• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polarized red,green,and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer?

    2019-08-06 02:06:14HaoranZhang張皓然QiZhang張琪QianZhang張茜HuizhiSun孫匯智GangHai海港JingTong仝靜HaowenXu徐浩文andRuidongXia夏瑞東
    Chinese Physics B 2019年7期
    關(guān)鍵詞:張茜張琪海港

    Haoran Zhang(張皓然), Qi Zhang(張琪),?, Qian Zhang(張茜), Huizhi Sun(孫匯智), Gang Hai(海港),Jing Tong(仝靜), Haowen Xu(徐浩文), and Ruidong Xia(夏瑞東)

    Key Laboratory for Organic Electronics&Information Displays(KLOEID),Jiangsu-Singapore Joint Research Center for Organic/Bio Electronics&

    Information Displays,Institute of Advanced Materials(IAM),Nanjing University of Posts and Telecommunications,Nanjing 210046,China

    Keywords: organic semiconductors,light-emitting devices,polymer liquid crystals,display devices

    1. Introduction

    Organic semiconductors attract considerable attention due to their unique merits in chemical structure tunability,solution processability, and mechanical flexibility.[1]The organic optoelectronic devices are widely developed and intensely studied in the fields of light emitting diodes,[2,3]solar cells,[4,5]field effect transistors,[6,7]and plastic lasers.[8-10]Among the applications, organic light emitting diodes(OLEDs)were firstly exploited and possess the most promising future. Due to the strong demand from the consumer market and continuous efforts devoted by the manufacturers,OLEDs technology has been regarded as the solution for the next generation display of smartphones, laptops, and televisions. In recent years, polarized emission from liquid crystal materials has drawn growing interests from both academic and industrial circles because of the potential in optoelectronic applications, including backlight sources for conventional liquid crystal displays (LCDs),[11]three-dimensional imaging,[12]and so on. Unlike the traditional method of combining a polarizer with an unpolarized light source for achieving light polarization,OLEDs with aligned active layer can directly produce polarized emission,[13-15]which avoids waste of the ~50% production light. The emission dichroic ratio,D=I‖/I⊥,is the ratio of intensity of the parallel and perpendicular linearly polarized electroluminescence(EL)emissions.The degree of alignment in the active layer is of paramount importance to give a high dichroic ratio (also known as polarized ratio) of the polarized emission from resulting light emitting diodes (LEDs). During the past two decades,[15,16]various methods for emitting layer alignment have been developed,such as mechanically stretched on films,[13,17,18]mechanical friction with cloth or teflon rod,[19-21]the Langmuir-Blodgett (LB) deposition technique,[22-24]and self-assembly of organic liquid-crystals.[25,26]Among them, the mechanical friction method is a relatively simple and efficient way to produce an aligned organic emissive layer. Through such a method, with the help of a rubbed alignment layer, typically the polyimide (PI),[27]one can manipulate the orientation of the molecule in the active layer easily. Whereas,to integrate the aligned active layer in the OLEDs, the insulated PI layer has to be modified by blending in a conductive compound[28]or replaced with an alternative hole transport layer such as poly(p-phenylenevinylene) (PPV)[28,29]or poly(3,4-ethylene dioxythiophene): poly(styrene sulphonate)(PEDOT:PSS).[30,31]Unfortunately, PPV itself is an emissive polymer with strong absorption in the visible range. It will be tricky for device fabrication to avoid the reabsorption of initial emission and subsequent re-radiation caused by the PPV. To serve the purpose,PEDOT:PSS layer seems more adaptable to work as both hole transport and alignment layer.

    In this work, polyfluorene, poly (9,9-dioctylfluorene)(PFO) and its derivatives, poly (9,9-dioctylfluorene-cobenzothiadiazole) (F8BT) and poly (triphenylamine-co-4,7-di(thiophen-2-yl)benzo[c][1,2,5] thiadiazole-co-benzo[c]thiadiazole-co-9,9-dioctyl-9H-fluorene) (Red F) are used as the active materials for polarized LEDs. The non-liquidcrystallinity behavior polymer, Red F,can also achieve a certain degree of anisotropy through physical mixing with F8BT and benefit from the energy transferring in the meantime. The PFO/F8BT (5 wt.% F8BT) shows similar dichroic ratio in absorption/emission and results performance-enhanced LEDs,comparing to F8BT itself. The red, green, blue (RGB) light emitting diodes using the same rubbed alignment PEDOT:PSS layer are realized with identical device configuration. Reasonable dichroic ratio value is achieved in all polarized LEDs with simple device fabrication.

    2. Results and discussion

    The polymers used in this work are commercially available compounds, polyfluorene and its derivatives, namely,PFO, F8BT, and Red F (chemical structures shown in Fig. 1(b), details given in the experimental section). The isotropic absorption and photoluminescence (PL) spectra of these polymers on quartz are show in Fig.S1 of the supporting information. It is worth noting that the absorption of F8BT(Red F) has good overlap with the emission of PFO (F8BT),implying efficient energy transfer from PFO (F8BT)[32]to F8BT(Red F).[33]It is well known that PFO and F8BT exhibit liquid crystallinity. This feature allows them to achieve monodomain alignment with the help of a mechanically rubbed layer such as PI.[28]These polymers have so called“hairy rod”molecular architecture which includes a stiff backbone with flexible side chains. However, Red F is different from PFO or F8BT (Fig. 1(b)), and unable to realize chain orientation through self-assembly. Therefore,in this work,F8BT is used as the host for Red F,providing both energy transfer and chain orientation. The polarized absorption and PL spectra of the aligned polymer films in Fig.1(a)reveal the pronounced optical anisotropy of all samples.The absorption/PL dichroic ratio(Dabs/DPL) can be calculated by dividing the peak intensity parallel to the alignment direction to that perpendicular to the alignment direction in the spectra. The Dabs/DPLcalculated from Fig. 1(a) are 3.2 (at 390 nm)/2.8 (at 432 nm) for PFO,6.8(at 464 nm)/6.7(at 542 nm)for F8BT,6.5(at 390 nm)/6.4(at 533 nm)for PFO/F8BT blend,and 2.3(at 472 nm)/1.9(at 625 nm)for F8BT/Red F blend.Although there is only 5 wt.%F8BT in the PFO/F8BT blend, the Dabs/DPLof the resulting blend film is on the same level of that of F8BT itself,indicating efficient energy transfer in the aligned PFO/F8BT blend polymer film.

    Some early reports[34,35]claimed that the possible damage to the PEDOT:PSS layer during the rubbing procedure will affect the performance of the resulting polarized LEDs. Nevertheless, the atomic force microscopy (AFM) image of the rubbed PEDOT:PSS layer(on ITO glass)shows a root-meansquare(RMS)roughness of 0.78 nm with no evidential thread of scratching (see Fig. S2 in supporting information). The morphology of the aligned polymer films(thickness ~70 nm)deposited on top of the PEDOT:PSS layer is also considerable uniform for all polymers(RMS roughness ~1.21 nm for PFO,0.86 nm for F8BT,~1.22 nm for PFO/F8BT,and 1.61 nm for F8BT/Red F) and shows no phase separation in the blends,which will facilitate the device fabrication.

    Fig.1. (a)Polarized absorption and photoluminescence spectra of the polymers and the blends. Solid line||: polarizer parallel to rubbing direction,dashed line⊥: polarizer perpendicular to rubbing direction. (b)Chemical structures of the polymers.

    To understand if the rubbed PEDOT:PSS layer in our work (protocol in experimental section) can fully align the polymers on top, the dependence of the absorption dichroic ratio on film thickness is investigated(see Fig.S3 in supporting information). The maximum thicknesses of the polymer films that can be fully aligned are 92 nm for PFO, 112 nm for F8BT,73 nm for PFO/F8BT,and 166 nm for F8BT/Red F blend. These values all exceed the thickness of active layers used in the LEDs fabrication hereinafter.

    The LED configuration involved in this work is presented in Fig. 2(a). An extensively applied standard structure, indium tin oxide (ITO, 120 nm)/PEDOT:PSS (30 nm)/polymer(70 nm)/LiF (1 nm)/Al (120 nm), is used without further optimizing for specific active material. The rubbed PEDOT:PSS layer is employed directly as both hole injection and alignment layer. Another set of control samples using the same materials and device configuration are also fabricated without mechanical friction treatment on the PEDOT:PSS layer. In Fig. 2(b), the EL spectra of the polarized LEDs using PFO,F8BT, PFO/F8BT, and F8BT/Red F as the active materials show apparent dichroism (measured at 100 mA·cm-2). The EL dichroic ratios calculated from the emission peaks in the spectra are 3.0,6.7,6.2,and 2.0 for the PFO(432 nm),F8BT(536 nm), PFO/F8BT (544 nm), and F8BT/Red F (636 nm)based devices, respectively. In the following detailed discussion on the performance of the polarized LEDs, the measured maximum luminance intensity and luminance current efficiency parallel/perpendicular to the rubbing direction are labelled as I‖/I⊥and LE‖/LE⊥for each device. In all tests,the lower intensity measurements in perpendicular direction are carried out prior to those in parallel direction to avoid the influence of device degradation on the anisotropy analysis in EL emission. With proper encapsulation, the dichroic ratios of these devices are inferred to be even higher. The current density-brightness-voltage(J-L-V)characteristics of the devices with polarized analysis are displayed in Fig.3 and Table 1. The light turn-on voltages (at a detectable brightness of 2 cd·m-2) are 6.7 V, 3.7 V, 4.5 V, and 4.5 V for the PFO,F8BT,PFO/F8BT,and F8BT/Red F blend polarized devices. The higher light turn-on voltage of PFO-based devices can be assigned to the larger mismatch in the lowest unoccupied molecular orbital(LUMO)level of PFO(about-2.9 eV)with the work function of LiF (about -3.6 eV) compared to F8BT (about -3.5 eV). These values show the same trend with those obtained from the control devices without alignment treatment(depicted in Fig.S4 and Table S1 of supporting information). In fact,the maximum I‖(Fig.3 and Table 1)in the polarized LEDs is also on the similar level of the maximum luminance intensity measured in regular non-aligned devices(Fig. S4 and Table S1). These comparisons indicate no sign of evidential degradation of the polarized LEDs performance resulting from the rubbed PEDOT:PSS layer or thermal treatment.The maximum polarized luminance intensities I‖and I⊥of the PFO device are 2600 cd·m-2and 971 cd·m-2,giving a luminance dichroic ratio I‖/I⊥of 2.7. Similarly,for the F8BT,PFO/F8BT, F8BT/Red F devices, the luminance dichroic ratios are calculated to be 6.2 (8428 cd·m-2/1359 cd·m-2),6.4 (12835 cd·m-2/2002 cd·m-2), and 2.0 (5861 cd·m-2/2904 cd·m-2), respectively. We note that the maximum luminance of PFO/F8BT based LED is 50%higher than that of F8BT based device. This can be ascribed to the higher quantum yield of fluorescence resulted from energy transfer.

    Fig. 2. (a) LED configuration: ITO (120 nm)/PEDOT:PSS (rubbed,30 nm)/polymer (aligned 70 nm)/LiF (1 nm)/Al (120 nm). (b) Polarized EL spectra of the polymers and blends. Filled and open symbols represent polarizer detection parallel and perpendicular to the rubbing direction (squares for PFO, down-triangles for F8BT, up-triangles for PFO/F8BT,and circles for F8BT/Red F).

    Correspondingly,the polarized maximum luminance current efficiencies LE‖and LE⊥of each device as a function of current density are plotted in Fig. 4. The calculated LE dichroic ratios (DLE) are 2.7 (1.0 cd·A-1/0.38 cd·A-1), 6.2(2.1 cd·A-1/0.34 cd·A-1), 9.5 (3.42 cd·A-1/0.36 cd·A-1),and 1.9 (1.56 cd·A-1/0.82 cd·A-1) in the PFO, F8BT,PFO/F8BT, and F8BT/Red F devices, respectively. Larger maximum luminance and LE of the PFO/F8BT blend based device compared to those of F8BT eventually lead to higher DIand DLE, this is due to better EL performance resulting from energy transfer. These data are summarized together in Table 1.

    Fig.3. The current density-brightness-voltage(J-L-V)characteristics of the polarized LEDs with different active layer. Open square: current density. Filled and open up-triangle: luminance collected with polarizer parallel and perpendicular to the rubbing direction.

    Fig. 4. Luminance efficiency versus current density for polarized LEDs with different active layers. Filled and open up-triangle: luminance current efficiency collected with polarizer parallel and perpendicular to the rubbing direction.

    Table 1. Key parameters of the polarized devices. Dabs/DEL is the dichroic ratio of the peak intensity in the absorption/electroluminescence spectra measured in parallel and perpendicular directions. Turn-on voltage is the measured voltage at a detectable brightness of 2·cd m-2. I‖and I⊥represent the maximum luminance intensities measured by a lumen meter in parallel and perpendicular directions. DI is the dichroic ratio of the maximum luminance intensity. LE‖ and LE⊥represent the maximum luminance current efficiencies measured in parallel and perpendicular directions. DLE is the dichroic ratio of the maximum luminance current efficiency.

    Reasonable dichroic ratios are achieved in all the samples, confirming that the rubbed PEDOT:PSS hole transport layer enables built-in polarized RGB light emission from simply-constructed LEDs with polyfluorene and its derivatives. In contrast, for regular devices, polarized emission can be achieved only by coupling the output light with an additional polarizer in the price of losing more than half of the brightness and luminance efficiency due to extra scattering and reflection loss (see Figs. S4 and S5 in supporting information).Obviously,using the built-in polarized LEDs demonstrated above is a more efficient and inexpensive solution for the next generation OLED displays or illumination under certain circumstances.

    3. Materials and methods

    3.1. Materials and solutions

    PEDOT:PSS(BAYTRON?P VP CH 8000 or 4083)was purchased from Xi’an Polymer Light Technology Corp. The PFO(Mw=55000)and F8BT(Mw=55000)were purchased from Hanfeng Ltd and Red F from Dow Chemical Company.Solutions of PFO,F8BT,and Red F were made up in toluene(20 mg/mL).By mixing the precursor solutions, we prepared the 5%wt.%F8BT containing PFO/F8BT blend and 10 wt.%Red F containing F8BT/Red F blend solutions.

    3.2. Film alignment

    The ITO glass or polished synthetic quartz substrates were ultrasonically cleaned by detergent,deionized water,acetone, and ethanol. After drying, they were treated by plasma(PLASMA-PREENII-862) at the power of 70 W for 4 min to remove residual organic impurities on the surface and to improve the hydrophilic properties of the top surface. A PEDOT:PSS alignment layer (30 nm thick) was deposited following by annealing at 120°C for 20 min. After cooled down to room temperature, alignment treatment was carried out by surface rubbing with a home-made machine which contains an electromotor driven drum covering with a velvet cloth.

    The conjugated polymer films were then spin-coated onto rubbed PEDOT:PSS from the pre-stirred solution. The adjustment of the film thickness was achieved by changing the spin-coating speed.To achieve chain orientation,the PFO film was annealed at 200°C for 2 min in nitrogen atmosphere,then cooled down to 170°C at a speed of 1°C/min and quenched to room temperature. F8BT,PFO/F8BT blend,and F8BT/Red F blend films were annealed at 265°C for 2 min in nitrogen atmosphere, then cooled down to 235°C at 1°C /min and quenched to room temperature. The hot plate used for annealing treatment was a LINKAM LTS420E-PB4 probe hot stage.

    3.3. Morphology measurements

    Film morphology tests were carried out at room temperature using a Bruker Dimension Icon AFM equipped with Scanasyst-Air peak force tapping mode atomic force microscope(AFM)tips from Bruker.

    3.4. Optical characterization

    The absorption and photoluminescence spectra of the samples were measured at room temperature using Lambda 35 UV/VIS spectrophotometer and PerkinElmer LS55 fluorescence spectrophotometer. In absorption measurements, a polarizer(Thorlabs)was placed in front of the incident light slit for generating polarized light parallel or perpendicular to the direction of the oriented polymer chain. In PL measurements,the same polarizer was placed in front of the light collecting slit to couple the polarized emission from the sample.

    3.5. LED device fabrication and characterization

    Rubbed PEDOT:PSS layer was fabricated on the ITO glass as described above followed by active layer deposition. The thickness of the emission layer was controlled to be 70 nm by changing the speed of spin coating(PFO@4000 rpm,F8BT@4500 rpm,PFO/F8BT@4000 rpm,F8BT/Red F@5500 rpm). Thermal annealing was then employed following the protocol described above to orient the polymer chain. Samples with well-aligned emissive layers were then transferred into a thermal evaporator. 1 nm LiF and 120 nm Al were evaporated onto the polymer in sequence under high vacuum(10-5bar). The device structure is shown in Fig. 2. The EL spectra were measured by a PR-745 spectra scan spectroradiometer. The device brightness was measured by a Keithley 2450 source meter and a PR-745 SpectraScan spectroradiometer. A polarizer (Thorlabs) was used for coupling out the emission light in both polarized and control samples.

    4. Conclusion and perspectives

    The red, green, blue polarized LEDs are fabricated successfully with the same device configuration using a rubbed PEDOT:PSS layer as both the alignment and hole transport layer. For the non-liquid-crystal polymer compound Red F,through blending with F8BT,the resulting device shows clear dichroism. All polymer layers used in the LEDs can be fully aligned through the identical simple treatment. The performance of the resulting LEDs is not affected by the rubbing or thermal treatment, comparing to the control devices without aligned active layers. The EL dichroic ratios of the LEDs constructed in this work are 3.0, 6.7, 6.2, and 2.0 for the PFO,F8BT, PFO/F8BT, and F8BT/Red F blend-based devices, respectively. Efficient energy transfer in the PFO/F8BT blend results better LED performance with higher maximum luminance and LE, comparing to those of F8BT itself. The RGB built-in polarized LEDs demonstrated in this work can possibly be further integrated together on the same piece of substrate acting as the polarized-emitting pixel in future display plane or illumination source.

    Acknowledgment

    We acknowledge the valuable discussion with Miss Chen Sun from IMDEA nanoscience(Spain).

    猜你喜歡
    張茜張琪海港
    小學(xué)生迪克比
    海港追盜
    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
    Research on quinoline degradation in drinking water by a large volume strong ionization dielectric barrier discharge reaction system
    一種水陸兩棲飛機(jī)普通框結(jié)構(gòu)設(shè)計(jì)
    Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading*
    Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock?
    門外的等待
    幸運(yùn)海港游
    A Brief Study on the Strategies to Learn English Well in High Schools
    亚洲伊人久久精品综合| 午夜福利网站1000一区二区三区| 国产乱人偷精品视频| 国产无遮挡羞羞视频在线观看| 国产精品蜜桃在线观看| 直男gayav资源| 女的被弄到高潮叫床怎么办| 狠狠精品人妻久久久久久综合| 国产欧美日韩一区二区三区在线 | 寂寞人妻少妇视频99o| 国产黄片美女视频| 欧美xxxx黑人xx丫x性爽| 国产成人免费观看mmmm| 777米奇影视久久| 青青草视频在线视频观看| av国产精品久久久久影院| 下体分泌物呈黄色| 美女视频免费永久观看网站| 91精品国产国语对白视频| 女性被躁到高潮视频| 日韩一区二区三区影片| 丝瓜视频免费看黄片| 国产免费又黄又爽又色| 国产成人一区二区在线| 国产男女超爽视频在线观看| 欧美精品人与动牲交sv欧美| 亚洲熟女精品中文字幕| 高清日韩中文字幕在线| 黑人猛操日本美女一级片| 国精品久久久久久国模美| 亚洲四区av| 韩国高清视频一区二区三区| 中文在线观看免费www的网站| 国产伦精品一区二区三区四那| 欧美+日韩+精品| 高清午夜精品一区二区三区| 亚洲av中文av极速乱| 视频区图区小说| 有码 亚洲区| 亚洲,一卡二卡三卡| 一本一本综合久久| 欧美3d第一页| 又黄又爽又刺激的免费视频.| 国产精品不卡视频一区二区| 国产精品一区二区在线观看99| 成人毛片a级毛片在线播放| 精品人妻视频免费看| 精品久久久久久电影网| 亚洲国产精品一区三区| 国语对白做爰xxxⅹ性视频网站| 国产精品一二三区在线看| 熟女人妻精品中文字幕| 日韩伦理黄色片| 五月伊人婷婷丁香| 亚洲成人中文字幕在线播放| 在线观看一区二区三区| 日本vs欧美在线观看视频 | 日韩人妻高清精品专区| 哪个播放器可以免费观看大片| 精品久久久久久电影网| 中国国产av一级| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久精品古装| 老熟女久久久| 免费人成在线观看视频色| 夫妻性生交免费视频一级片| 中文字幕av成人在线电影| 久久久久精品久久久久真实原创| 18禁裸乳无遮挡动漫免费视频| 国产国拍精品亚洲av在线观看| 免费大片18禁| 嫩草影院入口| 18禁在线无遮挡免费观看视频| 久久人人爽人人片av| 国产精品伦人一区二区| 国产乱人偷精品视频| 91狼人影院| 九九在线视频观看精品| 亚洲精品自拍成人| 久久精品久久久久久噜噜老黄| 国产亚洲av片在线观看秒播厂| 直男gayav资源| 18+在线观看网站| 日本黄色日本黄色录像| 欧美精品人与动牲交sv欧美| 亚洲天堂av无毛| 我的女老师完整版在线观看| 青春草亚洲视频在线观看| 99久久综合免费| 国产老妇伦熟女老妇高清| 亚洲精品456在线播放app| 高清毛片免费看| 久久国产精品男人的天堂亚洲 | 亚洲欧美一区二区三区黑人 | 久久婷婷青草| 国产在线视频一区二区| 国产女主播在线喷水免费视频网站| 少妇丰满av| 国产亚洲午夜精品一区二区久久| 91在线精品国自产拍蜜月| 亚洲va在线va天堂va国产| 韩国av在线不卡| 丝瓜视频免费看黄片| 日韩在线高清观看一区二区三区| 国产黄片美女视频| 中文天堂在线官网| 少妇被粗大猛烈的视频| 精品久久国产蜜桃| av卡一久久| 乱系列少妇在线播放| 麻豆乱淫一区二区| 国产大屁股一区二区在线视频| av专区在线播放| 久久毛片免费看一区二区三区| 人妻一区二区av| 国产黄片美女视频| 午夜日本视频在线| 国产精品秋霞免费鲁丝片| 欧美性感艳星| 少妇猛男粗大的猛烈进出视频| 乱系列少妇在线播放| 欧美高清性xxxxhd video| 人人妻人人看人人澡| 伦理电影大哥的女人| 永久免费av网站大全| 久久精品国产自在天天线| 亚洲内射少妇av| 性色avwww在线观看| 国产91av在线免费观看| 午夜免费男女啪啪视频观看| 精品国产露脸久久av麻豆| 亚洲欧美日韩无卡精品| 国产亚洲欧美精品永久| av国产久精品久网站免费入址| 亚洲成人一二三区av| 欧美一级a爱片免费观看看| 日本黄色日本黄色录像| 中文天堂在线官网| 精品国产三级普通话版| 国产精品无大码| 日韩伦理黄色片| 97在线视频观看| 国产精品久久久久成人av| 国产欧美日韩一区二区三区在线 | 午夜激情久久久久久久| av国产精品久久久久影院| 日韩一区二区三区影片| av线在线观看网站| 国产精品人妻久久久久久| 亚洲第一区二区三区不卡| 亚洲欧美精品专区久久| xxx大片免费视频| av国产久精品久网站免费入址| 嘟嘟电影网在线观看| 国产精品久久久久久精品古装| 午夜精品国产一区二区电影| 成人一区二区视频在线观看| 精品酒店卫生间| 看免费成人av毛片| 日本-黄色视频高清免费观看| 伦理电影大哥的女人| 欧美亚洲 丝袜 人妻 在线| 国产精品国产三级国产av玫瑰| 亚洲色图综合在线观看| 亚洲精品第二区| 亚洲国产毛片av蜜桃av| 色综合色国产| 只有这里有精品99| 大片电影免费在线观看免费| 一二三四中文在线观看免费高清| 建设人人有责人人尽责人人享有的 | 国产永久视频网站| 免费不卡的大黄色大毛片视频在线观看| 91久久精品国产一区二区三区| 国产在视频线精品| 嘟嘟电影网在线观看| 蜜桃在线观看..| 国产免费福利视频在线观看| 99热网站在线观看| 天美传媒精品一区二区| 最近2019中文字幕mv第一页| 亚洲第一av免费看| 欧美激情极品国产一区二区三区 | 亚洲自偷自拍三级| 日韩欧美一区视频在线观看 | 大香蕉久久网| 日本黄大片高清| 草草在线视频免费看| 亚洲aⅴ乱码一区二区在线播放| 在线 av 中文字幕| 嘟嘟电影网在线观看| av视频免费观看在线观看| 制服丝袜香蕉在线| 一级毛片 在线播放| av国产久精品久网站免费入址| av线在线观看网站| 女性生殖器流出的白浆| 街头女战士在线观看网站| 777米奇影视久久| 亚洲综合精品二区| 午夜精品国产一区二区电影| 国产精品99久久久久久久久| freevideosex欧美| 国产精品欧美亚洲77777| av不卡在线播放| 涩涩av久久男人的天堂| 日本黄色日本黄色录像| 欧美日韩在线观看h| 男女国产视频网站| 成年人午夜在线观看视频| 蜜桃久久精品国产亚洲av| 亚洲性久久影院| 亚洲精品自拍成人| 精品久久久久久久久av| 国产精品久久久久成人av| 亚洲精品一区蜜桃| 国产在线视频一区二区| 国产黄频视频在线观看| 青春草亚洲视频在线观看| 欧美精品亚洲一区二区| 联通29元200g的流量卡| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久| 啦啦啦视频在线资源免费观看| 91精品国产九色| 久久av网站| av播播在线观看一区| 激情 狠狠 欧美| 麻豆精品久久久久久蜜桃| 亚洲av中文字字幕乱码综合| 亚洲国产高清在线一区二区三| 亚洲av男天堂| 美女内射精品一级片tv| 蜜桃久久精品国产亚洲av| 免费看光身美女| 亚洲精品久久久久久婷婷小说| 丰满乱子伦码专区| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲 | 寂寞人妻少妇视频99o| 少妇人妻久久综合中文| 欧美成人a在线观看| 特大巨黑吊av在线直播| 看免费成人av毛片| 亚洲精品,欧美精品| 久久ye,这里只有精品| 麻豆成人午夜福利视频| 日本欧美视频一区| av.在线天堂| 国产亚洲欧美精品永久| 午夜老司机福利剧场| 国产一级毛片在线| kizo精华| 久久99蜜桃精品久久| 搡老乐熟女国产| 99热这里只有是精品在线观看| 午夜免费观看性视频| 午夜福利高清视频| 2018国产大陆天天弄谢| a 毛片基地| 国产精品人妻久久久久久| 国产精品福利在线免费观看| 深爱激情五月婷婷| 久久精品久久久久久久性| 亚洲无线观看免费| 婷婷色综合大香蕉| 天天躁日日操中文字幕| 成年av动漫网址| 久久精品国产亚洲av涩爱| 五月伊人婷婷丁香| 久久韩国三级中文字幕| 蜜桃久久精品国产亚洲av| 久久鲁丝午夜福利片| av国产免费在线观看| 91精品国产国语对白视频| 亚洲人成网站在线播| 亚洲av二区三区四区| 久久久久久伊人网av| 免费观看的影片在线观看| 国产欧美日韩精品一区二区| 久久热精品热| 伦理电影免费视频| 亚洲精品成人av观看孕妇| 91狼人影院| 看非洲黑人一级黄片| 国产成人a∨麻豆精品| 国产大屁股一区二区在线视频| 插逼视频在线观看| 午夜激情久久久久久久| 国产美女午夜福利| 欧美激情国产日韩精品一区| 日本色播在线视频| 成人无遮挡网站| 在线观看一区二区三区激情| 国产黄色免费在线视频| 国产黄片视频在线免费观看| 国产乱人偷精品视频| 天天躁夜夜躁狠狠久久av| 色视频在线一区二区三区| 亚洲av在线观看美女高潮| 男女免费视频国产| av一本久久久久| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 少妇裸体淫交视频免费看高清| 亚洲不卡免费看| 天堂中文最新版在线下载| 精品久久久久久久久av| 国产视频内射| 成人亚洲精品一区在线观看 | 国产欧美日韩精品一区二区| 人人妻人人澡人人爽人人夜夜| 国产欧美另类精品又又久久亚洲欧美| 水蜜桃什么品种好| 久久精品国产亚洲av涩爱| 在线观看一区二区三区| av不卡在线播放| kizo精华| 日韩精品有码人妻一区| 久久国内精品自在自线图片| 久久毛片免费看一区二区三区| 蜜臀久久99精品久久宅男| 噜噜噜噜噜久久久久久91| 极品教师在线视频| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 亚洲自偷自拍三级| 毛片女人毛片| 午夜免费男女啪啪视频观看| 看非洲黑人一级黄片| 亚洲色图综合在线观看| 久久精品国产亚洲av天美| 最近中文字幕2019免费版| 亚洲av福利一区| 精品一区二区三区视频在线| 99热这里只有是精品50| 日本-黄色视频高清免费观看| 久久影院123| 中文字幕免费在线视频6| 欧美日韩综合久久久久久| 麻豆国产97在线/欧美| 秋霞在线观看毛片| 看免费成人av毛片| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产色片| 亚洲av中文字字幕乱码综合| 国产精品福利在线免费观看| 国产av国产精品国产| 极品少妇高潮喷水抽搐| 男的添女的下面高潮视频| 日韩成人av中文字幕在线观看| 国产久久久一区二区三区| 全区人妻精品视频| 高清av免费在线| 免费看av在线观看网站| 人妻一区二区av| 国产精品秋霞免费鲁丝片| 亚洲国产精品一区三区| 51国产日韩欧美| 欧美激情极品国产一区二区三区 | 高清日韩中文字幕在线| 男人和女人高潮做爰伦理| 99re6热这里在线精品视频| 亚洲av.av天堂| 国产美女午夜福利| 久久久久国产网址| 美女国产视频在线观看| 秋霞在线观看毛片| 久久女婷五月综合色啪小说| 中国三级夫妇交换| 人妻系列 视频| 日韩,欧美,国产一区二区三区| 99久久中文字幕三级久久日本| 99热6这里只有精品| 亚洲中文av在线| 五月玫瑰六月丁香| 亚洲成人一二三区av| 亚洲成人av在线免费| 男女国产视频网站| 国产久久久一区二区三区| 最近中文字幕2019免费版| 少妇的逼好多水| 久久久久久久国产电影| 日本免费在线观看一区| 国产亚洲午夜精品一区二区久久| 中文字幕亚洲精品专区| 中文字幕av成人在线电影| 欧美一区二区亚洲| 亚洲av综合色区一区| 成人亚洲精品一区在线观看 | 欧美日韩国产mv在线观看视频 | 丰满人妻一区二区三区视频av| 黄色视频在线播放观看不卡| 亚洲国产精品999| 日韩大片免费观看网站| 麻豆乱淫一区二区| 亚洲色图av天堂| 亚洲欧洲日产国产| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 日韩强制内射视频| 涩涩av久久男人的天堂| 亚洲激情五月婷婷啪啪| 高清不卡的av网站| 国产淫语在线视频| 国产精品av视频在线免费观看| 在线 av 中文字幕| 亚洲,欧美,日韩| 日韩av免费高清视频| 亚洲av不卡在线观看| 夜夜看夜夜爽夜夜摸| 舔av片在线| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 色婷婷久久久亚洲欧美| 久久这里有精品视频免费| 天天躁夜夜躁狠狠久久av| 国产精品免费大片| 精品人妻熟女av久视频| 丝袜喷水一区| 欧美三级亚洲精品| 国产精品一及| 六月丁香七月| 热re99久久精品国产66热6| av视频免费观看在线观看| 国产乱人视频| 国产亚洲午夜精品一区二区久久| 国产美女午夜福利| 在线观看免费视频网站a站| 边亲边吃奶的免费视频| 777米奇影视久久| 水蜜桃什么品种好| 熟女av电影| 日日啪夜夜撸| 精品一区在线观看国产| 久久久久性生活片| 欧美变态另类bdsm刘玥| 精品人妻偷拍中文字幕| 国产精品欧美亚洲77777| 2021少妇久久久久久久久久久| 新久久久久国产一级毛片| 成人免费观看视频高清| 国产真实伦视频高清在线观看| 黄色怎么调成土黄色| 亚洲av不卡在线观看| 三级经典国产精品| 国产一区二区三区av在线| 久久久久久久精品精品| 久久久久精品久久久久真实原创| 久久久久国产精品人妻一区二区| 全区人妻精品视频| 美女福利国产在线 | 亚洲美女黄色视频免费看| 亚洲欧美日韩另类电影网站 | 国产伦精品一区二区三区视频9| 久久国内精品自在自线图片| 黄色欧美视频在线观看| 亚洲怡红院男人天堂| 91精品国产九色| 蜜臀久久99精品久久宅男| 亚洲精品国产av成人精品| 少妇人妻久久综合中文| 亚洲成人一二三区av| 亚洲精品久久久久久婷婷小说| 久久久色成人| av.在线天堂| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| 激情 狠狠 欧美| a级一级毛片免费在线观看| 各种免费的搞黄视频| 亚洲图色成人| 国产一区二区在线观看日韩| 少妇熟女欧美另类| 人体艺术视频欧美日本| 午夜免费鲁丝| 日韩一区二区视频免费看| 777米奇影视久久| 国产日韩欧美亚洲二区| 看非洲黑人一级黄片| 免费看av在线观看网站| 亚洲精品亚洲一区二区| 亚洲国产精品成人久久小说| 一级毛片黄色毛片免费观看视频| 在线观看免费高清a一片| 国产伦理片在线播放av一区| 九色成人免费人妻av| 国产一区有黄有色的免费视频| 亚洲综合色惰| 亚洲人成网站在线播| av国产免费在线观看| 啦啦啦啦在线视频资源| 久久99精品国语久久久| 久久精品夜色国产| 国产爱豆传媒在线观看| 99久国产av精品国产电影| 国产男女超爽视频在线观看| 在线观看免费高清a一片| 内射极品少妇av片p| 青青草视频在线视频观看| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 在线观看免费视频网站a站| 久久人人爽人人爽人人片va| 国产亚洲av片在线观看秒播厂| 在线观看一区二区三区| 欧美日韩亚洲高清精品| 亚洲欧美日韩无卡精品| 韩国高清视频一区二区三区| 国产精品一区二区性色av| 久久久久网色| 高清黄色对白视频在线免费看 | 婷婷色综合www| 亚洲色图av天堂| 国产成人a∨麻豆精品| 成人亚洲精品一区在线观看 | 蜜桃亚洲精品一区二区三区| 亚洲av国产av综合av卡| 女性被躁到高潮视频| 午夜福利网站1000一区二区三区| 五月天丁香电影| 国产免费福利视频在线观看| 精品久久久精品久久久| 免费看不卡的av| 成人黄色视频免费在线看| 亚洲精品国产av成人精品| 亚洲无线观看免费| 我的女老师完整版在线观看| a级毛色黄片| 久久人妻熟女aⅴ| 久久久久久久精品精品| 成人一区二区视频在线观看| 欧美日韩精品成人综合77777| 麻豆成人午夜福利视频| 看免费成人av毛片| 久久人人爽人人爽人人片va| 欧美 日韩 精品 国产| 国内少妇人妻偷人精品xxx网站| 久久6这里有精品| 成人一区二区视频在线观看| 日韩不卡一区二区三区视频在线| 少妇人妻精品综合一区二区| .国产精品久久| 免费大片18禁| 精品一区二区三卡| 草草在线视频免费看| 性色av一级| 91久久精品电影网| 欧美日韩国产mv在线观看视频 | 亚洲av成人精品一二三区| av线在线观看网站| 久久久久久久大尺度免费视频| 少妇被粗大猛烈的视频| 亚洲精品一区蜜桃| 亚洲一级一片aⅴ在线观看| 中文字幕久久专区| 丰满乱子伦码专区| kizo精华| 综合色丁香网| 久久久久久久久久久免费av| 欧美日韩国产mv在线观看视频 | 美女cb高潮喷水在线观看| 制服丝袜香蕉在线| 亚洲人与动物交配视频| 2022亚洲国产成人精品| 国产v大片淫在线免费观看| 日韩不卡一区二区三区视频在线| 精品人妻一区二区三区麻豆| 五月玫瑰六月丁香| 国产在线男女| 国产精品女同一区二区软件| 看免费成人av毛片| 亚洲综合精品二区| 国产高潮美女av| 秋霞在线观看毛片| av免费观看日本| 高清在线视频一区二区三区| 国产亚洲91精品色在线| kizo精华| 女人十人毛片免费观看3o分钟| 久久久久久久久久人人人人人人| 久久国内精品自在自线图片| 成人毛片a级毛片在线播放| 狂野欧美白嫩少妇大欣赏| 国产精品成人在线| 亚洲精品国产av蜜桃| av免费在线看不卡| 国产免费又黄又爽又色| 一级毛片电影观看| 亚洲在久久综合| 丰满少妇做爰视频| 成人毛片a级毛片在线播放| 天堂俺去俺来也www色官网| 深夜a级毛片| 伊人久久国产一区二区| 国产亚洲91精品色在线| 十分钟在线观看高清视频www | 国产乱来视频区| 精品国产乱码久久久久久小说| 观看免费一级毛片| 九色成人免费人妻av| 国产伦理片在线播放av一区| 男男h啪啪无遮挡| 制服丝袜香蕉在线| 狂野欧美白嫩少妇大欣赏| 久久热精品热| 国产视频内射| 草草在线视频免费看| 中文字幕久久专区| 深爱激情五月婷婷| 免费av不卡在线播放| 久久国内精品自在自线图片| 男女啪啪激烈高潮av片|