• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local evolutions of nodal points in two-dimensional systems with chiral symmetry?

    2019-08-06 02:05:44PeiyuanFu符培源ZhesenYang楊哲森andJiangpingHu胡江平
    Chinese Physics B 2019年7期
    關(guān)鍵詞:江平

    Peiyuan Fu(符培源), Zhesen Yang(楊哲森),?, and Jiangping Hu(胡江平)

    1Beijing National Laboratory for Condensed Matter Physics,and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Kavli Institute of Theoretical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    4Collaborative Innovation Center of Quantum Matter,Beijing 100190,China

    Keywords: nodal points,chiral symmetry,k·p model

    1. Introduction

    Topology has emerged as a central concept in the research field of condensed matter physics for over 30 years.[1-3]By combining topology and band theory, we can calculate the Berry connection which can be viewed as a U(1)gauge field in the Brillouin zone (BZ) to obtain a topological quantity,the Chern number. Hence, all the two-dimensional insulators can be further classified by the Chern class,based on the first Chern number. Inspired by this new approach to classify the phase of matter beyond the Landau’s spontaneous symmetry breaking approach, many new states of gapped phases have been found both theoretically and experimentally,such as quantum spin Hall insulators, three-dimensional topological insulators, topological crystalline insulators, and topological superconductors.[4-8]These new phases all focus on gapped systems,whose Berry connection and Berry curvature can be well defined in the whole BZ.

    Recently, the concepts of topology are found to be well defined in gapless systems, namely, topological protected semimetals (TS).[9]In these semimetals, there exist topologically stable band degeneracies in the BZ, which are robust against weak (symmetry preserving) perturbations. According to the dimension of band degeneracies, these topological protected semimetals can be classified roughly into the nodal point (NP) and nodal line semimetals. For the former case, the band degeneracies are discrete points in the BZ, such as Weyl semimetals, Dirac semimetals, and type-II Weyl semimetals.[10-12]For the latter case, the band degeneracies are one-dimensional nodal lines in the BZ,which can form loops,chains,links,or even knots.[13-19]Many topological semimetal phases have been predicted by first-principles calculations[20]and observed by angle-resolved photoemission spectroscopy (ARPES) experiments.[21]Searching for new topological phases and possible emergent behaviors has been new research frontiers both theoretically and experimentally.[22-38]

    In general, the topologically stable band degeneracies are protected by discrete symmetries and global topological invariants, e.g., Chern number,[1]winding number,[39]or Z2charge.[4,6]The topological stability of band degeneracies means that the NPs or nodal lines cannot be eliminated by symmetry preserving perturbations. In this paper, we consider a two-dimensional multi-band model with chiral symmetry,and study the NPs evolutions under possible small perturbations. The model can be interpreted as a Bogoliubovde Gennes (BdG) Hamiltonian with time-reversal symmetry in addition to the electron band model. Under the time reversal T and the particle-hole symmetry C, a BdG Hamiltonian transfers as[40]

    The chiral symmetry S is the combination of T and C as S =T C. By calculating the moving directions of the NPs under generic forms of symmetry preserving perturbations, we classify the local evolutions of nodal points by the type of k·p models around these points.

    2. Hamiltonian and symmetry

    Consider a general multi-band Bloch Hamiltonian H0(k)with chiral symmetry S=σz. Under the chiral symmetry,

    from the anti-commutation relations of Pauli matrices{σi,σj}=δij, we can easily check that the Hamiltonian can be written as

    where σ±=(σx±iσy)/2. The condition for the band crossing is determined by the vanishing of det[H0(k)],which can be expressed as det[H0(k)]=det[H+0(k)]det[H-0(k)]=0. Since det[H+0(k)]=det[H-0(k)]?, the condition for gap closing is reduced to the following condition:

    where γr0(k) and γi0(k) are the real and imaginary parts of det[H+0], respectively. Generally, if we consider a twodimensional(2d)system with k=(kx,ky),the solution of is discrete points(nodal points)in the BZ,as the co-dimension of the degeneracies is 2 = 2-0.[41]These NPs are stable against chiral symmetry preserving weak perturbations. Now assuming there exists a nodal point NP0at k0=(k0,x,k0,y)in the BZ,we ask how will this NP moves under perturbations.

    In general,a chiral symmetry preserving perturbation can be written as

    where λ is the external parameter to control the perturbation,H=H0+H1. When λ →0,H →H0. Under this perturbation,the gap closing condition is determined by

    Obviously,γr/i(k,λ)satisfies γr/i(k,λ =0)=γr/i0 (k). Hence we can re-express the equations for the gap closing under perturbations as=-This expression simplifies the discussion in the next section.

    3. Nodal points evolutions

    Now we want to track the motion of the NP0in the BZ as λ changes. Without loss of generality, we can assume λ >0 in the following discussion. We consider a 2-band model for simplicity, which can be generalized to multi-band cases using the method we discuss below. The observation is that we can regard λ as a third dimension in addition to the original 2d BZ. Thus the band degeneracies of the Hamiltonian H0(k)+H1(k,λ)are 1d nodal lines which contain NP0,namely, k0, as shown in Fig. 1. The NP0moves along the tangential direction of the nodal line under perturbations. Notice that the nodal line lies on both surfaces γr/i(k,λ)=0,as shown in Fig.1. So its tangent vector n(k0,λ =0)is perpendicular to the gradient directions nr(k0,λ =0)=?γr(k0,0)and ni(k0,λ =0)=?γi(k0,0)of these two surfaces,respectively, as shown in Figs. 1(a) and 1(b). We write them down explicitly for further convenience

    Notice that n(k0,λ =0) can also be defined as ni(k0,0)×nr(k0,0), which means we have two directions. However,only one of them is the moving direction with λ >0. We clarify that the moving direction is determined by the third component of n(k0,0),which is

    If nλ(k0,0)>0, the moving direction of NP0is the projection of n(k0,0)in the λ =0 plan(which is the 2d BZ of the original Hamiltonian H0(k)),(nx(k0,0),ny(k0,0)),as shown in Fig.1(d). If nλ(k0,0)<0,the moving direction of the NP is (-nx(k0,0),-ny(k0,0)). Next we use some concrete examples to illustrate the above procedures and provide some insight into the classification of the local evolutions.

    Fig.1.The method to determine the moving direction of a NP(black dot at the original point).Panels(a)and(b)show the surfaces γr0+λγr1=0,γi0+λγi1=0 and their normal directions,respectively. Panel(c)shows that the tangential direction of the NL(with red color)is perpendicular to the above two normal directions. (d)The projection of the NL onto the λ =0 plan is the trajectory of the NP and the tangential direction is the moving direction.

    4. Examples

    In the first example, we take γr0= sinkx, γi0= sinky,γr1=1+sinky,and γr1=λ+2sinkx.

    The band degeneracies occur at(0,0),(π,0),(0,π),and(π,π) in the 1st Brillouin zone. As they are locally separated, we can only consider the NP at k0= (0,0) for simplicity, which is shown in Fig. 2(a1). Around this point, the k·p model can be written as γr0?kx,γi0?ky,γr1?1+ky,and γi1?λ+2kx. After a simple calculation, we obtain the two normal directions nx(k0) = (1,0,1) and nz(k0) = (0,1,0).Based on these results, we can obtain the moving direction n(k0)=(-1,0,1),as shown in Fig.2(a2). Because nλ(k0)>0,this NP moves along the-?exdirection under the perturbation with 1 ?λ >0, as shown in Fig.2(a3). The NP moves along this direction, and cannot be eliminated by small external perturbations, as shown in Fig. 2(a4). This feature is only determined by the property of k·p Hamiltonian at the NP. Indeed, if we add a more general kind of perturbation H1(kx,ky,λ) = λγr1(kx,ky,λ)σx+λγi1(kx,ky,λ)σz, the moving direction n(k0)is

    Thus the moving direction of the NP in the BZ k0is(-γr1(0,0,0),-γi1(0,0,0)). We can easily check that the NP just moves in the BZ and cannot disappear or transit to multi-NPs unless γr1(0,0,0)=γi1(0,0,0)=0 under small finite perturbations.

    In the second example,we take γr0=1-coskx,γi0=sinky,γr1=1+sinky,and γi1=λ+2sinkx.

    In this case,we choose the NP at(0,0),the effective k·p Hamiltonian around the NP is γr0?k2x/2,γi0?ky,γr1?1+ky,and γi1?λ+2kx, as shown in Fig. 2(b1). Thus the two normal directions are nx(k0) = (0,0,1) and nz(k0) = (0,1,0)and the moving direction is n(k0)=(-1,0,0), as shown in Fig. 2(b2). However, there is a crucial difference compared to example 1, that is, the third component of n(k0) is zero,which is nλ(k0)=0 and n(k0)/=0. Note that the NL is either above or blow the λ =0 plan. We can check that external perturbations either eliminate the NP or transit it into two NPs.Figure 2(b4)shows the transition to two NPs with a finite perturbation 0 >λ ?-1. Notice that this feature is related to the band dispersion around the NP in which the dispersions are linear along one direction and quadratic along the other.

    Fig.2. The classification of the evolutions of nodal points. The classification is based on the first column,that is nλ(k0)and n(k0). The second and third columns show the constraints of the band dispersion around the NP and the possible geometry forms of the nodal line in kx-ky-λ space passing the NP, respectively. The last column shows the possible evolutions of NPs under a general form of perturbations. One can notice that the Dirac point(with linear dispersion along every direction)is stable against any chiral symmetric perturbation and cannot disappear nor transit to multi-NPs.

    In the third example, we take γr0=1-coskx, γi0=1-cosky,γr1=1+sinky,and γi1=3+λ+2sinkx.

    In this case,the effective k·p Hamiltonian around the NP(0,0)is γr0?k2x/2,γi0?k2y/2,γr1?1+ky,and γi1?3+λ+2kx,as shown in Fig. 2(c1). Thus the two normal directions are nx(k0)=(0,0,1)and nz(k0)=(0,0,3)and the moving direction is n(k0)=(0,0,0),as shown in Fig.2(c2).Notice that the calculated n(k0)is equal to zero,which means the nodal line does not have a well defined tangential direction at this point as shown in Fig.2(c3).The external perturbations either eliminate the NP or transit it into multi-NPs.Figure 2(b4)shows the transition to four NPs with a finite perturbation 0 >λ ?-1.Notice that this feature is related to the band dispersion around the NP,which is non-linear along all directions.

    Fig. 3. The classification of the evolutions of nodal points. The classification is based on the first column, that is nλ(k0) and n(k0). The second and third columns show the constraints of the band dispersion around the NP and the possible geometry forms of the nodal line in kx-ky-λ space passing the NP,respectively. The last column shows the possible evolutions of NPs under a general form of perturbations. One can notice that the Dirac point (with linear dispersion along every direction) is stable against any chiral symmetric perturbation and cannot disappear nor transit to multi-NPs.

    These different features of the NP evolutions under perturbations reveal that NPs may have inner structures. We discuss these findings in detail in the following.

    5. Classification of the evolutions

    According to the above examples, we can classify the evolutions of the NPs by the third component of the moving direction n(k0)into three cases

    We first notice that the above three classes are complete.Any 2d kind of NP must belong to one of them. The next step is to find the constraints of the above conditions to the band structure and possible evolutions of NPs. We analyze the three cases respectively.

    Case(I)In this case,we first notice

    If this term does not equal to zero,one can always take a rotation of the momentum space around the NP k0,such that

    where ??x=?/??kxand ??y=?/??ky. Thus we can write down the effective Hamiltonian around the k0point,which is

    Thus the constraint nλ(k0)/=0 guarantees that the k·p Hamiltonian is linear along every direction around the NP to the leading order. Now we discuss the possible evolutions of NPs.As pointed out before,the evolution of NP depends on the tangential direction of the NL in the kx-ky-λ space. Now if we consider the presence of the tangential direction n(k0) with nλ(k0)/=0 of the NL, the moving direction of the NP in the 2d BZ is

    which means the topology of the NL around the NP must be equivalent to that in Fig. 3(a3). And the moving direction of the NP with small perturbations is unique. This kind of NP cannot be eliminated by external perturbations, as shown in Fig.3(a4). The results are summarized in Fig.3(a).

    Case(II)The first condition nλ(k0)=0 implies the flowing three possible realizations:

    The effective k·p Hamiltonian under these constrains can be written down as

    These mean the dispersions at the NP are linear in one direction and quadratic or higher orders in the other to the leading order.

    The second equation n(k0)/=0 requires the perturbation satisfying

    The conditions nλ(k0)=0 and n(k0)/=0 require that the tangential direction of the NL at the NP is in the λ =0 plan and the possible topology of the NL around the NP is shown in in Fig.3(b3). Any external perturbation satisfying Eq.(19)transits it into two NPs or disappears. This case is summarized in Fig.3(b).

    Case (III) In this case, we first emphasize that we classify the general kind of perturbation terms. In case (II), if the perturbation terms break Eq.(19), the NP with linear and quadratic dispersions also satisfies n(k0)=0. However, this requires a special kind of perturbation. Thus we do not consider this case in our classification tables. A more general case satisfying n(k0)=0 is

    This means the k·p Hamiltonian around the NP has quadratic or higher order dispersion to the leading order along both directions. The vanishing of n(k0) implies that the NP is a singularity point on the NL. The results are summarized in Fig.3(c).

    6. Conclusion

    We study the evolutions of NPs in systems with chiral symmetry, which can host discrete nodal points in the BZ.Figure 3 shows the classification of the NP evolutions under general form of perturbations. We exhaust all the possible evolution types of NPs and show that the classification can be achieved according to the type of k·p model around the NPs.Only the nodal points with linear dispersion along every direction are robust against perturbations and cannot be gapped.

    猜你喜歡
    江平
    Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
    “撒嬌”老師更好命
    基于PIT遙測(cè)技術(shù)的豎縫式魚(yú)道過(guò)魚(yú)效率及魚(yú)類行為分析
    暗處
    清明(2017年5期)2017-09-20 06:13:20
    中越邊境跨界京族民間信仰與旅游開(kāi)發(fā)——以廣西東興市江平鎮(zhèn)萬(wàn)尾村為例
    教你做一個(gè)“福爾摩斯”
    牛江平:有股“牛勁”的創(chuàng)業(yè)者
    今生一定嫁給你
    流年
    當(dāng)代(2013年4期)2013-09-10 07:22:44
    流年
    當(dāng)代(2013年4期)2013-09-10 07:22:44
    97在线视频观看| 亚洲成人久久性| 国产伦精品一区二区三区四那| 欧美国产日韩亚洲一区| 干丝袜人妻中文字幕| 国产人妻一区二区三区在| 少妇猛男粗大的猛烈进出视频 | 一级av片app| 一本一本综合久久| 18禁在线播放成人免费| 免费电影在线观看免费观看| 91av网一区二区| 日韩一本色道免费dvd| 久久精品91蜜桃| 婷婷精品国产亚洲av| 亚洲成av人片在线播放无| 国产精品野战在线观看| 十八禁国产超污无遮挡网站| 天堂影院成人在线观看| 久久99热6这里只有精品| 在线免费十八禁| 俺也久久电影网| 亚洲国产精品成人综合色| 国产国拍精品亚洲av在线观看| 美女黄网站色视频| 男女做爰动态图高潮gif福利片| 色在线成人网| 日韩一本色道免费dvd| 欧美一区二区精品小视频在线| 国产亚洲精品久久久久久毛片| 色综合色国产| 免费看光身美女| 欧美+日韩+精品| 在线播放无遮挡| 天堂av国产一区二区熟女人妻| 俺也久久电影网| 最近视频中文字幕2019在线8| 精品久久久久久久久亚洲| 免费看a级黄色片| 91午夜精品亚洲一区二区三区| ponron亚洲| 精品一区二区三区视频在线观看免费| 亚洲精品一卡2卡三卡4卡5卡| 熟妇人妻久久中文字幕3abv| 尾随美女入室| 联通29元200g的流量卡| 成人综合一区亚洲| 免费人成在线观看视频色| 老女人水多毛片| 级片在线观看| 尤物成人国产欧美一区二区三区| 精品午夜福利视频在线观看一区| 国产精品伦人一区二区| 国产视频内射| 国产视频内射| 校园春色视频在线观看| 中出人妻视频一区二区| 99热6这里只有精品| 欧美xxxx性猛交bbbb| 国产三级在线视频| 成人二区视频| 成年女人毛片免费观看观看9| 乱系列少妇在线播放| 成人性生交大片免费视频hd| 日韩亚洲欧美综合| 99久国产av精品国产电影| 午夜免费激情av| 亚洲精品久久国产高清桃花| 一区二区三区免费毛片| 嫩草影院入口| 亚洲精品久久国产高清桃花| 99riav亚洲国产免费| 日韩高清综合在线| 春色校园在线视频观看| 国产亚洲av嫩草精品影院| 俺也久久电影网| 国产精品嫩草影院av在线观看| 老司机影院成人| 午夜精品在线福利| 在线免费十八禁| 久99久视频精品免费| 最近在线观看免费完整版| 国产欧美日韩一区二区精品| av女优亚洲男人天堂| 最近2019中文字幕mv第一页| 少妇人妻精品综合一区二区 | av免费在线看不卡| 97超视频在线观看视频| 亚洲av美国av| 久久人人爽人人爽人人片va| 久久人人爽人人爽人人片va| 床上黄色一级片| 91久久精品国产一区二区三区| 淫秽高清视频在线观看| 美女xxoo啪啪120秒动态图| 我要搜黄色片| 久久6这里有精品| 97热精品久久久久久| 男人的好看免费观看在线视频| 一本一本综合久久| 国产黄色视频一区二区在线观看 | 男女啪啪激烈高潮av片| 波多野结衣高清无吗| 国产午夜精品久久久久久一区二区三区 | 又爽又黄无遮挡网站| 如何舔出高潮| 亚洲精品乱码久久久v下载方式| 又爽又黄a免费视频| av在线老鸭窝| 国产精品电影一区二区三区| 国产欧美日韩精品一区二区| 日韩在线高清观看一区二区三区| 久久精品国产亚洲av涩爱 | 欧美国产日韩亚洲一区| 亚洲天堂国产精品一区在线| 久久久精品大字幕| 在线国产一区二区在线| 亚洲成av人片在线播放无| 少妇熟女aⅴ在线视频| 中国美白少妇内射xxxbb| 欧美绝顶高潮抽搐喷水| 国产白丝娇喘喷水9色精品| 在线观看免费视频日本深夜| 欧美日韩一区二区视频在线观看视频在线 | 日本-黄色视频高清免费观看| 日本成人三级电影网站| 国产极品精品免费视频能看的| 欧美一区二区精品小视频在线| 日产精品乱码卡一卡2卡三| 欧美日韩在线观看h| 国产精品久久久久久精品电影| 国产成人福利小说| 俄罗斯特黄特色一大片| 亚洲aⅴ乱码一区二区在线播放| 性色avwww在线观看| 精品一区二区三区视频在线| 韩国av在线不卡| 人妻久久中文字幕网| 午夜久久久久精精品| 可以在线观看毛片的网站| 国产成人一区二区在线| av福利片在线观看| 蜜臀久久99精品久久宅男| 看非洲黑人一级黄片| 亚洲综合色惰| 亚洲国产欧美人成| 日韩av在线大香蕉| 久99久视频精品免费| 99久国产av精品| 波多野结衣高清无吗| 寂寞人妻少妇视频99o| 日本免费一区二区三区高清不卡| 久久久午夜欧美精品| 国产精品av视频在线免费观看| 免费电影在线观看免费观看| 欧美性猛交黑人性爽| 69人妻影院| 99久久精品国产国产毛片| 亚洲成a人片在线一区二区| 亚洲久久久久久中文字幕| 啦啦啦观看免费观看视频高清| 国产精品不卡视频一区二区| 少妇高潮的动态图| 亚洲成人久久性| 无遮挡黄片免费观看| 日韩欧美一区二区三区在线观看| 床上黄色一级片| 成人午夜高清在线视频| 亚洲欧美日韩高清专用| 亚洲av电影不卡..在线观看| 男女那种视频在线观看| a级一级毛片免费在线观看| 国产免费男女视频| 免费观看在线日韩| 国产精品无大码| 99久久中文字幕三级久久日本| 亚洲性夜色夜夜综合| 久久久久国内视频| 非洲黑人性xxxx精品又粗又长| 亚洲精品乱码久久久v下载方式| 可以在线观看毛片的网站| 欧美激情久久久久久爽电影| 夜夜看夜夜爽夜夜摸| 日本与韩国留学比较| 久久久久久伊人网av| 99九九线精品视频在线观看视频| 亚洲五月天丁香| 午夜爱爱视频在线播放| 如何舔出高潮| 18+在线观看网站| 变态另类成人亚洲欧美熟女| 日日啪夜夜撸| 久久婷婷人人爽人人干人人爱| 亚洲精品粉嫩美女一区| 欧美zozozo另类| 亚洲人与动物交配视频| 色av中文字幕| 波多野结衣巨乳人妻| 国产亚洲精品久久久久久毛片| 欧美日本亚洲视频在线播放| 国产男人的电影天堂91| 亚洲av熟女| 成人av在线播放网站| 直男gayav资源| 国产精品野战在线观看| 亚洲av二区三区四区| 人妻夜夜爽99麻豆av| 在线观看一区二区三区| 美女黄网站色视频| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区成人| 最近2019中文字幕mv第一页| 亚洲精品乱码久久久v下载方式| 日韩成人伦理影院| 亚洲中文字幕一区二区三区有码在线看| 午夜福利18| 国产一区亚洲一区在线观看| 天堂动漫精品| 赤兔流量卡办理| 亚洲欧美日韩东京热| 免费在线观看影片大全网站| 欧美日韩精品成人综合77777| 麻豆国产97在线/欧美| 天天躁日日操中文字幕| 亚洲欧美中文字幕日韩二区| 男人狂女人下面高潮的视频| 青春草视频在线免费观看| 国产精品1区2区在线观看.| av中文乱码字幕在线| 免费不卡的大黄色大毛片视频在线观看 | 一进一出抽搐gif免费好疼| 男女做爰动态图高潮gif福利片| 九九热线精品视视频播放| 日韩高清综合在线| 特大巨黑吊av在线直播| 国产av麻豆久久久久久久| 国产精品久久久久久久电影| 午夜a级毛片| 中文字幕熟女人妻在线| 欧美色视频一区免费| 国产乱人偷精品视频| 两性午夜刺激爽爽歪歪视频在线观看| 国内少妇人妻偷人精品xxx网站| 欧美日韩精品成人综合77777| 97在线视频观看| 亚洲欧美清纯卡通| 极品教师在线视频| 18+在线观看网站| 悠悠久久av| 国产精品免费一区二区三区在线| 国产69精品久久久久777片| 成人美女网站在线观看视频| 久久久久国产网址| 大型黄色视频在线免费观看| 亚洲av美国av| 少妇猛男粗大的猛烈进出视频 | av中文乱码字幕在线| 久久中文看片网| 18禁在线无遮挡免费观看视频 | 22中文网久久字幕| 亚洲18禁久久av| 日韩高清综合在线| 高清毛片免费看| 少妇熟女aⅴ在线视频| 人人妻人人澡欧美一区二区| 国产国拍精品亚洲av在线观看| 性插视频无遮挡在线免费观看| 在线看三级毛片| 天堂网av新在线| 在线a可以看的网站| 国内揄拍国产精品人妻在线| 校园人妻丝袜中文字幕| 狂野欧美白嫩少妇大欣赏| 大又大粗又爽又黄少妇毛片口| 在线a可以看的网站| 最新中文字幕久久久久| 国产精品女同一区二区软件| 亚洲欧美日韩高清专用| 99热这里只有是精品50| 亚洲国产高清在线一区二区三| www日本黄色视频网| av在线天堂中文字幕| 日韩 亚洲 欧美在线| 亚洲在线自拍视频| 在线a可以看的网站| 国产伦精品一区二区三区视频9| 偷拍熟女少妇极品色| 久久人人爽人人片av| 亚洲丝袜综合中文字幕| 在线天堂最新版资源| 色综合亚洲欧美另类图片| 一夜夜www| 99热6这里只有精品| 欧美潮喷喷水| 国内精品美女久久久久久| 97超视频在线观看视频| 久久久久国内视频| 亚洲精品乱码久久久v下载方式| 在线a可以看的网站| 丰满人妻一区二区三区视频av| 欧美zozozo另类| 久久久国产成人精品二区| 亚洲国产精品合色在线| 搡女人真爽免费视频火全软件 | 三级毛片av免费| 可以在线观看毛片的网站| 两个人的视频大全免费| 十八禁网站免费在线| 久久久色成人| 国产精品一区二区免费欧美| 国产精品野战在线观看| 在线观看66精品国产| 国产精品av视频在线免费观看| 久久综合国产亚洲精品| 男女之事视频高清在线观看| 国产亚洲精品久久久com| 亚洲成a人片在线一区二区| 中文字幕免费在线视频6| 色综合色国产| 日韩中字成人| 日本爱情动作片www.在线观看 | 婷婷亚洲欧美| 一a级毛片在线观看| 日日摸夜夜添夜夜爱| 欧美极品一区二区三区四区| 国内精品一区二区在线观看| 少妇人妻一区二区三区视频| 少妇裸体淫交视频免费看高清| a级毛色黄片| 91狼人影院| 欧美日韩在线观看h| 一夜夜www| 精品久久久久久成人av| 日本熟妇午夜| 国产蜜桃级精品一区二区三区| 六月丁香七月| 国产大屁股一区二区在线视频| 插逼视频在线观看| 国产精品一及| 最近手机中文字幕大全| 真实男女啪啪啪动态图| 国产精品久久久久久久电影| 亚洲av免费在线观看| 精品一区二区三区视频在线| 天堂av国产一区二区熟女人妻| 寂寞人妻少妇视频99o| 亚洲av成人av| 最近2019中文字幕mv第一页| 看黄色毛片网站| 99国产极品粉嫩在线观看| 国产精品女同一区二区软件| 又爽又黄无遮挡网站| 婷婷亚洲欧美| 色综合亚洲欧美另类图片| 免费观看的影片在线观看| 亚洲在线自拍视频| 国产乱人视频| 俄罗斯特黄特色一大片| 欧美3d第一页| 午夜免费男女啪啪视频观看 | 免费观看的影片在线观看| 亚洲在线观看片| 两个人的视频大全免费| 97在线视频观看| a级毛色黄片| 免费看光身美女| 亚洲美女视频黄频| 久久久久国内视频| 青春草视频在线免费观看| 一进一出抽搐gif免费好疼| 舔av片在线| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| 久久这里只有精品中国| 最近手机中文字幕大全| 99在线人妻在线中文字幕| 美女 人体艺术 gogo| 久久久久久久久久成人| 日韩精品有码人妻一区| 亚洲最大成人手机在线| 99久久精品一区二区三区| 久久精品人妻少妇| 舔av片在线| 中文字幕免费在线视频6| 国产精品1区2区在线观看.| 久久人人爽人人爽人人片va| 中文字幕精品亚洲无线码一区| 两性午夜刺激爽爽歪歪视频在线观看| 欧美bdsm另类| 久久午夜亚洲精品久久| 看黄色毛片网站| 黄片wwwwww| 免费观看的影片在线观看| 可以在线观看毛片的网站| 国产精品福利在线免费观看| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 又粗又爽又猛毛片免费看| 亚洲欧美日韩卡通动漫| 欧美一级a爱片免费观看看| 欧美又色又爽又黄视频| 免费人成视频x8x8入口观看| 尤物成人国产欧美一区二区三区| 中文字幕av成人在线电影| 亚洲av一区综合| 蜜桃久久精品国产亚洲av| 亚洲国产高清在线一区二区三| 一级毛片电影观看 | 天堂av国产一区二区熟女人妻| 亚洲欧美日韩无卡精品| 欧美成人一区二区免费高清观看| 日本一本二区三区精品| 自拍偷自拍亚洲精品老妇| 精品久久久久久久末码| 成人美女网站在线观看视频| 日日啪夜夜撸| 男女视频在线观看网站免费| 久久久久久久亚洲中文字幕| 日韩精品青青久久久久久| 女人十人毛片免费观看3o分钟| 久久久a久久爽久久v久久| 此物有八面人人有两片| 免费人成视频x8x8入口观看| 联通29元200g的流量卡| 日本五十路高清| 男女视频在线观看网站免费| 日本一本二区三区精品| av在线观看视频网站免费| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看 | 国产黄色视频一区二区在线观看 | 男女之事视频高清在线观看| 精品久久久久久久久久久久久| 又粗又爽又猛毛片免费看| 69av精品久久久久久| 成人综合一区亚洲| 美女大奶头视频| 国产精品嫩草影院av在线观看| 国产精品亚洲美女久久久| 亚洲欧美成人综合另类久久久 | 午夜福利在线观看免费完整高清在 | 黄色日韩在线| 波野结衣二区三区在线| 女生性感内裤真人,穿戴方法视频| 免费看av在线观看网站| 精品一区二区三区视频在线观看免费| 亚洲国产欧美人成| 亚洲av电影不卡..在线观看| 精品一区二区三区人妻视频| 天美传媒精品一区二区| 真实男女啪啪啪动态图| 亚洲自拍偷在线| 国内精品宾馆在线| 久久精品国产亚洲av涩爱 | 亚洲美女视频黄频| 国产精品一区www在线观看| 欧美激情久久久久久爽电影| 亚洲内射少妇av| 亚洲图色成人| 亚洲精品日韩在线中文字幕 | 在线观看美女被高潮喷水网站| 国产aⅴ精品一区二区三区波| 久久人人精品亚洲av| 国模一区二区三区四区视频| 国产精品电影一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 一进一出抽搐动态| .国产精品久久| 国产精品精品国产色婷婷| 亚洲第一电影网av| 此物有八面人人有两片| 性色avwww在线观看| 国产亚洲精品av在线| 免费不卡的大黄色大毛片视频在线观看 | 国产av不卡久久| 亚洲人成网站在线播| ponron亚洲| 欧美成人一区二区免费高清观看| 午夜日韩欧美国产| 久久久久久久久久黄片| 欧美3d第一页| 午夜福利高清视频| 久久天躁狠狠躁夜夜2o2o| 国产成人一区二区在线| 日本精品一区二区三区蜜桃| 成熟少妇高潮喷水视频| 国产高清视频在线播放一区| 最后的刺客免费高清国语| 特级一级黄色大片| 国产一区二区在线av高清观看| 中文在线观看免费www的网站| 色在线成人网| 亚洲成人久久爱视频| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清| 国内精品一区二区在线观看| АⅤ资源中文在线天堂| 国产一区二区激情短视频| 国产美女午夜福利| 真实男女啪啪啪动态图| 亚洲国产高清在线一区二区三| 欧美精品国产亚洲| 69人妻影院| 又爽又黄a免费视频| 女同久久另类99精品国产91| 深夜精品福利| 国产真实乱freesex| 欧美潮喷喷水| 亚洲av中文av极速乱| 久久人人爽人人爽人人片va| 国产麻豆成人av免费视频| 真人做人爱边吃奶动态| 亚洲av中文av极速乱| 亚洲性夜色夜夜综合| 精品午夜福利视频在线观看一区| 亚洲国产精品合色在线| 日韩制服骚丝袜av| 毛片女人毛片| 国产在视频线在精品| 国产免费一级a男人的天堂| 国产av不卡久久| 99热全是精品| 日本黄大片高清| 免费人成视频x8x8入口观看| 免费观看精品视频网站| 久久久成人免费电影| 精品午夜福利视频在线观看一区| 天天躁夜夜躁狠狠久久av| 一本一本综合久久| 三级男女做爰猛烈吃奶摸视频| 亚洲性夜色夜夜综合| 啦啦啦观看免费观看视频高清| 久久精品国产自在天天线| 干丝袜人妻中文字幕| 嫩草影视91久久| 夜夜爽天天搞| 天堂av国产一区二区熟女人妻| 日韩欧美三级三区| 别揉我奶头 嗯啊视频| 美女大奶头视频| 秋霞在线观看毛片| ponron亚洲| 午夜福利视频1000在线观看| 国产黄片美女视频| 国产黄色小视频在线观看| 波多野结衣巨乳人妻| 99在线人妻在线中文字幕| 国产又黄又爽又无遮挡在线| 国产不卡一卡二| 国产单亲对白刺激| 亚洲精品一区av在线观看| 老司机影院成人| 在线天堂最新版资源| 91在线精品国自产拍蜜月| 欧美日韩国产亚洲二区| 十八禁网站免费在线| 99热这里只有是精品50| 国产蜜桃级精品一区二区三区| 成熟少妇高潮喷水视频| 亚洲精品一区av在线观看| 久久精品国产亚洲网站| 久久久久久九九精品二区国产| 国产精华一区二区三区| av福利片在线观看| 女人十人毛片免费观看3o分钟| 国产精品99久久久久久久久| 精品久久国产蜜桃| 国产av麻豆久久久久久久| 九色成人免费人妻av| 精品久久久久久成人av| 久久精品夜夜夜夜夜久久蜜豆| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 午夜福利18| 久久人人爽人人片av| 欧美又色又爽又黄视频| 亚洲国产精品成人久久小说 | 啦啦啦观看免费观看视频高清| 国产精品,欧美在线| 国产乱人偷精品视频| 久久精品国产自在天天线| 成人亚洲精品av一区二区| 五月伊人婷婷丁香| 成人二区视频| 欧美日韩精品成人综合77777| 干丝袜人妻中文字幕| 亚洲精品日韩av片在线观看| 桃色一区二区三区在线观看| av中文乱码字幕在线| 99热6这里只有精品| 亚洲真实伦在线观看| 麻豆av噜噜一区二区三区| 婷婷精品国产亚洲av在线| 秋霞在线观看毛片| 国产爱豆传媒在线观看| 久99久视频精品免费| 免费在线观看影片大全网站| 国产片特级美女逼逼视频| 亚洲中文字幕日韩| 男人和女人高潮做爰伦理| 国产极品精品免费视频能看的| av女优亚洲男人天堂| av在线蜜桃| 热99re8久久精品国产| av在线观看视频网站免费| 在线看三级毛片| 一级a爱片免费观看的视频| 欧美中文日本在线观看视频| 美女免费视频网站| 精品99又大又爽又粗少妇毛片| 黄片wwwwww| 日韩欧美国产在线观看| 国产成人91sexporn| 精品一区二区三区av网在线观看| 久久人人爽人人爽人人片va|