g.,Q1/=0,Q2=Q3=0)and|Qi|=0 for all the NNN bonds. This VBS state spontaneously breaks the C3rotational symmetry of the lattice. We thus define the order parameter for the VBS state to be Q=|∑j=1,2,3Qjei(2πj/3)|.

    In Fig. 3, we plot the evolution of VBS and AF order parameters Q and M as a function of J2/J1. A direct firstorder transition(signaled by the mid-point of the jump of the order parameters) between these two phases is observed for x 0.6. For the sake of understanding the global phase diagram of the full Kondo-Heisenberg model, we limit our discussion to J2/J1<1, where only the NN VBS is relevant. A different decoupling scheme approach has been used to study this model,[37]and the obtained results are consistent with ours in the parameter regime of overlap. To fix the parameter x,we compare our results with those about the J1-J2model derived from previous numerical studies. DMRG studies[38]found that the AFM state is stabilized for J2/J1<0.22, and VBS exists for J2/J1>0.35, while in between the nature of the ground states is still under debate. In this parameter regime,the DMRG calculations suggest a plaquette resonating valence bond(RVB)state,[38]while other methods implicate possibly spin liquids.[39]In light of these numerical results, we take x=0.4 in our calculations. This leads to a direct transition from AFM to VBS at J2/J1?0.27,close to the values of phase boundaries of these two phases determined by other numerical methods.

    Fig. 2. Ground-state phase diagram of the J1-J2 Hamiltonian for the local moments in the x-J2/J1 plane. A NN VBS and an AFM state are stabilized in the parameter regime shown.

    Fig. 3. Evolution of (a) the VBS order parameter Q and (b) the AFM order parameter M as a function of J2/J1 for x=0.3,0.4,0.5.

    4. Global phase diagram of the Kondo-lattice model

    We now turn to the global phase diagram of the full model by turning on the Kondo coupling. For definiteness, we set J1=1 and consider t =1 and λso=0.4. As prescribed in the previous section, we take x=0.4. Similar considerations for y require that its value allows for quantum fluctuations in the form of Kondo-singlet formation. This has guided us to take y=0.7 (see below). The corresponding phase diagram as a function of JKand the frustration parameter J2/J1is shown in Fig.4.

    In our calculation, the phase boundaries are determined by sweeping JKwhile along multiple horizontal cuts for several fixed J2/J1values, as shown in Fig. 5. For small JKand large J2/J1, the local moments and the conduction electrons are still effectively decoupled. The conduction electrons form a TI for finite SOC, and the local moments are in the VBS ground state as discussed in the previous section. When both JKand J2/J1are small, the ground state is AFM. Due to the Kondo coupling, finite magnetization m is induced for the conduction electrons. This opens an SDW gap in the conduction band, and therefore the ground state of the system is an AFM insulator. The SOC couples the rotational symmetry in the spin space to the one in the real space. As a consequence, the ordered moments in the AFM phase can be either along the z direction (AFMz)or in the x-y plane (AFMxy). For finite SOC, these two AFM states with different energies, which can be tuned by JK. As shown in the phase diagram, the AFM phase contains two ordered states, the AFMzand AFMxy. They are separated by a spin reorientation transition at JK/J1≈0.8.For the value of SOC taken, the AFM state is topologically nontrivial, and is hence denoted as T-AFMzstate. The nature of this state and the associated topological phase transition is discussed in detail in the next section.

    Fig. 4. Global phase diagram at T =0 from the saddle-point calculations with x=0.4 and y=0.7. The ground states include the valencebond solid (VBS) and Kondo insulator (KI), as well as two antiferromagnetic orders,T-AFMz and AFMxy,as described in Section 5.

    Fig. 5. Evolution of parameters (a) b, (b) Q, (c) Mx, and (d) Mz as a function of JK for different ratios of J2/J1.

    For sufficiently large JK, the Kondo hybridization b is nonzero (see Fig. 5(a)), and the ground state is a KI. Note that for finite SOC, this KI does not have a topological nontrivial edge state, as a consequence of the topological no-go theorem.[30,40,41]In our calculation at the saddle-point level,the KI exists for y ≥0.6; this provides the basis for taking y=0.7,as noted earlier. Going beyond the saddle-point level,the dynamical effects of the Kondo coupling will appear,and we will expect the KI phase to arise for other choices of y.

    Several remarks are in order. The phase diagram,Fig.4,has a similar profile of the global phase diagram for the Kondo insulating systems.[26,42]However, the presence of SOC has enriched the phase diagram. In the AF state,the ordered moment may lie either within the plane or be perpendicular to it. These two states have very different topological properties.We now turn to a detailed discussion of this last point.

    5. Topological properties of the AFM states

    In this section, we discuss the properties of the AFMxyand AFMzstates,in particular to address their topological nature. For a clear discussion, we fix t =1, J1=1, and J2=0.Since the Kondo hybridization is not essential to the nature of the AFM states, in this section we simply the discussion by setting y=0.

    We start by defining the order parameters of the two states

    Note that for the AFMxystate,we set My=my=0 without losing generality. In Fig.6, we plot the evolution of these AFM order parameters with JKfor a representative value of SOC λso=0.1. Due to the large J1value we take, the sublattice magnetizations of the local moments are already saturated to 0.5. Therefore, at the saddle-point level, they serve as effective (staggered) magnetic fields to the conduction electrons.The Kondo coupling then induces finite sublattice magnetizations for the conduction electrons, and they increase linearly with JKfor small JKvalues. But mxis generically different from mz,which is important for the stabilization of the states.

    Fig. 6. The conduction electron magnetization for the AFMxy and AFMz states at λso=0.1.

    We then discuss the energy competition between the AFMxyand AFMzstates. The conduction electron part of the mean-field Hamiltonian reads

    with

    for the AFMxystate and

    for the AFMzstate. Here=t1(1+e-ik·a1+e-ik·a2),∈?(k)is the complex conjugate of ∈(k), and a1=are the primitive vectors. For both states,the eigenvalues are doubly degenerate

    The eigenenergies of the spinon band can be obtained in a similar way

    The expression of the total energy for either state is then

    The first line of the above expression comes from filling the bands up to the Fermi energy(which is fixed to be zero here).The second line is the constant term in the mean-field decomposition. The factor 2 in the k summation is to take into account the double degeneracy of the energies. Nkrefers to the number of k points in the first Brillouin zone.

    By comparing the expressions of Ec-(k)in Eqs.(11)and(12),we find that adding a small Mxis to increase the size of the gap at both of the two(inequivalent)Dirac points,thereby pushing the states further away from the Fermi-energy. While adding a small Mzis to enlarge the gap at one Dirac point but reduce the gap size at the other one.Therefore,an AFMxystate is more favorable than the AFMzstate in lowering the energy of the conduction electrons ∑kEc-(k).

    Meanwhile, from Eqs.(13)-(15), we see that the overall effect of adding a magnetization of the conduction band, m,is to increase the total energy Etot(the main energy increase comes from the 2JK(M·m)term). Because|mz|<|mx|from the self consistent solution,as shown in Fig.6,the energy increase of the AFMzstate is smaller than that in the AFMxystate.

    Fig.7. Energy difference between AFMz and AFMxy states as a function of JK for various values of spin-orbital coupling λso.

    With increasing JK,the two effects from the magnetic orders compete,resulting in different magnetic ground states as shown in Fig.4. This analysis is further supported by our selfconsistent mean-field calculation. In Fig. 7, we plot the energy difference between these two states ΔE =Exy-Ezas a function of JKat several λsovalues. In the absence of SOC,the model has the spin SU(2) symmetry, and the AFMzand AFMxystates are degenerate with ΔE =0. For finite λso, at small JKvalues,the energy gain from the ∑kEc-(k)term dominates, ΔE >0, and the ground state is an AFMzstate. With increasing JK, the contribution from the 2JK(M ·m) term is more important. ΔE crosses zero to be negative, and the AFMxystate is eventually energetically favorable for large JK.

    Next we discuss the topological nature of the AFMzand AFMxystates. In the absence of Kondo coupling JK,the conduction electrons form a TI, which is protected by the TRS.There, the left- and right-moving edge states connecting the conduction and valence bands are respectively coupled to up and down spin flavors (eigenstates of the Szoperator) as the consequence of SOC,and these two spin polarized edge states do not mix.

    Once the TRS is broken by the AFM order, generically,topologically nontrivial edge states are no longer guaranteed.However,in the AFMzstate,the structure of the Hamiltonian for the conduction electrons is the same as that in a TI. This is clearly shown in Eq. (10) the effect of magnetic order is only to shift Λ(k)to Λ(k)+JKMz/2. In particular,the spinup and spin-down sectors still do not mix with each other.Therefore, the two spin polarized edge states are still well defined as in the TI, and the system is topologically nontrivial,though without the protection of TRS.Note that the above analysis is based on assuming JKMz?Λ(k),where the bulk gap between the conduction and valence bands is finite. Forthe bulk gap closes at one of the inequivalent Dirac points and the system is driven to a topologically trivial phase via a topological phase transition.[30]We also note that a similar AFMzstate arises in a Kondo lattice model without SOC but with a Haldane coupling,as analyzed in Ref.[34].

    For the AFMxystate,we can examine the Hamiltonian for the conduction electrons in a similar way.As shown in Eq.(9),the transverse magnetic order Mxmixes the spin-up and spindown sectors. As a result, a finite hybridization gap opens between the two edge states,making the system topologically trivial.

    To support this analysis, we perform calculations of the energy spectra of the conduction electrons in the AFMzand AFMxystates, as shown in Eqs. (9) and (10), on a finite slab of size Lx×Ly, with Lx=200 and Ly=40. The boundary condition is chosen to be periodic along the x direction and open and zig-zag-type along the y direction. In Fig. 8, we show the energy spectra with three different sets of parameters:(a) λso=0.01, JK=0.4, Mz=0.5, (b) λso=0.1, JK=0.4,Mz=0.5, and (c) λso=0.1, JK=0.8, Mx=0.5, which respectively correspond to the topologically trivial AFMzstate,topological AFMzinsulator,and AFMxystate.As clearly seen,the gapless edge states only exist for parameter set(b),where the system is in the topological AFMzstate. Note that in this state,the spectrum is asymmetric with respect to the Brilluion zone boundary (kx= π), reflecting the explicit breaking of TRS. Based on our analysis and numerical calculations, we construct a phase diagram(as shown in Fig.9)to illustrate the competition of these AFM states.As expected,the AFMzstate is stabilized for,and is topological for JK<123λso(above the red line).

    Fig.8. Energy spectra of(a)the trivial AFMz state,(b)the topological AFMz insulator, and (c) the AFMxy state from finite slab calculations.Black lines denote the bulk states and red lines denote the edge states.The topological AFMz state is characterized by the gapless edge states.See text for detailed information on the parameters.

    Fig.9. Phase diagram in the λso-JK plane showing the competition of various AFM states. The red line denotes a topological phase transition between the topological trivial and topological nontrivial AFMz states,and the black curve gives the boundary between the AFMz and AFMxy states. These two states become equivalent in the limit of λso →0.

    6. Discussion

    We have discussed the properties of various phases in the ground-state phase diagram of the spin-orbit-coupled Kondo lattice model on the honeycomb lattice at half filling. We have shown how the competition of SOC,Kondo interaction,and magnetic frustration stabilizes these phases. For example,in the AFM phase the moments can order either along the z-direction or within the x-y plane. In our model, the AFM order is driven by the RKKY interaction,and the competition of SOC and Kondo interaction dictates the direction of the ordered magnetic moments.

    Throughout this work, we have discussed the phase diagram of the model at half filling. The phase diagram away from half-filling is also an interesting problem. We expect that the competition between the AFMzand AFMxystates persist at generic fillings, but the topological feature will not. Another interesting filling would be the dilute-carrier limit,where a DKSM exists, and can be tuned to a TKI by increasing the SOC.[32]

    In this work, we have considered a particular type of SOC, which is inherent in the band structure of the itinerant electrons. In real materials,there are also SOC terms that involve the magnetic ions. Such couplings will lead to models beyond the current work, and may further enrich the global phase diagram.

    Although the model in this work is defined on the honeycomb lattice, our conclusion on the global phase diagram is quite general, and will be important in understanding the nature of the transition between the Kondo insulating phase and the antiferromagnetic phase in real materials. For example, the Kondo insulator compound SmB6undergoes a magnetic transition under pressure.[44]The Kondo-insulatorto-antiferromagnet transition may also be realized by doping CeNiSn with Pt or Pd ions since both CePtSn and CePdSn are antiferromagnetic at low temperatures.[44-46]Nontrivial topological properties in the antiferromagnetic phase are expected given that the 5d electrons of CePtSn may contain a large SOC.Moreover, because the Kane-Mele model describes the electron states in graphene,our model may also shed light on the properties of graphene with 5d adatoms.[47]

    7. Conclusion

    We have investigated the ground state phase diagram of a spin-orbit coupled Kondo lattice model at half-filling. The combination of SOC,Kondo and RKKY interactions produces various quantum phases,including a Kondo insulator,a topological insulator with VBS spin correlations, and two AFM phases. Depending on the strength of SOC,the magnetic moments in the AFM phase can be either ordered perpendicular to or in the x-y plane. We further show that the z-AFM state is topologically nontrivial for strong and moderate SOC, and can be tuned to a topologically trivial one via a topological phase transition by varying either the SOC or the Kondo coupling. Our results shed new light on the global phase diagram of heavy fermion materials.

    Acknowledgment

    We thank W Ding, P Goswami, S E Grefe, H H Lai, Y Liu,S Paschen,J H Pixley,T Xiang,and G M Zhang for useful discussions.

    猜你喜歡
    李欣
    Merging and splitting dynamics between two bright solitons in dipolar Bose–Einstein condensates?
    瘋狂夜飛兔
    為挽回戀情,網(wǎng)上找道士作法
    方圓(2021年21期)2021-11-20 06:35:57
    一口奶
    幼兒圖畫(huà)
    選對(duì)羽絨服, 不再怕冷
    選對(duì)羽絨服,不再怕冷
    愛(ài)你(2019年46期)2019-12-18 02:12:22
    獵頭的秘密
    Study of fluid resonance between two side-by-side floating barges*
    目 光
    午夜免费男女啪啪视频观看 | 午夜免费激情av| 欧美av亚洲av综合av国产av| 中文字幕av成人在线电影| 不卡一级毛片| 国产精品久久久久久亚洲av鲁大| 久久人人精品亚洲av| 亚洲片人在线观看| 亚洲国产欧洲综合997久久,| 一进一出抽搐gif免费好疼| 日本五十路高清| 好男人电影高清在线观看| 少妇熟女aⅴ在线视频| 动漫黄色视频在线观看| 91久久精品电影网| 人人妻人人澡欧美一区二区| 欧美av亚洲av综合av国产av| 国产伦精品一区二区三区视频9 | 久久亚洲真实| 啪啪无遮挡十八禁网站| 高清毛片免费观看视频网站| 黄片大片在线免费观看| 97超级碰碰碰精品色视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 99久久综合精品五月天人人| 精品久久久久久久久久久久久| 亚洲av中文字字幕乱码综合| 亚洲最大成人中文| 亚洲国产高清在线一区二区三| 午夜免费成人在线视频| 亚洲自拍偷在线| 97人妻精品一区二区三区麻豆| 精品国产美女av久久久久小说| 深夜精品福利| 国产欧美日韩精品亚洲av| 一夜夜www| 最后的刺客免费高清国语| 亚洲av免费高清在线观看| 成年免费大片在线观看| 久久久久精品国产欧美久久久| 色综合婷婷激情| 欧美日韩国产亚洲二区| 婷婷亚洲欧美| 国产精品98久久久久久宅男小说| 又黄又爽又免费观看的视频| 少妇熟女aⅴ在线视频| 亚洲国产高清在线一区二区三| 国产av在哪里看| 丰满的人妻完整版| 51午夜福利影视在线观看| 亚洲成av人片免费观看| 国产日本99.免费观看| 国产精品永久免费网站| 美女被艹到高潮喷水动态| 国产毛片a区久久久久| 99久久久亚洲精品蜜臀av| 欧美av亚洲av综合av国产av| 久久久久久久久大av| 乱人视频在线观看| 十八禁人妻一区二区| 女人被狂操c到高潮| 亚洲人成网站高清观看| 精品福利观看| 村上凉子中文字幕在线| 国产精品一区二区三区四区久久| 少妇的逼好多水| 国产精品精品国产色婷婷| www.www免费av| e午夜精品久久久久久久| 日本一本二区三区精品| 特级一级黄色大片| 老司机深夜福利视频在线观看| 白带黄色成豆腐渣| 日本黄大片高清| 无遮挡黄片免费观看| 国产精品一及| 超碰av人人做人人爽久久 | 可以在线观看的亚洲视频| 99精品在免费线老司机午夜| 日韩精品青青久久久久久| 丰满乱子伦码专区| 99久久精品国产亚洲精品| 91在线观看av| 美女大奶头视频| 在线观看美女被高潮喷水网站 | 国产精品一及| 精品久久久久久成人av| 中文字幕久久专区| av福利片在线观看| 国内精品美女久久久久久| 久久精品国产清高在天天线| 国产高清有码在线观看视频| 一进一出抽搐动态| www.熟女人妻精品国产| 国产探花极品一区二区| 最好的美女福利视频网| 淫秽高清视频在线观看| 日本一二三区视频观看| 成年女人毛片免费观看观看9| 色综合婷婷激情| 白带黄色成豆腐渣| 亚洲精品亚洲一区二区| 亚洲熟妇中文字幕五十中出| 男人的好看免费观看在线视频| 国产成人啪精品午夜网站| 亚洲欧美日韩东京热| 国内少妇人妻偷人精品xxx网站| 午夜福利欧美成人| 国产一区二区在线观看日韩 | 免费大片18禁| 日本一二三区视频观看| 成熟少妇高潮喷水视频| 99热这里只有是精品50| 国产三级在线视频| 亚洲黑人精品在线| 国产精品 欧美亚洲| 少妇高潮的动态图| 最新中文字幕久久久久| 国产精品 国内视频| 国内久久婷婷六月综合欲色啪| 网址你懂的国产日韩在线| 3wmmmm亚洲av在线观看| 女人十人毛片免费观看3o分钟| 亚洲精品456在线播放app | 日本a在线网址| 最新在线观看一区二区三区| 婷婷精品国产亚洲av| 精品国产三级普通话版| 国产精品 国内视频| 久久久国产成人精品二区| 日本熟妇午夜| 丰满的人妻完整版| 麻豆国产av国片精品| 怎么达到女性高潮| 久久人人精品亚洲av| 免费看美女性在线毛片视频| 亚洲avbb在线观看| 网址你懂的国产日韩在线| 男女做爰动态图高潮gif福利片| 中亚洲国语对白在线视频| 九色国产91popny在线| 国产高清视频在线播放一区| 欧美性猛交╳xxx乱大交人| 国产v大片淫在线免费观看| 又黄又粗又硬又大视频| 国产一区在线观看成人免费| 欧美zozozo另类| 欧美极品一区二区三区四区| 女同久久另类99精品国产91| 国产精品免费一区二区三区在线| 午夜激情福利司机影院| 欧美日韩瑟瑟在线播放| 村上凉子中文字幕在线| 欧美在线一区亚洲| 中文在线观看免费www的网站| 搞女人的毛片| 国产免费男女视频| 99riav亚洲国产免费| 日本免费一区二区三区高清不卡| 一区二区三区激情视频| 少妇丰满av| 国产一区二区三区在线臀色熟女| 美女cb高潮喷水在线观看| 欧美国产日韩亚洲一区| 国产成+人综合+亚洲专区| 国产精品综合久久久久久久免费| 亚洲,欧美精品.| 男女视频在线观看网站免费| 欧美一级毛片孕妇| 欧美高清成人免费视频www| 精品一区二区三区视频在线观看免费| 精品国产三级普通话版| 日日干狠狠操夜夜爽| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久久电影 | 精品熟女少妇八av免费久了| 精品福利观看| 一个人免费在线观看的高清视频| 中文在线观看免费www的网站| 日韩精品青青久久久久久| 欧美在线一区亚洲| 在线播放无遮挡| 最新中文字幕久久久久| bbb黄色大片| 欧美精品啪啪一区二区三区| 九九热线精品视视频播放| 国产精品亚洲av一区麻豆| 又紧又爽又黄一区二区| 欧美性感艳星| 看免费av毛片| 久久这里只有精品中国| 熟女人妻精品中文字幕| 女同久久另类99精品国产91| 91在线精品国自产拍蜜月 | 日韩欧美免费精品| 久久国产精品人妻蜜桃| 在线观看一区二区三区| 在线看三级毛片| 在线观看免费视频日本深夜| 免费观看人在逋| 制服人妻中文乱码| www日本黄色视频网| 亚洲成av人片免费观看| 欧美乱码精品一区二区三区| 日韩免费av在线播放| 久久久久久久久久黄片| 国产精品 国内视频| 97超级碰碰碰精品色视频在线观看| 精品国内亚洲2022精品成人| 老司机在亚洲福利影院| 3wmmmm亚洲av在线观看| 91麻豆av在线| 国产中年淑女户外野战色| 怎么达到女性高潮| ponron亚洲| 国产精品三级大全| 99久久精品国产亚洲精品| 欧美日韩瑟瑟在线播放| 色吧在线观看| 午夜精品久久久久久毛片777| 亚洲成av人片在线播放无| 村上凉子中文字幕在线| 嫩草影院入口| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 欧美性感艳星| 99热这里只有精品一区| 亚洲 欧美 日韩 在线 免费| 免费电影在线观看免费观看| 成年女人永久免费观看视频| 99国产综合亚洲精品| 国产97色在线日韩免费| 看黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产av麻豆久久久久久久| 亚洲国产高清在线一区二区三| 免费av毛片视频| 国产伦人伦偷精品视频| 首页视频小说图片口味搜索| 午夜日韩欧美国产| 国产乱人视频| 淫秽高清视频在线观看| 在线观看日韩欧美| 99热精品在线国产| 99久久久亚洲精品蜜臀av| АⅤ资源中文在线天堂| 国产美女午夜福利| 在线播放无遮挡| 久久国产乱子伦精品免费另类| 亚洲欧美一区二区三区黑人| 99久久成人亚洲精品观看| 久久香蕉精品热| 波多野结衣高清作品| 熟女人妻精品中文字幕| www日本黄色视频网| 国产精品 国内视频| 级片在线观看| 欧美一区二区精品小视频在线| 久久久久久大精品| 又爽又黄无遮挡网站| 精品福利观看| 18禁国产床啪视频网站| 成年女人毛片免费观看观看9| 久久久久久人人人人人| 午夜福利视频1000在线观看| 小说图片视频综合网站| 欧美成人a在线观看| 好看av亚洲va欧美ⅴa在| 十八禁网站免费在线| 亚洲男人的天堂狠狠| 国产精品影院久久| 三级毛片av免费| 国产精品久久久久久久电影 | 色综合婷婷激情| 99热只有精品国产| 黄色丝袜av网址大全| 丁香欧美五月| 18禁黄网站禁片午夜丰满| 国产精品亚洲一级av第二区| 中亚洲国语对白在线视频| 国产免费男女视频| 亚洲av一区综合| 一级毛片高清免费大全| 99在线人妻在线中文字幕| 中文字幕人妻熟人妻熟丝袜美 | 最近最新中文字幕大全电影3| 18禁黄网站禁片免费观看直播| 无人区码免费观看不卡| 91字幕亚洲| 嫁个100分男人电影在线观看| 少妇熟女aⅴ在线视频| 99久久精品热视频| 男插女下体视频免费在线播放| 精品一区二区三区av网在线观看| 日韩国内少妇激情av| 久久午夜亚洲精品久久| 一级毛片女人18水好多| 国产真实伦视频高清在线观看 | 一个人看的www免费观看视频| 欧美一区二区国产精品久久精品| 精品久久久久久成人av| 成年女人看的毛片在线观看| 有码 亚洲区| 亚洲国产精品久久男人天堂| 人妻夜夜爽99麻豆av| 天天添夜夜摸| bbb黄色大片| 成人午夜高清在线视频| 97超级碰碰碰精品色视频在线观看| 亚洲在线自拍视频| 在线播放国产精品三级| 校园春色视频在线观看| 国产乱人视频| 亚洲av美国av| 久久午夜亚洲精品久久| 观看免费一级毛片| 国内精品一区二区在线观看| www日本在线高清视频| 亚洲,欧美精品.| e午夜精品久久久久久久| 怎么达到女性高潮| 搡老岳熟女国产| 久久天躁狠狠躁夜夜2o2o| 看免费av毛片| 亚洲欧美日韩东京热| 国产91精品成人一区二区三区| 在线观看午夜福利视频| 一卡2卡三卡四卡精品乱码亚洲| 国产极品精品免费视频能看的| 国产91精品成人一区二区三区| 免费观看的影片在线观看| 国产精品一及| 午夜福利18| 成人午夜高清在线视频| 成人av一区二区三区在线看| 午夜福利在线观看免费完整高清在 | 丰满乱子伦码专区| 男女之事视频高清在线观看| 国产精华一区二区三区| 欧美一级毛片孕妇| 欧美乱码精品一区二区三区| 欧美三级亚洲精品| 日韩欧美 国产精品| 男女做爰动态图高潮gif福利片| 国产精品三级大全| 精品久久久久久久末码| 在线免费观看不下载黄p国产 | svipshipincom国产片| 精品日产1卡2卡| a级一级毛片免费在线观看| 内射极品少妇av片p| 亚洲 国产 在线| 丁香欧美五月| 一个人免费在线观看的高清视频| 中国美女看黄片| 性欧美人与动物交配| 精品一区二区三区av网在线观看| a级一级毛片免费在线观看| 欧美不卡视频在线免费观看| 亚洲成人精品中文字幕电影| 淫秽高清视频在线观看| 欧美三级亚洲精品| 精品乱码久久久久久99久播| 母亲3免费完整高清在线观看| 黄色片一级片一级黄色片| 亚洲人成网站高清观看| 一级黄色大片毛片| 91av网一区二区| 中文字幕熟女人妻在线| 国产精品亚洲av一区麻豆| 亚洲午夜理论影院| 嫩草影视91久久| 五月玫瑰六月丁香| 国产伦人伦偷精品视频| 欧美日韩福利视频一区二区| 淫妇啪啪啪对白视频| 久久精品国产综合久久久| 免费一级毛片在线播放高清视频| 99视频精品全部免费 在线| 国产精品香港三级国产av潘金莲| 欧美日韩乱码在线| 欧美日韩福利视频一区二区| 看片在线看免费视频| 一进一出抽搐gif免费好疼| 欧美黑人欧美精品刺激| 亚洲精品久久国产高清桃花| 精品久久久久久成人av| 免费av观看视频| 嫩草影视91久久| 黄色女人牲交| 最近最新免费中文字幕在线| 精品午夜福利视频在线观看一区| 久久久久久久久中文| av在线蜜桃| 国产国拍精品亚洲av在线观看 | 美女高潮的动态| 人人妻人人看人人澡| 欧美一区二区精品小视频在线| 国产成年人精品一区二区| 日韩欧美精品免费久久 | 国产97色在线日韩免费| 天天一区二区日本电影三级| 五月伊人婷婷丁香| 两人在一起打扑克的视频| 亚洲第一电影网av| 中文亚洲av片在线观看爽| 丰满人妻一区二区三区视频av | 免费看日本二区| 中文资源天堂在线| 一a级毛片在线观看| 一区二区三区免费毛片| 天堂网av新在线| 身体一侧抽搐| 亚洲av日韩精品久久久久久密| aaaaa片日本免费| 又黄又粗又硬又大视频| 波多野结衣高清作品| 欧美成人免费av一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲中文字幕一区二区三区有码在线看| 中文字幕人成人乱码亚洲影| a级毛片a级免费在线| 在线看三级毛片| 国产伦精品一区二区三区四那| 成人特级黄色片久久久久久久| 国产乱人视频| 丰满乱子伦码专区| av视频在线观看入口| 成人鲁丝片一二三区免费| 99久久九九国产精品国产免费| 搡老岳熟女国产| 两个人视频免费观看高清| 欧美国产日韩亚洲一区| 久久精品91蜜桃| 国产精品日韩av在线免费观看| 免费看日本二区| 国语自产精品视频在线第100页| 一进一出好大好爽视频| 欧美成人一区二区免费高清观看| 观看免费一级毛片| 国产高潮美女av| 中文字幕熟女人妻在线| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 看黄色毛片网站| 丰满人妻一区二区三区视频av | 国产亚洲精品av在线| 丰满的人妻完整版| 最新在线观看一区二区三区| 国产精品久久久久久久电影 | xxxwww97欧美| 一级黄片播放器| 夜夜看夜夜爽夜夜摸| 亚洲av电影在线进入| 欧洲精品卡2卡3卡4卡5卡区| av中文乱码字幕在线| 免费观看人在逋| 午夜精品在线福利| 少妇人妻精品综合一区二区 | 久久久久九九精品影院| 久久6这里有精品| 深夜精品福利| 亚洲熟妇中文字幕五十中出| 最新在线观看一区二区三区| 老汉色∧v一级毛片| 搡老妇女老女人老熟妇| 丁香六月欧美| 丰满人妻一区二区三区视频av | 日日夜夜操网爽| 欧美bdsm另类| 国产欧美日韩一区二区精品| 精品福利观看| 我要搜黄色片| 免费一级毛片在线播放高清视频| 男人舔女人下体高潮全视频| 少妇人妻精品综合一区二区 | 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 天堂网av新在线| 舔av片在线| 婷婷亚洲欧美| 亚洲av日韩精品久久久久久密| 精品人妻一区二区三区麻豆 | 久久久国产成人免费| 白带黄色成豆腐渣| 欧美日韩中文字幕国产精品一区二区三区| 国产av一区在线观看免费| 亚洲精品成人久久久久久| xxxwww97欧美| 国产爱豆传媒在线观看| 国产成人影院久久av| 久久精品国产亚洲av涩爱 | 在线观看66精品国产| 狠狠狠狠99中文字幕| 一本综合久久免费| 床上黄色一级片| 国产成人a区在线观看| 18禁国产床啪视频网站| 成人18禁在线播放| 久久亚洲精品不卡| 免费看日本二区| 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| 在线a可以看的网站| 日韩av在线大香蕉| 在线十欧美十亚洲十日本专区| 一个人免费在线观看的高清视频| 久久久精品大字幕| 国产精品久久久人人做人人爽| 国产久久久一区二区三区| 精品久久久久久,| 午夜激情福利司机影院| 久久精品人妻少妇| 1024手机看黄色片| 国产视频一区二区在线看| 欧美黑人巨大hd| 757午夜福利合集在线观看| 99国产综合亚洲精品| 色综合婷婷激情| 九色成人免费人妻av| 99热这里只有是精品50| 久久久久久久久大av| 亚洲久久久久久中文字幕| 国产一区二区在线观看日韩 | 成人国产综合亚洲| 69人妻影院| 国产毛片a区久久久久| 深爱激情五月婷婷| 免费人成在线观看视频色| 国产黄a三级三级三级人| 午夜精品一区二区三区免费看| 久久中文看片网| 日韩欧美国产在线观看| av国产免费在线观看| 欧美3d第一页| 亚洲精品一区av在线观看| 国内精品久久久久久久电影| 12—13女人毛片做爰片一| 禁无遮挡网站| 九九在线视频观看精品| 免费看十八禁软件| 在线天堂最新版资源| 99riav亚洲国产免费| 成人国产综合亚洲| 一区二区三区免费毛片| 亚洲电影在线观看av| 亚洲国产精品成人综合色| 成人国产综合亚洲| 色精品久久人妻99蜜桃| www日本在线高清视频| 久久久久久久精品吃奶| 亚洲一区二区三区不卡视频| 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 日韩欧美三级三区| 午夜精品一区二区三区免费看| 天堂动漫精品| 久久久久精品国产欧美久久久| 婷婷六月久久综合丁香| 99久久成人亚洲精品观看| 国产成年人精品一区二区| 人妻丰满熟妇av一区二区三区| 88av欧美| 日日夜夜操网爽| 露出奶头的视频| 国产亚洲精品综合一区在线观看| 国产精品日韩av在线免费观看| 久久精品国产综合久久久| 国产伦人伦偷精品视频| 成人国产综合亚洲| 久久精品91无色码中文字幕| 久久香蕉精品热| 国产亚洲av嫩草精品影院| 亚洲国产高清在线一区二区三| 最后的刺客免费高清国语| 999久久久精品免费观看国产| 亚洲欧美日韩高清专用| 日本免费一区二区三区高清不卡| av女优亚洲男人天堂| 男人舔奶头视频| 国产精品久久久久久久久免 | 波野结衣二区三区在线 | 亚洲av成人精品一区久久| 88av欧美| 脱女人内裤的视频| 国产一区二区激情短视频| 亚洲av中文字字幕乱码综合| 一个人免费在线观看的高清视频| 欧美乱色亚洲激情| 亚洲国产精品成人综合色| 女同久久另类99精品国产91| 69av精品久久久久久| 女同久久另类99精品国产91| av女优亚洲男人天堂| 欧美日本亚洲视频在线播放| 精品久久久久久成人av| 国产高清视频在线观看网站| 波多野结衣巨乳人妻| 叶爱在线成人免费视频播放| 日本熟妇午夜| 日日干狠狠操夜夜爽| 岛国在线观看网站| 高清毛片免费观看视频网站| 国产一区二区三区视频了| 中亚洲国语对白在线视频| 欧美区成人在线视频| 亚洲国产色片| 国产真实伦视频高清在线观看 | 深夜精品福利| 亚洲中文日韩欧美视频| 亚洲欧美一区二区三区黑人| 麻豆成人av在线观看| 一级作爱视频免费观看|