• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal–semiconductor–metal photodetectors?

    2019-04-13 01:14:42WenLuo羅文LiZhiYan閆立志RongLiu劉榮TaoYuZou鄒濤隅andHangZhou周航
    Chinese Physics B 2019年4期
    關(guān)鍵詞:周航羅文立志

    Wen Luo(羅文),Li-Zhi Yan(閆立志),Rong Liu(劉榮),Tao-Yu Zou(鄒濤隅),and Hang Zhou(周航)

    School of Electronic and Computer Engineering,Peking University Shenzhen Graduate School,Shenzhen 518055,China

    1.Introduction

    Organolead halide perovskite materials(MAPbX3,MA is short for CH3NH3,X=I,Br or Cl)have attracted tremendous research efforts in the fields of solar cells,[1–3]photodetectors,[4,5]light-emitting diodes,[6]and lasers[7]inrecent years,due to their outstanding properties,such as ease of fabrication,high optical absorption coefficient,tunable optical bandgap,and long charge carrier diffusion length.[8–10]In particular,high gain and low noise perovskite photodetectors for ultraviolet(UV)/visible(Vis)light detections have been previously reported with comparable performance to silicon photodetectors.[11,12]It has been found that perovskite photodetectors are very sensitive to high energy x-ray photons,[13]with sensitivities outperforming their inorganic counterparts,such as a-Se and CdTeZn materials.

    Conventionally,perovskite photodetectors are cataloged into three types:p–i–n photodiode,metal–semiconductor–metal(MSM)photoconductors,and phototransistors.For p–i–n perovskite photodiodes,electrode interlayers acting as a hole transporting layer or electron transporting layer are critical to the success of the device operation.For example,fullerenes derivatives phenyl-C61-butyric acid methyl ester(PCBM)are usually adopted in p–i–n type photodiode or solar cell device for electron extractions.[14,15]For MSM photodetectors made by inorganic semiconductors,such as silicon,the interlayer is less studied as a large electric field can be applied in these devices to overcome the Schottky barrier for carrier extractions.However,for the perovskite MSM device case,a large electric field will inevitably induce ion mobilization and material instability.[16]Even worse,MAPbX3materials are found to react with many metal electrodes,such as Ag,Al,and even Au,which further leads to large leakage current and device instability.[17]In fact the tunable bandgap of MAPbX3raises further considerations on the work function difference between metal and the semiconductor.It is,therefore,necessary to investigate the electrode interlayers to achieve highperformance stable MSM-type perovskite photodetector.[18,19]

    In this study,a systematic investigation on how the fullerene-based electrode interlayers affect the MSM perovskite photodetector(Fig.1(a))performance has been conducted.Fullerenes derivatives are frequently used as electrontransporting layers(ETLs)in perovskite solar cells.[20,21]Here,we introduce two types of fullerene derivatives,i.e.,phenyl-C61-butyric acid methyl ester and indene-C60bisadduct(ICBA),as interfacial materials for the MSM per-ovskite photodetectors.The lowest unoccupied molecular orbital(LUMO)of the PCBM and the ICBA below the vacuum energy level has been previously reported to be 3.9 eV and 3.7 eV,respectively.[22,23]This is particularly interesting from the band alignment point of view,as the band gap of MAPb(I1?xBrx)3(0≤x≤1)can be continually adjusted from 1.5 eV(x=0)to 2.3 eV(x=1)with x ratio.As shown in Fig.1(b),the conduction band of the tunable bandgap perovskite may vary from~3.3 eV to~3.9 eV,[24,25]depending on the percentage of the Br substitution of I in the perovskite thin film.The charge transfer efficiency at the perovskite/PCBM or perovskite/ICBA interface has been evaluated by photoluminescence(PL)measurement and electrochemical impedance spectroscopy(EIS)measurement.

    2.Materials and methods

    2.1.Materials

    PbI2was purchased from Alfa Aesar.CH3NH3I,PbBr2,and CH3NH3Br were purchased from Xi’an Polymer Light Technology Corp.PCBM and ICBA were purchased from Lumtec.To prepare the perovskite precursor solution,a 40-wt%solution of MAPbI3was synthesized by mixing PbI2and CH3NH3I in a 1:1 molar ratio in N,N-dimethylformamide(DMF).PbBr2and CH3NH3Br were dissolved in DMF at a 1:1 molar ratio with the concentration of 28.5 wt%denoted as MAPbBr3precursor.Solutions of 20 mg/mL of PCBM or ICBA were synthesized by dissolving PCBM or ICBA in 1,2-dichlorobenzene,respectively.All the solutions were heated at 70?C for 12 h inside a nitrogen- filled glove box.The desired MAPb(I1?xBrx)3(0≤ x≤ 1)precursors were made by stoichiometric mixing of MAPbI3and MAPbBr3precursors and stirred at 70?C for 1 h.

    2.2.Device fabrication

    Glass substrates(D-I001)were cleaned subsequently in deionized water,acetone,and ethanol in an ultrasonic bath for 15 min,followed by nitrogen flow drying.Then,the substrates were subjected to ultraviolet ozone treatment for 10 min before transferring to a glove box.The perovskite precursor solutions were spin-coated on the glass substrate at 3000 rpm for 40 s,with chlorobenzene anti-solvent treatment during the spin-coating process to slow down the crystallization speed of perovskite to achieve smooth compact thin films.[26]Next,the substrates were heated on a hot plate at 100?C for 10 min.The PCBM and ICBA solutions were then spin-coated on the substrate at 2000 rpm for 40 s.Finally,the Au electrode(50 nm)was thermally evaporated on the substrates via a shadow mask.The channel length ranges from 40μm to 100μm with the channel width/length ratio of ten.The effective area in our work ranges from 1.6×104μm2to 1×105μm2.

    2.3.Device characterization

    The scanning electron microscopy(SEM)images were obtained from a TESCAN field-emission SEM.The x-ray diffraction(XRD)pattern data was collected from a Bruker D8 advanced diffractometer with nickel- filtered Cu Kα radiation(1.5406A?)operating at 40 kV and 40 mA.The optical absorption of films was examined by UV–Vis absorption and transmission spectra(UV-2600,Shimadzu).The electrical characteristics of the photodetectors were tested using Agilent B1500 semiconductor parameter analyzer,equipped with a supercontinuum laser source(SC-PRO)and a wavelength selecting module(AOTF-Pro).Photoluminescence spectra were obtained using a 1-K series He–Cd laser.Electrochemical impedance spectroscopy measurement was conducted using an electrochemical workstation(CHI660E,Chenhua).

    3.Results and discussion

    A typical MAPbI3surface morphology is shown in Fig.1(c).The fabricated perovskite thin film is comprised of grains of several hundred nanometers,the size of which is similar to the perovskite film used in high-efficiency solar cells.The smooth thin film surface is beneficial for the formation of compact fullerenes layers via a spin coating technique.To determine the components of the perovskite,the x-ray diffraction patterns of the MAPbI3layers are shown in Fig.A1(a)in Appendix A.Moreover,UV–Vis absorption spectra of MAPbI3,ICBA,PCBM,MAPbI3/ICBA,and MAPbI3/PCBM films are given in Fig.A1(b).The spectral results confirm that the fullerenes layers have an insignificant contribution to the light absorption.

    As shown in Fig.2(a),the color of MAPb(I1?xBrx)3changes from dark brown for MAPbI3(x=0)to yellow for MAPbBr3(x=1).All MAPb(I1?xBrx)3perovskite films are smooth and compact as shown in Fig.2(b).The SEM images in Fig.2(b)reveal that the morphology of perovskite thin film is significantly influenced by the I and Br ratio.As the Br content in MAPb(I1?xBrx)3increases,the perovskite thin film tends to form a high-quality MAPb(I1?xBrx)3film with a larger crystal size.The observation of larger grain size with increase Br content is consistent with previous reports,[30,31]which may be explained by the Ostwald ripening process.Figure2(c)exhibits a systematic shift of the absorption band edge to shorter wavelength with increasing Br content in MAPb(I1?xBrx)3.Meanwhile,the devices are measured under the wavelength of 500 nm in our research.Figure A3(a)exhibits x-ray diffraction patterns monitored in the 2θ range of 28?–31?for MAPb(I1?xBrx)3.The peak shifting towards larger diffraction angles suggests a decrease of the lattice constant,confirming the formation of I and Br hybrid perovskite.

    Fig.1.(a)Schematics of MAPb(I1?xBrx)3(0≤ x≤ 1)photodetector with fullerene-based interfacial layer.(b)Schematics of the energy diagram of perovskite,ICBA,and PCBM before contact.(c)The SEM image of the surface morphology of an MAPbI3thin film;the scale bar is 200 nm.(d)The I–V characteristics of devices in the dark and under light illumination at 500 nm with an intensity of 2 mW/cm2.

    To investigate the influence of fullerene-based interlayers,perovskite photodetectors with different interlayers were measured under the dark and the illuminations condition.As shown in Fig.1(d),it is found that the MAPbI3photodetector with the PCBM interlayer exhibits higher photocurrent than the device with ICBA interlayer.Moreover,the photocurrent of the device with interlayer is about one order of magnitude larger than the device without interlayer as shown in Fig.A2(a).On the other hand,the channel length will significantly influence the responsibility,as revealed in Fig.A2(b).For photodetector based on PCBM and ICBA interface layer,as the channel length increases,the responsibility increases.Moreover,the device with PCBM interlayer has higher responsivity,achieving a responsivity of 100.8 mA/W when the channel length is 40μm,which is comparable to the previously reported perovskite photoconductor.[27–29]For different channel lengths,the device with PCBM interlayer has higher responsivity,achieving a responsivity of 100.8 mA/W when the channel length is 40μm(Fig.A2(b)).This could be attributed to better alignment between the conduction band of MAPbI3and the LUMO level of the PCBM,which facilitates the photo-generated electron extraction at the MAPbI3/PCBM interface.In contrast,there is a barrier of about 0.19 eV at the MAPbI3/ICBA interface.It is worth noting that photodetectors with fullerene-based interlayer give a similar dark current level,which is~1 nA when biased at 5 V.

    The photocurrent of MAPb(I1?xBrx)3/fullerenes photodetectors is shown in Fig.2(d).The photocurrent is measured under an illumination intensity of 2 mW/cm2at 500 nm and under 5-V bias. The photocurrent decreases gradually as the Br content increases in MAPb(I1?xBrx)3,which is consistent with the trend of light absorption coefficient shown in Fig.A3(b). The inserted table in Fig.A3(b)presents the absorptivity changes from 0.0218 nm?1(x=0)to 0.0074 nm?1(x=1). While all the photocurrents of MAPb(I1?xBrx)3/fullerenes photodetectors decrease as the Br content increases,the photocurrent of photodetectors with PCBM interlayer decreases faster than that with ICBA interlayer.As a result,the photodetectors with ICBA interlayer exhibit larger photocurrent than that with PCBM interlayer when x is larger than 0.8.

    Accordingly,the responsibility R is the generated photocurrent per unit power of the incident light on the effective area and can be expressed as(Ip?Id)/PoptS,where Ipis the photocurrent,Idis the dark current,Poptis the incident-light intensity,and S is the effective illuminated area.[32,33]The specific detectivity D?is the ability of a detector to detect weak optical signals and can be estimated from A1/2R/(2qId)1/2,where A is the effective area of the device,q is the electronic charge,and R is the responsivity.[32,33]The responsivity and specific detectivity of the photodetectors at different Br contents are calculated and shown in Fig.2(e).The responsiv-ity of the MAPb(I1?xBrx)3/ICBA photodetector has become slightly higher than that of MAPb(I1?xBrx)3/PCBM photodetector when x is lager than 0.8.

    Remarkably,it is worth noting that the specific detectivity of MAPb(I1?xBrx)3/ICBA has become much higher than that of MAPb(I1?xBrx)3/PCBM when x is larger than 0.6.This fact suggests that the ICBA interlayer could help to effectively extract the photogenerated electrons while maintaining a sufficient low dark current in the wide bandgap perovskite photodetector.The ON/OFF ratio of the MAPb(I1?xBrx)3/ICBA and MAPb(I1?xBrx)3/PCBM photodetectors is plotted in Fig.2(f),which also shows a turning around x=0.6 where the ICBA interlayer provides the device with a higher ON/OFF ratio.

    Fig.2.(a)Photographs of three-dimensional(3D)MAPb(I1?xBrx)3(0≤x≤1) films on glass substrates.(b)The SEM images of MAPb(I1?xBrx)3 films;the scale bar is 200 nm.(c)The absorbance of the MAPb(I1?xBrx)3 films.The dotted line represents the illumination wavelength(500 nm)in our measurement.(d)Photocurrent of MAPb(I1?xBrx)3(0≤ x≤ 1)/fullerenes photodetectors when biased at 5 V under light illumination at 500 nm with an intensity of 2 mW/cm2.(e)Responsivity and specific detectivity and of MAPb(I1?xBrx)3/fullerenes photodetectors.(f)ON/OFF ratio of MAPb(I1?xBrx)3/fullerenes photodetectors.

    We further investigate the transient response of photodetectors with PCBM and ICBA as electrode interlayers to a500-nm incident light with a light intensity of 2 mW/cm2at 5 V.In Fig.3(a),the photodetector with PCBM as the electrode interlayer shows a stronger photoresponse to incident light with a steady photocurrent of~ 5×10?8A,which is almost 2.5 times larger than that with ICBA as the electrode interlayer,in which the steady photocurrent is~2×10?8A.Figure 3(b)reveals the fast photoresponse of the photodetector to incident light with a rise time of<25 ms and a fall time of<50 ms,which is limited by our measurement equipment.

    To examine the carrier extraction efficiencies of different fullerene-based materials,the photoluminescence spectra are measured and presented in Fig.4.The PL intensity of perovskite is quenched after the deposition of the fullerenes layer,indicating an effective charge transfer from perovskite to fullerenes layer.The quenching efficiency of luminescence in ICBA interlayered MAPbBr3device is higher than that of PCBM interlayered device(Fig.4(a)),in contrast to that of MAPbI3-based luminescence(Fig.4(b)).

    Fig.3.(a)Transient response of photodetectors with different fullerenebased interfacial layers to a 500-nm incident light with a light intensity of 2 mW/cm2at 5 V.(b)Photocurrent rise and fall time of the devices.

    The Ecof MAPbBr3perovskite is?3.3 eV,[34]while the LUMO for ICBA and PCBM is?3.7 eV[35]and?3.9 eV[36]respectively,which indicates that the ICBA may serve as a more suitable interlayer for MAPbBr3perovskite to efficiently transfer photogenerated electron,due to the energy level matching at interfaces between the ICBA and MAPbBr3perovskite.In contrast,Ecof MAPbI3perovskite is?3.9 eV;[34]thus,the PCBM becomes a better choice as the electron transport for MAPbI3.It has been previously reported that the corresponding Ecof MAPb(I1?xBrx)3is?3.9 eV,?3.6 eV,and?3.3 eV,[34]respectively,for the x value of 0,0.33,and 1.This implies that when the ratio of Br is over 0.33,the LUMO level of the ICBA gets closer to Ecof the perovskite than that of PCBM.[34]

    To further investigate the charge transport and recombination of perovskite photodetectors with different fullerenes interlayers,the electrochemical impedance spectroscopy of perovskite/fullerenes photodetectors was carried out under a dark condition with a sandwich structure(indium–tin–oxide(ITO)/perovskite/PCBM or ICBA/Au)measured with a bias of?1 V.[37–39]Meanwhile,the effective measurement area of our device is0.04cm2.The EIS is a technique for investigating the interfacial charge transfer properties of the photovoltaic cell.The equivalent circuit model is similar to other reports with p–i–n structure.[40]The results are shown in the Nyquist plot,the real component(Z0)is the abscissa axis and the imaginary part(Z00)is the vertical axis.The data is fitted into an equivalent circuit,as shown in the illustration in Fig.4(c).In the model circuit,the series resistance Rsrepresents the contact resistance from both electron and hole transport layers.The low-frequency arc in the Nyquist plots is associated with the recombination resistance,in parallel with a chemical capacitance.[41]As the results shown in Fig.4(c),Rrecof MAPbBr3/PCBM is 1.5×103? and Rrecof MAPbBr3/ICBA is 8.9×103?.The larger Rrecsuggests the suppression of recombination of electron and hole due to efficient carrier extraction.Meanwhile,as shown in Fig.4(d),MAPbI3/PCBM is larger than MAPbI3/ICBAonRrec,which indicates that PCBM is more suitable for MAPbI3/fullerenes photodetector.These results agree with photoluminescence.

    Fig.4.(a)Comparison of photoluminescence spectra of MAPbBr3,MAPbBr3/ICBA,and MAPbBr3/PCBM.(b)Comparison of photoluminescence spectra of MAPbI3,MAPbI3/ICBA,and MAPbI3/PCBM.(c)Electrochemical impedance spectroscopy of MAPbBr3/fullerenes photodetector;the illustration shows the equivalent circuits of perovskite/fullerenes photodetector.(d)Electrochemical impedance spectroscopy of MAPbI3/fullerenes photodetector under a dark condition.

    4.Conclusions

    In summary,we have proposed a strategy to enhance the performance of organometal perovskite photodetector by using interlayers to improve the charge injection at the metal/organic interface. The MAPbI3photodetector with PCBM interlayer demonstrates much better performance than that with ICBA interlayer,reaching a responsivity of 100.8 mA/W.We have also demonstrated that the photocurrent of MAPb(I1?xBrx)3/fullerenes decreases as the Br content increases,and the MAPb(I1?xBrx)3photodetector with ICBA interlayer exhibits better performance compared to that with PCBM interlayer when x is no less than 0.8.To illustrate these results,accumulation and transport of carriers of the perovskite devices with two fullerene-based interlayers are investigated by PL spectra and EIS.We find that it is easier for carriers to transport and more difficult for exciton to recombine for MAPbBr3photodetector with ICBA interlayer compared to that with PCBM interlayer,which is opposite in MAPbI3/fullerenes photodetector.

    Appendix A

    The following figures show the x-ray diffraction patterns,photocurrent of the devices,and the absorptivity of MAPb(I1?XBrX)3films.

    Fig.A1.(a)XRD patterns of MAPbI3,MAPbI3/PCBM,and MAPbI3/ICBA.(b)The absorbance of the MAPbI3and MAPbI3/fullerenes layers.

    Fig.A2.(a)Photocurrent of the device with and without fullerenes interlayer.(b)The responsivity of the MAPbI3/fullerenes devices with different channel lengths.

    Fig.A3.(a)XRD patterns of MAPb(I1?xBrx)3magnified in the region of 2θ =28?–31?.(b)The absorptivity of MAPb(I1?xBrx)3 films.

    [1]Jeon N J,Na H,Jung E H,Yang T Y,Lee Y G,Kim G,Shin H W,Il Seok S,Lee J and Seo J 2018 Nat.Energy 3 628

    [2]Yang W S,Park B W,Jung E H,Jeon N J,Kim Y C,Lee D U,Shin S S,Seo J,Kim E K,Noh J H and Seok S I 2017 Science 356 1376

    [3]Arora N,Dar M I,Hinderhofer A,Pellet N,Schreiber F,Zakeeruddin S M and Gratzel M 2017 Science 358 768

    [4]Zhou J and Huang J 2018 Adv.Sci.5 1700256

    [5]Luan S Z,Wang Y C,Liu Y T and Jia R X 2018 Chin.Phys.B 27 47208

    [6]Wei Y,Cheng Z and Lin J 2018 Chem.Soc.Rev.48 310

    [7]Zhu H,Fu Y,Meng F,Wu X,Gong Z,Ding Q,Gustafsson M V,Trinh M T,Jin S and Zhu X Y 2015 Nat.Mater.14 636

    [8]Jr P C,Savenije T J,Abdellah M,Zheng K,Yartsev A,Pascher T,Harlang T,Chabera P,Pullerits T and Stepanov A 2014 J.Am.Chem.Soc.136 5189

    [9]Jin H H,Sang H I,Noh J H,Mandal T N,Lim C S,Chang J A,Yong H L,Kim H J,Sarkar A and Nazeeruddin M K 2009 Nat.Photon.7 486

    [10]Burschka J,Pellet N,Moon S J,Humphrybaker R,Gao P,Nazeeruddin M K and Gr¨azel M 2013 Nature 499 316

    [11]Dou L,Yang Y,You J,Hong Z,Chang W H,Gang L and Yang Y 2014 Nat.Commun.5 5404

    [12]Dong R,Fang Y,Chae J,Dai J,Xiao Z,Dong Q,Yuan Y,Centrone A,Zeng X C and Huang J 2015 Adv.Mater.27 1912

    [13]Gill H S,Elshahat B,Sajo E,Kumar J,Kokil A,Zygmanski P,Li L and Mosurkal R 2014 APS March Meeting

    [14]Liu M,Johnston M B and Snaith H J 2013 Nature 501 395

    [15]Docampo P,Ball J M,Darwich M,Eperon G E and Snaith H J 2013 Nat.Commun.4 2761

    [16]Yuan H,Debroye E,Janssen K,Naiki H,Steuwe C,Lu G,Moris M,Orgiu E,Ujii H and Schryver F D 2016 J.Phys.Chem.Lett.7 561

    [17]Sanehira E M,Schulz P,Reese M O,Ferrere S,Zhu K,Lin L Y,Berry J J and Luther J M 2016 ACS Energy Lett.1 38

    [18]Chen S,Teng C,Zhang M,Li Y,Xie D and Shi G 2016 Adv.Mater.28 5969

    [19]Wang Y,Yang D,Zhou X,Alshehri S M,Ahamad T,Vadim A and Ma D 2017 Org.Electron.42 203

    [20]Nie W,Tsai H,Asadpour R,Blancon J C,Neukirch A J,Gupta G,Crochet J J,Chhowalla M,Tretiak S and Alam M A 2015 Science 347 522

    [21]Seo J,Park S,Kim Y C,Jeon N J,Noh J H,Yoon S C and Sang I S 2014 Energy Environ.Sci.7 2642

    [22]He Y,Chen H Y,Hou J and Li Y 2010 J.Am.Chem.Soc.132 1377

    [23]Yoshida H 2014 J.Phys.Chem.C 118 24377

    [24]Wang B,Xiao X and Chen T 2014 Nanoscale 6 12287

    [25]Yusoff A R and Nazeeruddin M K 2016 J.Phys.Chem.Lett.7 851

    [26]Salim T,Sun S,Abe Y,Krishna A,Grimsdale A C and Lam Y M 2015 J.Mater.Chem.A 3 8943

    [27]Saraf R and Maheshwari V 2018 ACS Appl.Mater.Interfaces 10 21066

    [28]Hu X,Zhang X,Liang L,Bao J,Li S,Yang W and Xie Y 2014 Adv.Funct.Mater.24 7373

    [29]Tian W,Zhou H and Li L 2017 Small 13 1702107

    [30]Loryuenyong V,Khiaokaeo N,Koomsin W,Thongchu S and Buasri A 2018 Micro&Nano Lett.13 486

    [31]Yang M,Zhang T,Schulz P,Li Z,Li G,Kim D H,Guo N,Berry J J,Zhu K and Zhao Y 2016 Nat.Commun.7 12305

    [32]Zeng L H,Wu D,Lin S H,Xie C,Yuan H Y,Lu W,Lau S P,Chai Y,Luo L B,Li Z J and Tsang Y H 2019 Adv.Funct.Mater.29 1806878

    [33]Zeng L H,Lin S H,Li Z J,Zhang Z X,Zhang T F,Xie C,Mak C H,Chai Y,Lau S P,Luo L B and Tsang Y H 2018 Adv.Funct.Mater.28 1705970

    [34]Wang B,Xiao X and Chen T 2014 Nanoscale 6 12287

    [35]He Y,Chen H Y,Hou J and Li Y 2010 J.Am.Chem.Soc.132 1377

    [36]Yoshida H 2014 J.Phys.Chem.C 118 24377

    [37]Wang H,Wang Y,Bo H,Li W,Sulaman M,Xu J,Yang S,Yi T and Zou B 2016 ACS Appl.Mater.Interfaces 8 18526

    [38]Juarezperez E J,Wuβler M,Fabregatsantiago F,Lakuswollny K,Mankel E,Mayer T,Jaegermann W and Morasero I 2014 J.Phys.Chem.Lett.5 680

    [39]Wang P,Zhang J,Chen R,Zeng Z,Huang X,Wang L,Xu J,Hu Z and Zhu Y 2017 Electrochimica Acta 227 180

    [40]Pockett A,Eperon G E,Peltola T,Snaith H J,Walker A,Peter L M and Cameron P J 2015 J.Phys.Chem.C 119 3456

    [41]Christians J A,Fung R C and Kamat P V 2014 J.Am.Chem.Soc.136 758

    猜你喜歡
    周航羅文立志
    羅文濤作品
    立志鄉(xiāng)村振興的筑夢(mèng)人
    以情懷支教,讓生命起舞
    姚立志繪畫作品
    感悟關(guān)懷厚望 立志跟黨前進(jìn)
    羅文亮(作家)
    蘇夢(mèng)飛
    書香兩岸(2020年3期)2020-06-29 12:33:45
    2019年高考數(shù)學(xué)模擬試題(四)
    周航的格局與易到的成敗
    開撕者 周航
    小康(2017年13期)2017-05-11 00:41:40
    少妇人妻一区二区三区视频| 精品99又大又爽又粗少妇毛片| 久久99热6这里只有精品| 一级av片app| 成年av动漫网址| 国产一区有黄有色的免费视频| 国产精品人妻久久久久久| 美女脱内裤让男人舔精品视频| 精品熟女少妇av免费看| 男人舔奶头视频| 久久精品国产自在天天线| 国产乱人偷精品视频| 亚洲精品乱久久久久久| 少妇高潮的动态图| 国产乱人偷精品视频| 日韩免费高清中文字幕av| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品专区欧美| 99国产精品免费福利视频| 岛国毛片在线播放| 国产真实伦视频高清在线观看| 十分钟在线观看高清视频www | 国产高清国产精品国产三级| 欧美精品亚洲一区二区| 久久这里有精品视频免费| 亚洲第一区二区三区不卡| 日本午夜av视频| 久久人人爽av亚洲精品天堂| 日韩 亚洲 欧美在线| 如何舔出高潮| 尾随美女入室| 亚洲av二区三区四区| 五月伊人婷婷丁香| 久久综合国产亚洲精品| 日韩亚洲欧美综合| 成年av动漫网址| 日韩在线高清观看一区二区三区| 精品熟女少妇av免费看| 亚洲怡红院男人天堂| 国产国拍精品亚洲av在线观看| 国产黄片视频在线免费观看| 人妻系列 视频| 精品久久久噜噜| 日韩,欧美,国产一区二区三区| 看十八女毛片水多多多| 国产黄色免费在线视频| 亚洲欧美精品专区久久| 欧美国产精品一级二级三级 | 内地一区二区视频在线| 精品人妻熟女毛片av久久网站| 国产免费一级a男人的天堂| 日本色播在线视频| 成人18禁高潮啪啪吃奶动态图 | 欧美国产精品一级二级三级 | 亚洲中文av在线| 精品人妻偷拍中文字幕| 97超视频在线观看视频| 成人无遮挡网站| 啦啦啦啦在线视频资源| 日韩成人伦理影院| av.在线天堂| 久久久久久伊人网av| 美女xxoo啪啪120秒动态图| 精品一区二区三区视频在线| 精品亚洲成国产av| www.av在线官网国产| 久久久久久久久久久久大奶| 我的女老师完整版在线观看| 久久 成人 亚洲| 99热全是精品| 国产成人午夜福利电影在线观看| 久久热精品热| 日日撸夜夜添| 国产精品99久久99久久久不卡 | 日韩电影二区| 久久国产精品大桥未久av | 99久久综合免费| 国产亚洲一区二区精品| 十八禁网站网址无遮挡 | 亚洲av免费高清在线观看| 少妇熟女欧美另类| kizo精华| 亚洲精品日韩在线中文字幕| 夫妻午夜视频| 狂野欧美白嫩少妇大欣赏| 久久久国产欧美日韩av| 欧美日本中文国产一区发布| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久| 久久久久久伊人网av| 制服丝袜香蕉在线| 丰满少妇做爰视频| 久久青草综合色| 黑人猛操日本美女一级片| 国产一区二区三区av在线| a级一级毛片免费在线观看| 国产亚洲午夜精品一区二区久久| 最近最新中文字幕免费大全7| 视频区图区小说| 日韩三级伦理在线观看| 欧美少妇被猛烈插入视频| 成年美女黄网站色视频大全免费 | 久久精品国产鲁丝片午夜精品| 91精品国产九色| 黄色视频在线播放观看不卡| 国产视频内射| 蜜桃久久精品国产亚洲av| av线在线观看网站| 久久毛片免费看一区二区三区| 纯流量卡能插随身wifi吗| 人妻人人澡人人爽人人| 69精品国产乱码久久久| 五月开心婷婷网| 中文资源天堂在线| 美女福利国产在线| 22中文网久久字幕| 美女视频免费永久观看网站| 亚洲怡红院男人天堂| 亚洲第一av免费看| 青春草亚洲视频在线观看| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| 天堂中文最新版在线下载| 建设人人有责人人尽责人人享有的| 99热国产这里只有精品6| 亚洲不卡免费看| 2018国产大陆天天弄谢| 18+在线观看网站| 成人18禁高潮啪啪吃奶动态图 | 99久久精品一区二区三区| 青春草亚洲视频在线观看| 色94色欧美一区二区| 欧美精品亚洲一区二区| 少妇被粗大猛烈的视频| 久久精品国产a三级三级三级| 日韩三级伦理在线观看| 国产成人一区二区在线| 亚洲国产最新在线播放| 这个男人来自地球电影免费观看 | 成人亚洲欧美一区二区av| 美女cb高潮喷水在线观看| 久久久久久久久久久久大奶| 在线亚洲精品国产二区图片欧美 | 亚洲精品久久午夜乱码| 综合色丁香网| 国产白丝娇喘喷水9色精品| 国产一级毛片在线| 久久人人爽av亚洲精品天堂| av在线观看视频网站免费| 国产精品国产av在线观看| 亚洲欧美一区二区三区国产| 又粗又硬又长又爽又黄的视频| 你懂的网址亚洲精品在线观看| 亚洲不卡免费看| 国产成人a∨麻豆精品| av福利片在线| 99国产精品免费福利视频| 女性被躁到高潮视频| 最黄视频免费看| 午夜视频国产福利| 国产一区二区三区综合在线观看 | kizo精华| 亚洲欧美清纯卡通| 欧美日韩视频精品一区| tube8黄色片| 久久 成人 亚洲| 精品人妻偷拍中文字幕| 中文精品一卡2卡3卡4更新| 国产在线视频一区二区| 国产精品久久久久久精品电影小说| 久久精品久久久久久噜噜老黄| 秋霞伦理黄片| 性色avwww在线观看| 欧美日韩在线观看h| 日韩精品免费视频一区二区三区 | 少妇被粗大的猛进出69影院 | 精品一品国产午夜福利视频| 中文字幕av电影在线播放| 亚洲精品视频女| tube8黄色片| 久久国产亚洲av麻豆专区| 91久久精品电影网| 2022亚洲国产成人精品| 久久99一区二区三区| 国产一区二区三区综合在线观看 | 天美传媒精品一区二区| 一级,二级,三级黄色视频| 黄色欧美视频在线观看| 99久久综合免费| av播播在线观看一区| 午夜视频国产福利| 精品久久久精品久久久| 国产真实伦视频高清在线观看| 大又大粗又爽又黄少妇毛片口| 日韩欧美精品免费久久| 久久精品久久久久久噜噜老黄| 国产成人91sexporn| 亚洲av.av天堂| av福利片在线| 欧美精品人与动牲交sv欧美| 亚洲av二区三区四区| 亚洲精华国产精华液的使用体验| 国产免费视频播放在线视频| 熟女电影av网| 亚洲国产色片| 国产成人91sexporn| 大香蕉久久网| 韩国av在线不卡| 97在线视频观看| 22中文网久久字幕| 久久精品国产鲁丝片午夜精品| 亚洲情色 制服丝袜| 亚洲欧美精品自产自拍| 亚洲图色成人| 少妇的逼好多水| 欧美最新免费一区二区三区| 韩国高清视频一区二区三区| 国产亚洲午夜精品一区二区久久| av.在线天堂| 中文资源天堂在线| 亚洲国产精品国产精品| 狂野欧美白嫩少妇大欣赏| 日本av手机在线免费观看| 日日撸夜夜添| 国产精品国产三级专区第一集| 少妇高潮的动态图| 精品一区二区三卡| 晚上一个人看的免费电影| 日韩免费高清中文字幕av| 国产精品欧美亚洲77777| 精华霜和精华液先用哪个| av.在线天堂| 欧美人与善性xxx| 又爽又黄a免费视频| 少妇 在线观看| 热re99久久国产66热| 国产成人精品婷婷| 69精品国产乱码久久久| 国产免费一级a男人的天堂| 不卡视频在线观看欧美| 一级爰片在线观看| 久久久久久久久久成人| 精品酒店卫生间| 欧美变态另类bdsm刘玥| 欧美成人午夜免费资源| 97精品久久久久久久久久精品| 亚洲,一卡二卡三卡| 国产精品免费大片| 国产精品秋霞免费鲁丝片| 日韩一本色道免费dvd| 亚洲av二区三区四区| 久久亚洲国产成人精品v| 精品亚洲成a人片在线观看| 三级国产精品片| 一区二区三区乱码不卡18| 青青草视频在线视频观看| 亚州av有码| 美女主播在线视频| a级毛片在线看网站| 欧美日韩综合久久久久久| 不卡视频在线观看欧美| 国产免费又黄又爽又色| 中文字幕制服av| 亚洲精品第二区| 精品久久久精品久久久| 色视频在线一区二区三区| 国产国拍精品亚洲av在线观看| 日韩中字成人| 男人舔奶头视频| 欧美区成人在线视频| 日韩,欧美,国产一区二区三区| 日韩视频在线欧美| 亚洲不卡免费看| 超碰97精品在线观看| 人妻少妇偷人精品九色| 一级毛片我不卡| 国精品久久久久久国模美| 久久影院123| 久久人人爽人人爽人人片va| 国产精品偷伦视频观看了| 三级国产精品欧美在线观看| .国产精品久久| 不卡视频在线观看欧美| 80岁老熟妇乱子伦牲交| 亚洲av成人精品一区久久| 熟妇人妻不卡中文字幕| 国产日韩欧美视频二区| 亚洲综合精品二区| 美女福利国产在线| 天堂8中文在线网| 伦理电影免费视频| 高清av免费在线| 日韩中文字幕视频在线看片| 少妇人妻 视频| 中文欧美无线码| 婷婷色麻豆天堂久久| 久久热精品热| 国产成人精品无人区| 一级毛片黄色毛片免费观看视频| 欧美精品人与动牲交sv欧美| 午夜久久久在线观看| 精品久久久精品久久久| 在线免费观看不下载黄p国产| 中文在线观看免费www的网站| 久久这里有精品视频免费| 成年人免费黄色播放视频 | 大香蕉久久网| 欧美激情极品国产一区二区三区 | 亚洲美女视频黄频| 日韩中字成人| 国产极品粉嫩免费观看在线 | av在线app专区| av在线app专区| 丝袜喷水一区| 亚洲国产毛片av蜜桃av| 亚洲第一av免费看| 久久99一区二区三区| 日本wwww免费看| 欧美性感艳星| 麻豆成人午夜福利视频| 精品亚洲乱码少妇综合久久| 久久亚洲国产成人精品v| 在线看a的网站| 多毛熟女@视频| 精品一区在线观看国产| 国产综合精华液| 国产精品久久久久久av不卡| 久久午夜福利片| 国产精品久久久久成人av| 99久久精品国产国产毛片| 欧美 亚洲 国产 日韩一| 一本一本综合久久| 男人爽女人下面视频在线观看| 一本一本综合久久| 丝袜脚勾引网站| 麻豆乱淫一区二区| 777米奇影视久久| 精品一区二区免费观看| 久久久久久伊人网av| 久久久久视频综合| 777米奇影视久久| 久久久精品94久久精品| 亚洲情色 制服丝袜| 啦啦啦视频在线资源免费观看| 精品卡一卡二卡四卡免费| 99久久精品国产国产毛片| 国产精品一区www在线观看| 狂野欧美白嫩少妇大欣赏| 性色av一级| 亚洲精品国产av蜜桃| 精品亚洲成国产av| 久久这里有精品视频免费| 80岁老熟妇乱子伦牲交| 国产淫语在线视频| 赤兔流量卡办理| 亚洲精华国产精华液的使用体验| 国产伦在线观看视频一区| 欧美激情国产日韩精品一区| 亚洲久久久国产精品| .国产精品久久| 我的老师免费观看完整版| 午夜日本视频在线| 69精品国产乱码久久久| 一级毛片 在线播放| 欧美另类一区| 中国国产av一级| av卡一久久| 亚洲欧美中文字幕日韩二区| 久久精品久久久久久久性| 老熟女久久久| h视频一区二区三区| 午夜福利,免费看| 色网站视频免费| 亚洲精品亚洲一区二区| 日本色播在线视频| 97超视频在线观看视频| 男女边吃奶边做爰视频| 久久99热这里只频精品6学生| 欧美日韩国产mv在线观看视频| 乱系列少妇在线播放| 国产精品国产三级国产专区5o| 中文字幕亚洲精品专区| 国产精品麻豆人妻色哟哟久久| 国产成人午夜福利电影在线观看| 免费大片黄手机在线观看| 亚洲成人av在线免费| 国产永久视频网站| 26uuu在线亚洲综合色| 97超视频在线观看视频| 在线观看国产h片| 能在线免费看毛片的网站| 久久婷婷青草| 成年美女黄网站色视频大全免费 | 亚洲国产日韩一区二区| 国产免费一级a男人的天堂| 午夜av观看不卡| 亚州av有码| 久久综合国产亚洲精品| 能在线免费看毛片的网站| 秋霞在线观看毛片| videos熟女内射| 午夜福利,免费看| 亚洲第一区二区三区不卡| 黄片无遮挡物在线观看| 最近最新中文字幕免费大全7| av一本久久久久| 99九九在线精品视频 | 久久久久久久久久久免费av| 欧美精品一区二区大全| 亚洲欧美成人综合另类久久久| 亚洲欧洲日产国产| 国产免费一区二区三区四区乱码| 午夜激情福利司机影院| 国产亚洲av片在线观看秒播厂| 欧美激情国产日韩精品一区| 三级国产精品欧美在线观看| 日本午夜av视频| 九色成人免费人妻av| 国产高清有码在线观看视频| 亚洲国产色片| 蜜桃久久精品国产亚洲av| 两个人免费观看高清视频 | 亚洲内射少妇av| 好男人视频免费观看在线| 国产乱来视频区| 午夜影院在线不卡| www.av在线官网国产| 91午夜精品亚洲一区二区三区| 国产一区二区在线观看av| 国产精品女同一区二区软件| 精品一区二区三区视频在线| 亚洲精品乱码久久久v下载方式| 91精品一卡2卡3卡4卡| av.在线天堂| 又大又黄又爽视频免费| 中国国产av一级| 日韩 亚洲 欧美在线| 国产日韩欧美亚洲二区| 99re6热这里在线精品视频| 中文天堂在线官网| 十分钟在线观看高清视频www | 亚洲va在线va天堂va国产| 尾随美女入室| 美女国产视频在线观看| 一本大道久久a久久精品| 午夜影院在线不卡| 国内少妇人妻偷人精品xxx网站| 久久久久久伊人网av| 亚洲精品国产av成人精品| 观看免费一级毛片| 蜜臀久久99精品久久宅男| 国产成人a∨麻豆精品| kizo精华| 国产午夜精品久久久久久一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 亚洲色图综合在线观看| 91精品国产九色| 亚洲无线观看免费| 男女啪啪激烈高潮av片| www.色视频.com| 亚洲色图综合在线观看| 国产精品久久久久久精品古装| 久久av网站| 欧美亚洲 丝袜 人妻 在线| 中文精品一卡2卡3卡4更新| 高清欧美精品videossex| 久久精品国产a三级三级三级| 久久久久久久久久久免费av| 视频区图区小说| av国产精品久久久久影院| 男女无遮挡免费网站观看| 69精品国产乱码久久久| 亚洲综合精品二区| 蜜桃在线观看..| 午夜精品国产一区二区电影| 久久精品久久久久久久性| 日韩精品免费视频一区二区三区 | 亚洲人与动物交配视频| 日韩一区二区视频免费看| 国产成人精品无人区| 大片电影免费在线观看免费| 久久久久网色| 秋霞伦理黄片| 日韩欧美 国产精品| 国产精品欧美亚洲77777| 久久精品夜色国产| a级片在线免费高清观看视频| 国产精品国产三级专区第一集| 亚洲av电影在线观看一区二区三区| 三级国产精品片| 麻豆成人av视频| 少妇被粗大猛烈的视频| 男男h啪啪无遮挡| 新久久久久国产一级毛片| 中文字幕人妻丝袜制服| 自拍欧美九色日韩亚洲蝌蚪91 | 看免费成人av毛片| 亚洲欧美成人综合另类久久久| 欧美日韩国产mv在线观看视频| 免费黄频网站在线观看国产| 制服丝袜香蕉在线| 欧美国产精品一级二级三级 | 最近中文字幕2019免费版| 中国三级夫妇交换| 国产精品嫩草影院av在线观看| 日韩视频在线欧美| 男人舔奶头视频| 午夜免费鲁丝| 亚洲图色成人| 欧美xxⅹ黑人| 伦理电影免费视频| 美女视频免费永久观看网站| 久久女婷五月综合色啪小说| 丰满人妻一区二区三区视频av| 简卡轻食公司| 国产伦在线观看视频一区| 人人妻人人澡人人看| 欧美 亚洲 国产 日韩一| 午夜免费男女啪啪视频观看| 国产精品福利在线免费观看| 黄色毛片三级朝国网站 | 亚洲美女黄色视频免费看| 91精品伊人久久大香线蕉| 亚洲av成人精品一区久久| 亚洲精品日韩在线中文字幕| av国产精品久久久久影院| 乱码一卡2卡4卡精品| 22中文网久久字幕| 久久久久久久精品精品| av在线app专区| 日韩av在线免费看完整版不卡| 天美传媒精品一区二区| av在线app专区| 男女边摸边吃奶| 久久国产亚洲av麻豆专区| 精品久久久噜噜| 中文欧美无线码| 亚洲精品国产av成人精品| 国产又色又爽无遮挡免| 亚洲欧美成人综合另类久久久| 国产老妇伦熟女老妇高清| 在线精品无人区一区二区三| 国产成人91sexporn| 韩国av在线不卡| 成人亚洲欧美一区二区av| 成人特级av手机在线观看| 99热这里只有精品一区| 交换朋友夫妻互换小说| 国产高清有码在线观看视频| 久久国产精品男人的天堂亚洲 | 91精品伊人久久大香线蕉| 久久女婷五月综合色啪小说| 有码 亚洲区| 亚洲av不卡在线观看| 永久免费av网站大全| 91在线精品国自产拍蜜月| 免费少妇av软件| 国产熟女午夜一区二区三区 | 国产日韩一区二区三区精品不卡 | 一级片'在线观看视频| 国产精品久久久久久久久免| 午夜福利在线观看免费完整高清在| 久久人人爽av亚洲精品天堂| 老女人水多毛片| 亚洲熟女精品中文字幕| 精品一区二区三区视频在线| 国产在线免费精品| 成人特级av手机在线观看| 精品亚洲乱码少妇综合久久| 国产极品天堂在线| 国产亚洲精品久久久com| 人妻制服诱惑在线中文字幕| 精品久久国产蜜桃| 亚洲av在线观看美女高潮| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av成人精品| 国产一区二区三区综合在线观看 | 一级黄片播放器| 99视频精品全部免费 在线| 欧美日韩视频高清一区二区三区二| 免费少妇av软件| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 国产精品不卡视频一区二区| 亚州av有码| 国产深夜福利视频在线观看| 国产黄频视频在线观看| 久久久久精品性色| 精品国产一区二区三区久久久樱花| 人人妻人人添人人爽欧美一区卜| 精品视频人人做人人爽| 女人精品久久久久毛片| 纯流量卡能插随身wifi吗| 亚洲真实伦在线观看| 亚洲国产色片| 欧美三级亚洲精品| 亚洲人与动物交配视频| 国产一区二区在线观看日韩| 精品亚洲成a人片在线观看| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成a人片在线观看| 久久久久视频综合| 大又大粗又爽又黄少妇毛片口| 日韩av免费高清视频| 精品视频人人做人人爽| 免费av中文字幕在线| kizo精华| 一区二区三区四区激情视频| 大香蕉久久网| 久久精品久久精品一区二区三区| 午夜福利,免费看| 亚洲情色 制服丝袜| a级片在线免费高清观看视频|