• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum interferometry via a coherent state mixed with a squeezed number state?

    2019-04-13 01:14:24LiLiHou侯麗麗YongXingSui眭永興ShuaiWang王帥andXueFenXu許雪芬
    Chinese Physics B 2019年4期
    關鍵詞:王帥永興麗麗

    Li-Li Hou(侯麗麗),Yong-Xing Sui(眭永興),Shuai Wang(王帥),?,and Xue-Fen Xu(許雪芬)

    1School of Mathematics and Physics,Jiangsu University of Technology,Changzhou 213001,China

    2Department of Fundamental Courses,Wuxi Institute of Technology,Wuxi 214121,China

    1.Introduction

    Nonclassical resources,such as squeezed states and Fock states,are mainly resources and can improve the sensitivity of the phase estimation of the optical interferometer.The Mach–Zehnder interferometer(MZI)is an important optical interferometer,and with solely classical light,its phase sensi√tivity is bounded by the shot-noise limit(SNL)??SNL=1/Nˉ(Nˉ is the mean number of photons used to perform the estimation).This limit can be surpassed by using nonclassical states of light,such as squeezed state,[1–8]N00N states,[9,10]and Fock states.[11–15]With the help of the nonclassical states,the phase sensitivity can approach the Heisenberg limit(HL)??HL=1/.[16,17]

    The ultimate phase sensitivity achievable in an MZI with a generic input state ρinis given by the quantum Crame′r–Rao bound(QCRB),[14,18]??min=FQis the quantum Fisher information.For an MZI,the quantum Fisher information depends only on quantum input states.[18]It is known that,for a lossless MZI,the N00N state in principle achieves the ultimate HL.[9,10]Unfortunately,these states are extremely fragile.[19,20]Another possible way to approach the HL sensitivity is through the injection of the twin-Fock state,|nia?|nib,into the first beam splitter of an MZI.[12]Actually,for n=1 and n=2,the twin-Fock state does produce an N00N-like state on the other side of the beam splitter.Thus the twin-Fock inputs for n=1 and n=2 have the same quantum Fisher information as the N00N state.[21]But the twin-Fock state is hard to generate.Therefore,in the current technology,it is still useful to consider the interferometer with a high-intensity classical state in one input port and a low intensity nonclassical state in the other input,as Cave’s original scheme of mixing the coherent state with the squeezed vacuum state(SVS)at the input of an MZI.[1]In 2008,Pezz′e and Smerzi[2]revived Cave’s original scheme.They showed that,based on the quantum Fisher information,when the coherent state and the SVS have a roughly equal intensity(?/2 photons on average in each state),the phase sensitivity reaches the HL independently of the actual value of phase.Later,Seshadreesan et al.[4]proved that such an HL can be achieved by the parity measurement[22]in the case of the phase shift ?→0.Recently,Birrittella et al.used the Fock state instead of the SVS to improve the phase sensitivity,and they found that the phase sensitivity can also approach the HL for increasing n.[13]In addition,comparing with the mixing coherent state with the SVS,Birrittella et al.further found that the mixing coherent states with the squeezed single photon state(|r,1i)yield higher sensitivity in phase-shift measurements for the same squeezing parameter.[13]On the other hand,for fixed total mean photon number and squeezing parameter,Olivares et al.[23]found there is a threshold of the coherent amplitude interfering with the squeezing single photon state above which the squeezed single photon state can outperform the performance of the SVS(showing the highest quantum Fisher information).

    In this paper,following the work in Ref.[13],we consider the mixing of a coherent state and squeezed number state(SNS)with arbitrary photons n as the input state of an MZI,i.e.,

    where|ziais a coherent state and|r,nibis an SNS.And then,based on the quantum Fisher information and parity measurement,[22,24]we investigate the prospect of performing phase estimation with such an input state in detail.Different from those studies in Refs. [13] and [23], for a fair comparison,within a constraint on both the total mean photon number ? of the input state|ini and the mean photon number of the SNS(or SVS),we re-examine whether the SNS can indeed improve the phase sensitivity for all values of phase shift?Our work is also enlightened by Lang and Caves’s work.[25]Via the analysis the quantum Fisher information,Lang and Caves have proved that the SVS is the optimal state to inject the other input port for achieving high-sensitivity phase-shift measurements within a constraint on the mean photon number,when one input of an interferometer is entered by coherent light.Theoretically,an SNS is obtained by performing the squeezing parameter(r)on an initial Fock state|ni,that is,

    where

    with the squeezing parameter r.[26]An SNS can be generated in experiment when the Fock state is entered into a squeezed generating device,such as a parametric amplifier.For squeezed single photon state(?S(r)|1i),it also can be generated starting from an SVS by means of the photon subtraction technique[27,28]or photon addition technique.[29,30]Mathematically,the scenario under our consideration covers two special cases of significance.(i)When n=0,|r,0ibis an SVS,then|ini reduces to the input state in Ref.[1].(ii)When r=0,|0,nibis a number state,and then this produces a special case of the state investigated in Refs.[13]and[14].

    The paper is arranged as follows.In Section 2,for an MZI with the SNS-coherent input state,we obtain the quantum Fisher information.We find that,for a given fixed total mean photon number and the mean photon number of the SNS(or SVS),SVS-coherent state indeed gives a larger quantum Fisher information than SNS-coherent state.In Section 3,we analytically prove that the classical Fisher information for parity measurement saturates the quantum Fisher information when the phase shift approaches zero.Thus,the phase sensitivity can saturate the QCRB at ?=0 via parity measurement.For a given fixed total mean photon number and the mean photon number of the SNS(or SVS),we show that SNS-coherent state can offer better phase sensitivity via the parity detection only when the phase shift deviates from the optimal phase ?=0.

    2.Quantum Fisher information in an MZI

    The balanced MZI considered here is mainly composed of two 50:50 beam splitters and two phase shifters.As was shown by Yurke et al.,[31]the first beam splitter BS1 is described by the transformation

    And the operator representation of the second beam splitter BS2 is taken as

    The operatorU?(?)=exp?i??2?denotes the two phase shifters,the angle ? is the phase shift between the two arms to be estimated.According to the work in Ref.[31],the unitary transformation associated with such balanced MZI can be written as

    where these operators consisted of two sets of Boson operators

    are the angular momentum operators in the well-known Schwinger representation.They satisfy the commutation relationand commute with the Casimir operatorFor an input state propagating through the MZI,the resulted output state can be written as

    Applying the following transformation relations

    and the relationin principle,one can obtain the explicit form of the output state the MZI.

    Here,we first give the quantum Fisher information for the interferometer state|ini=|zia?|r,nib.The ultimate limit of phase sensitivity is given by the QCRB[18]

    For pure states injected into an MZI,the quantum Fisher information FQcan be obtained by[32]

    where

    is the state just before the second beam splitter of the MZI,and|ψ0(?)i= ? |ψ(?)i/??.In terms of the input state,the quantum Fisher information becomes

    and thus the quantum Fisher information is,up to factor of 4,the variance of the operatorWhen the SNS-coherent state is considered as the input state,the quantum Fisher information can be directly obtained as

    where=|z|2(z=|z|eiθthe amplitude of the coherent state and we have set θ=0 in order to obtain the maximized Fisher information).In Eq.(10),ˉnSNSis the average photon number of the SNS,i.e.,

    For an ideal MZI,the total mean photon number(?=)is a conserved quantity.For a constraint on the total mean photon number,it is easily proved that the quantum Fisher information given by Eq.(10)is maximized by splitting the photons equally between the two modes,i.e.,Obviously,when n=0,one can obtain the quantum Fisher information for the input state with SVS-coherent state(|zia?|r,0ib),[2]

    where=sinh2r the mean photon number of the SVS.On the other hand,in the case of r=0,the input state reduces to a coherent state mixed with a Fock state(|zia?|0,nib)and one can directly obtain the quantum Fisher information for this input state[14]

    In addition,based on Eq.(10),one can see that,for a given fixed total mean photon numberNˉ and the mean photon number of the SNS(or SVS),the SVS-coherent input state gives a larger quantum Fisher information than SNS-coherent one.In order to obtain large quantum Fisher information,one would like to enhance the squeezing factor r as much as possible.However,this experimentally challenging.[33–35]The maximum reported squeezing parameter was about r≈2.3(i.e.,15 dB).[34]Therefore,in order to enhance the mean photon number of squeezed states for a given r,SNS may be an alternative resource in quantum metrology.Especially,squeezed single photon state S(r)|1i can be generated by applying photon subtraction on an SVS in experiment.[27,28]

    3.Parity measurement and phase sensitivity

    Up to the present,people have known that the quantum CRB ??mincan be reached at particular values of the phase shift by detecting the photon number parity on one of the output modes.For the detailed discussion of the parity detection in quantum optimal metrology,one can review that in Refs.[22]and[24].Actually,the parity measurement is to obtain the expectation value of the parity operator in the output state of the MZI.For mode b,the parity operator can be written as

    where|γi is a coherent state.Then the expectation value of the parity operator can be obtain by

    Thus,if one knows the output state of the MZI, one can present the parity-based phase estimation scheme with calculation of the average signal??Πb?and phase sensitivity.

    When the product state|zia?|r,nibis injected into the MZI,we obtain the expectation value of the parity operator in the output state[See Appendix A]

    where

    is the corresponding expectation value of the parity operator for the input state with SVS-coherent state,[4]

    In the following,we shall mainly investigate the corresponding phase sensitivity with parity measurement.

    Now we turn to the discussion of the phase sensitivity.The classical Fisher information FCis given by[36,37]

    where i denotes the outcome of the measurement and P(i|?)is the probability of the measurement resulting in the i-th outcome conditioned on a specific value of the phase shift ?.For parity measurement,there are only two outcomes,+for even and?for odd,and the corresponding probabilities of even and odd counts

    Then noting?Π2=1,and substituting Eq.(19)into Eq.(18),one can obtain the classical Fisher information for parity measurement[24]

    Therefore,according to the CRB theory,the phase sensitivity of parity measurement can be directly determined from the average signal??Π?

    Compared Eq.(20)with Eq.(10),for the small values of n and by the Taylor expansion of Eq.(16)around ?=0,we can analytically prove that the classical Fisher information indeed equals the quantum Fisher information in the case of ?=0.For the general values of n,we can numerically prove this conclusion is still ture.Therefore,the phase sensitivity can saturate the QCRB at ?=0 via parity measurement.

    By Eqs.(16)and(21),for some values of n and given the amplitude of the coherent state z=10,we firstly investigate the hΠbi as a function of the phase shift ?.From Fig.1(a),one can see that,for a given initial squeezing parameter r,the central peaks of the hΠbi of the SNS-coherent input states are narrower than that of the SVS-coherent input state.This is because,for a given parameter r,the SNS carries more photons.For a fair comparison between SNS and SVS,settingwe repeat these graphs in Fig.1(b).Figure 1(b)shows that,in the case of,the distributions of these central peaks of the hΠb(?)i near ? =0 are almost identical.But,for somewhat large values of the phase shift, figure 1 also shows that the average signal hΠbi of the SNS-coherent state blows up and is more sensitivity to the phase shift than that of the SVS-coherent one,which may be benefit to improving the phase sensitivity for somewhat large values of ? as shown in the following.

    Fig.1.The expectation value of the parity operator versus the phase shift ? for both SNS-coherent and SVS-coherent as input states of the MZI,respectively.(a)Given the initial squeezing parameter r=0.6 and z=10;(b)givennˉSNS=nˉSVSand z=10.For a more obvious comparison,we have adjusted the negative central peak value to a positive value.

    Fig.2.Plots of the phase uncertainty versus total average photon at ?=10?4for both the SNS-coherent state and the SVS-coherent state,along with the corresponding curves for the SNL and the HL limits.Only the parameter z is being changed.(a)Given the initial squeezing parameter r=0.6;(b)Given

    Secondly,we investigate how the phase sensitivities change with the total mean photon number based on Eqs.(16)and(21).Obviously,for given an initial squeezing parameter r,the phase sensitivity increases with the number n as shown in Fig.2(a).This is also because,for a given parameter r,the SNS with large number n can carry more photons.However,for given the same ratios ofˉnSNS/? andˉnSVS/?,we can obtain almost the same phase sensitivity for all values of n as shown in Fig.2(b).Although,within a constrain on the total mean photon number,the SVS is the optimal state when one input of an interferometer is entered by coherent light,[25]one can see from Fig.2(b)that the difference among those phase sensitivities coming from both the SNS-coherent and the SVS-coherent is very small,especially when they carry many photons.Thus,SNS may be considered an alternative resources in the quantum metrology.

    Fig.3.(a)For give=16 and z=10,the phase sensitivity?? as a function of the phase shift ? when the SNS-coherent state,and the SVS-coherent state as interferometer states;(b)For given=16 and ?=0.15,the phase sensitivity?? as a function of the total mean photon number.Only the parameter z is changed.

    From the above discussion,we can see that our results obtained via both the quantum Fisher information and the parity measurement support Lang and Caves’s work.[25]However,as pointed in Ref.[4],the parity measurement scheme(or the Ono–Hofmann detection scheme)is highly affected by the deviation of the optimal phase shift ?.Here,we also investigate how the phase sensitivity varies with ? via the parity measurement.Based on Eqs.(16)and(21),we plot the phase sensitivity as a function of the phase shift ? in Fig.3(a).Obviously,when the phase shift somewhat deviates the optimal phase ?=0,the SNS can give better sensitivity than the SVS via parity measurement.In addition,SNS-coherent input state provides sub-SNL for a much broader range of the accumulated phase shift ?,especially for large number n.In Fig.3(b),for somewhat large value of the phase shift,we show that how the phase sensitivities change with the total mean photon number.In the latter case especially,we see that the SNS-coherent state indeed give better sensitivity when the phase shift deviates ?=0.When the total mean photon number increases,the phase uncertainties blow up due to the periodic nature of the average signal of hΠbi,but there are other photon numbers where the phase sensitivity is still below the SNL for for SNS,especially when the number n increases.

    Since parity measurement achieves maximal phase sensitivity at particular values of phase ?,its applicability,in general is restricted to estimating “l(fā)ocal”phase.[24]Local parameter estimation is concerned with detecting small changes in parameter that are more or less known,as opposed to the“global”one,wherein a complete lack of knowledge about parameter is initially assumed.[38]Therefore,performing phase estimation starts with SNS-coherent input state is a alternative choice,which can offer roughly knowledge about the value of the accumulated phase.And then,one can move the accumulated phase closer to the optimal phase ?=0 and improve phase sensitivity.

    4.Conclusions

    In summary,we have studied the quantum optical interference by mixing a coherent state with a SNS.Given a total mean photon number and the mean photon number of the SNS(or SVS),our results show that the quantum Fisher information of the SNS-coherent is almost equals to that of the SVS-coherent one,although SVS-coherent provides somewhat large quantum Fisher information.We prove that the classical Fisher information for parity measurement saturates the quantum Fisher information when the phase shift approaches zero.Thus,the quantum Cram′er–Rao bound can be reached via the parity measurement in the limit ? → 0.We also show that,for fixed a total mean photon number and the mean photon number of the SNS(or SVS),SNS-coherent can offer better phase sensitivity via the parity detection only when the phase shift deviates from the optimal phase ?=0.

    Appendix A:Deriving of Eq.(16)

    For convenience,we adopt the following form of the

    SNS[39]where Hn(x)is a Hermite polynomials.It can be seen from Eq.(A1)that the SNS can be actually considered as a Hermite polynomial excited SVS.In the basis of the coherent state,the SNS can be further expressed by

    where|βi=exp??|β|2/2+βb??|0i is a coherent state.When the product state|ini=|zia?|ψr,nibis injected into the MZI,by Eqs.(5)and(6),the resulted output state can be written as

    which is the state of light at the output of the MZI.Then substituting Eq.(A3)into Eq.(15),and applying the integral formula[40]

    whose convergent condition is Re(ξ± f±g)<0 andAfter a long calculation,we obtain the expectation value of the parity in the output state of the MZI as shown in Eq.(16).

    On the other hand,noting that the generating function of Hermite polynomial Hm(x)[41]

    and the well-known differential relations of Hm(x)

    we can also rewrite Eq.(16)in a compact form,i.e.,

    where

    [1]Caves C M 1981 Phys.Rev.D 23 1693

    [2]Pezz′e L and Smerzi A 2008 Phys.Rev.Lett.100 073601

    [3]Anisimov P M,Raterman G M,Chiruvelli A,Plick W N,Huver S D,Lee H,and Dowling J P 2010 Phys.Rev.Lett.104 103602

    [4]Seshadreesan K P,Anisimov P M,Lee L,and Dowling J P 2011 New J.Phys.13 083026

    [5]Oh C,Lee S Y,Nha H,and Jeong H 2017 Phys.Rev.A 96 062304

    [6]Yu X D,Li W,Zhu S Y,and Zhang J 2016 Chin.Phys.B 25 020304

    [7]Li H M,Xu X X,Yuan H C and Wang Z 2016 Chin.Phys.B 25 104203

    [8]Xu L and Tan Q S 2018 Chin.Phys.B 27 014203

    [9]Lee H,Kok P and Dowling J P 2002 J.Mod.Opt.49 2325

    [10]Dowling J P 1998 J.Mod.Opt.45 2233

    [11]Kuzmich A,Manning D,Mandel L,and Walmsley I A 1998 J.Mod.Opt.45 2233

    [12]Campos R A,Gerry C C and Benmoussa A 2003 Phys.Rev.A 68 023810

    [13]Birrittella R,Mimih J,and Gerry C C 2012 Phys.Rev.A 86 063828

    [14]Pezz′e L and Smerzi A 2013 Phys.Rev.Lett.110 163604

    [15]Wang S,Wang Y T,Zhai L J and Zhang L J 2018 J.Opt.Soc.Am.B 35 1046

    [16]Ou Z Y 1996 Phys.Rev.Lett.77 2352

    [17]Holland M J and Burnett K 1993 Phys.Rev.Lett.71 1355

    [18]Braunstein S L and Caves C M 1994 Phys.Rev.Lett.72 3439 Braunstein S L and Caves C M 2007 Phys.Rev.Lett 40 2799

    [19]Rubin M A and Kaushik S 2007 Phys.Rev.A 75 053805

    [20]Jiang K,Brignac C J,Weng Y,Kim M B,Lee H and Dowling J P 2012 Phys.Rev.A 86 013826

    [21]Lang M D and Caves C M 2014 Phys.Rev.A 90 025802

    [22]Gerry C C and Mimih J 2010 Contemp.Phys.51 497

    [23]Olivares S,Popovic M and Paris M G A 2016 Quantum Mean.Quantum Metrol.3 38

    [24]Seshadreesan K P,Kim S,Dowling J P and Lee H 2013 Phys.Rev.A 87 043833

    [25]Lang M D and Caves C M 2013 Phys.Rev.Lett.111 173601

    [26]Kim M S,de Oliviera F A M and Knight P L 1989 Phys.Rev.A 40 2494

    [27]Wenger J,Tualle-Bouri R and Grangier P 2004 Phys.Rev.Lett.92 153601

    [28]Olivares S and Paris M G A 2005 J.Opt.B:Quantum Semiclass.Opt.7 S616

    [29]Dell’Anno F,De Siena S and Illuminati F 2006 Phys.Rep.428 53

    [30]Kim M S 2008 J.Phys.B:At.Mol.Opt.Phys.41 133001

    [31]Yurke B,McCall S L and Klauder J R 1986 Phys.Rev.A 33 4033

    [32]Ben-Aryeh Y 2012 J.Opt.Soc.Am.B 29 2754

    [33]Vahlbruch H,Mehmet M,Chelkowski S,Hage B,Franzen A,Lastzka N,Go?er S,Danzmann K and Schnabel R 2008 Phys.Rev.Lett.100 033602

    [34]Vahlbruch H,Mehmet M,Danzmann K and Schnabel R 2016 Phys.Rev.Lett.117 110801

    [35]Schnabel R 2017 Phys.Rep.684 1

    [36]Hall M J W 2000 Phys.Rev.A 62 012107

    [37]Uys H and Meystre P 2007 Phys.Rev.A 76 013804

    [38]Durkin G A and Dowling J P 2007 Phys.Rev.Lett.99 070801

    [39]Meng X G,Wang Z,Fan H Y and Wang J S 2012 J.Opt.Soc.Am.B 29 1835

    [40]Puri R R 2001 Mathematical Methods of Quantum Optics(Berlin:Springer-Verlag,2001),Appendix A

    [41]Rainville E D 1960 Special Function(New York:MacMillan)

    猜你喜歡
    王帥永興麗麗
    Tolerance-enhanced SU(1,1)interferometers using asymmetric gain
    快點 快點
    Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier
    畫一畫
    王帥 藍色 是篤定的顏色
    I love my family
    賴麗麗
    中國篆刻(2016年3期)2016-09-26 12:19:28
    Design of Electronic Weft-Insertion System for Three-Dimensional Loom
    陜西西安明永興恭定王墓
    大眾考古(2015年12期)2015-06-26 08:53:08
    永興:科技創(chuàng)新擦亮“中國銀都”
    交换朋友夫妻互换小说| 成人国语在线视频| 天天影视国产精品| 韩国av一区二区三区四区| 国产区一区二久久| 如日韩欧美国产精品一区二区三区| 欧美日韩乱码在线| 人人妻人人澡人人爽人人夜夜| 99riav亚洲国产免费| 久久中文字幕一级| 亚洲精品中文字幕一二三四区| 又大又爽又粗| 久久九九热精品免费| 少妇被粗大的猛进出69影院| 国产成人免费无遮挡视频| 99热国产这里只有精品6| 19禁男女啪啪无遮挡网站| 水蜜桃什么品种好| 少妇猛男粗大的猛烈进出视频| 性少妇av在线| 免费不卡黄色视频| 免费在线观看黄色视频的| 亚洲国产看品久久| 自拍欧美九色日韩亚洲蝌蚪91| 视频在线观看一区二区三区| 亚洲国产看品久久| 人人妻,人人澡人人爽秒播| 国产一区有黄有色的免费视频| 亚洲片人在线观看| 黄片小视频在线播放| 日韩熟女老妇一区二区性免费视频| 免费女性裸体啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 9色porny在线观看| 999久久久国产精品视频| 精品人妻熟女毛片av久久网站| 一区二区三区精品91| av天堂久久9| 欧美乱码精品一区二区三区| 国产乱人伦免费视频| 老司机亚洲免费影院| 69精品国产乱码久久久| 精品亚洲成a人片在线观看| 精品国内亚洲2022精品成人 | 无限看片的www在线观看| 少妇 在线观看| 丰满饥渴人妻一区二区三| 亚洲美女黄片视频| 久久天堂一区二区三区四区| 精品久久久久久久毛片微露脸| 香蕉丝袜av| 久久精品国产亚洲av高清一级| 在线看a的网站| av在线播放免费不卡| 黄色 视频免费看| 国产成+人综合+亚洲专区| 欧美不卡视频在线免费观看 | 亚洲中文av在线| 亚洲av日韩精品久久久久久密| 性色av乱码一区二区三区2| 国产伦人伦偷精品视频| 中国美女看黄片| 国产午夜精品久久久久久| 少妇 在线观看| 久热爱精品视频在线9| 热re99久久精品国产66热6| 亚洲少妇的诱惑av| 久久久国产欧美日韩av| 久久中文字幕人妻熟女| 午夜久久久在线观看| 手机成人av网站| 国产又爽黄色视频| 久久性视频一级片| 黄色怎么调成土黄色| 每晚都被弄得嗷嗷叫到高潮| 19禁男女啪啪无遮挡网站| 日韩有码中文字幕| 成人精品一区二区免费| 极品少妇高潮喷水抽搐| 一级片免费观看大全| 国产精品永久免费网站| ponron亚洲| 久久久国产精品麻豆| 午夜老司机福利片| 老司机亚洲免费影院| 久久亚洲精品不卡| 男人操女人黄网站| 性少妇av在线| 日本精品一区二区三区蜜桃| 国产精品一区二区在线不卡| 99香蕉大伊视频| 日韩视频一区二区在线观看| 国产精品国产av在线观看| 日韩欧美一区视频在线观看| 免费看a级黄色片| 村上凉子中文字幕在线| 99re6热这里在线精品视频| 国产精品一区二区在线观看99| 免费看十八禁软件| 很黄的视频免费| 精品国内亚洲2022精品成人 | 麻豆乱淫一区二区| 久久中文看片网| 青草久久国产| 亚洲 欧美一区二区三区| 亚洲专区字幕在线| 美女福利国产在线| 亚洲男人天堂网一区| 国产一卡二卡三卡精品| 国产精品av久久久久免费| 国产精品美女特级片免费视频播放器 | 黄色女人牲交| 欧美日韩亚洲综合一区二区三区_| 香蕉国产在线看| 国产精品永久免费网站| 成年人午夜在线观看视频| 国产精品免费视频内射| 天天影视国产精品| 一本一本久久a久久精品综合妖精| 亚洲av第一区精品v没综合| 别揉我奶头~嗯~啊~动态视频| 精品少妇久久久久久888优播| 精品福利观看| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 国产成人精品久久二区二区91| 色精品久久人妻99蜜桃| 美女 人体艺术 gogo| 黄色a级毛片大全视频| 久久精品亚洲熟妇少妇任你| 免费在线观看影片大全网站| 他把我摸到了高潮在线观看| 精品免费久久久久久久清纯 | 久久精品国产a三级三级三级| 国产一区二区激情短视频| 香蕉国产在线看| 在线播放国产精品三级| 99精品在免费线老司机午夜| av电影中文网址| 久久婷婷成人综合色麻豆| 涩涩av久久男人的天堂| 悠悠久久av| 日韩成人在线观看一区二区三区| 人人妻,人人澡人人爽秒播| av不卡在线播放| 老司机亚洲免费影院| 亚洲av片天天在线观看| 美女 人体艺术 gogo| 亚洲片人在线观看| 美女午夜性视频免费| 亚洲片人在线观看| 一本一本久久a久久精品综合妖精| 国产精品av久久久久免费| www.999成人在线观看| 国产一区在线观看成人免费| 色在线成人网| 在线观看免费视频网站a站| 久久国产精品男人的天堂亚洲| 巨乳人妻的诱惑在线观看| 91精品三级在线观看| 午夜亚洲福利在线播放| 中文字幕人妻熟女乱码| 国产成人啪精品午夜网站| 欧美日韩国产mv在线观看视频| 国产精品国产高清国产av | 久久人妻av系列| 久久久精品国产亚洲av高清涩受| 免费不卡黄色视频| 亚洲成国产人片在线观看| 久久久久精品国产欧美久久久| 十分钟在线观看高清视频www| 久久人妻福利社区极品人妻图片| 国产精品偷伦视频观看了| 999久久久精品免费观看国产| 亚洲国产欧美日韩在线播放| 午夜福利一区二区在线看| 五月开心婷婷网| 色94色欧美一区二区| 亚洲三区欧美一区| 丰满饥渴人妻一区二区三| 成人av一区二区三区在线看| 女人被躁到高潮嗷嗷叫费观| 国产在线观看jvid| 亚洲第一青青草原| 亚洲av成人av| 国内毛片毛片毛片毛片毛片| 嫁个100分男人电影在线观看| 校园春色视频在线观看| 亚洲情色 制服丝袜| 久久人人97超碰香蕉20202| 日本a在线网址| 亚洲在线自拍视频| 一边摸一边抽搐一进一出视频| 精品电影一区二区在线| 黄色成人免费大全| 91在线观看av| 中文字幕av电影在线播放| 99国产精品一区二区三区| 一本大道久久a久久精品| 悠悠久久av| a级片在线免费高清观看视频| 免费人成视频x8x8入口观看| 成人精品一区二区免费| 日韩欧美三级三区| 欧洲精品卡2卡3卡4卡5卡区| 新久久久久国产一级毛片| 在线观看午夜福利视频| 在线观看舔阴道视频| av视频免费观看在线观看| 国产成人一区二区三区免费视频网站| 动漫黄色视频在线观看| 男女下面插进去视频免费观看| 国产成人系列免费观看| 在线观看免费午夜福利视频| 欧美激情久久久久久爽电影 | 建设人人有责人人尽责人人享有的| 在线观看一区二区三区激情| 亚洲av电影在线进入| 日本撒尿小便嘘嘘汇集6| 看黄色毛片网站| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区四区第35| 极品教师在线免费播放| 国产单亲对白刺激| 激情在线观看视频在线高清 | www.精华液| netflix在线观看网站| 国产精品亚洲一级av第二区| 黄色女人牲交| 黄频高清免费视频| 人妻久久中文字幕网| 天天躁日日躁夜夜躁夜夜| 丝袜在线中文字幕| 国产免费av片在线观看野外av| 啦啦啦 在线观看视频| 777米奇影视久久| 一边摸一边做爽爽视频免费| 啪啪无遮挡十八禁网站| 一本大道久久a久久精品| 捣出白浆h1v1| 国产日韩一区二区三区精品不卡| 亚洲国产精品sss在线观看 | 国产成人啪精品午夜网站| 伊人久久大香线蕉亚洲五| 午夜福利在线观看吧| 亚洲一区二区三区不卡视频| 国产一区二区激情短视频| 国产成人欧美在线观看 | 亚洲中文av在线| 18禁裸乳无遮挡免费网站照片 | 久久国产精品影院| 久久精品人人爽人人爽视色| aaaaa片日本免费| 高清欧美精品videossex| 热99久久久久精品小说推荐| 黄频高清免费视频| 视频区图区小说| 99热网站在线观看| 最近最新中文字幕大全电影3 | 欧美大码av| 日韩有码中文字幕| 久久影院123| 少妇 在线观看| 他把我摸到了高潮在线观看| 亚洲人成电影观看| 欧美黄色淫秽网站| 亚洲欧美一区二区三区久久| 好男人电影高清在线观看| 亚洲av成人av| 91国产中文字幕| 久久国产精品人妻蜜桃| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕在线视频| 亚洲,欧美精品.| 桃红色精品国产亚洲av| 我的亚洲天堂| 日韩免费av在线播放| 久久中文字幕一级| 色综合婷婷激情| 久久中文看片网| 免费久久久久久久精品成人欧美视频| 啦啦啦免费观看视频1| 欧美日韩福利视频一区二区| 欧美 日韩 精品 国产| 精品国产乱码久久久久久男人| 午夜老司机福利片| 看片在线看免费视频| 色婷婷久久久亚洲欧美| 午夜视频精品福利| 一进一出好大好爽视频| 免费高清在线观看日韩| 无人区码免费观看不卡| 香蕉久久夜色| av在线播放免费不卡| 免费高清在线观看日韩| 嫁个100分男人电影在线观看| 9色porny在线观看| 精品一区二区三卡| 操美女的视频在线观看| 亚洲av成人不卡在线观看播放网| 国产极品粉嫩免费观看在线| 丝袜在线中文字幕| 国产熟女午夜一区二区三区| 成人特级黄色片久久久久久久| 高清黄色对白视频在线免费看| 国产aⅴ精品一区二区三区波| 女人被躁到高潮嗷嗷叫费观| 国产精品一区二区在线观看99| 亚洲人成电影免费在线| 国产单亲对白刺激| 亚洲成人手机| 国产99白浆流出| 久久中文看片网| 亚洲一区二区三区欧美精品| 亚洲欧美日韩高清在线视频| 18禁观看日本| 满18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 国产精品九九99| 欧美久久黑人一区二区| 亚洲av美国av| 正在播放国产对白刺激| 亚洲精品一二三| 99久久精品国产亚洲精品| 岛国在线观看网站| 另类亚洲欧美激情| 香蕉丝袜av| 久久精品91无色码中文字幕| 免费观看a级毛片全部| 国产精品永久免费网站| 女性被躁到高潮视频| 少妇被粗大的猛进出69影院| 大香蕉久久成人网| 国产精品欧美亚洲77777| 精品国产超薄肉色丝袜足j| 黄色视频,在线免费观看| 亚洲情色 制服丝袜| 精品人妻在线不人妻| 老司机福利观看| 在线视频色国产色| 精品欧美一区二区三区在线| 精品国产一区二区三区四区第35| 男女床上黄色一级片免费看| 成人18禁高潮啪啪吃奶动态图| 两个人免费观看高清视频| av网站在线播放免费| 国产在线观看jvid| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久成人av| 18禁国产床啪视频网站| 久久久久国内视频| 国产精品一区二区在线不卡| 精品国产乱子伦一区二区三区| 国产亚洲一区二区精品| 一进一出好大好爽视频| 亚洲黑人精品在线| 50天的宝宝边吃奶边哭怎么回事| 99久久人妻综合| 18禁美女被吸乳视频| 国产日韩一区二区三区精品不卡| 伊人久久大香线蕉亚洲五| 久久久久久久久久久久大奶| 精品国产乱子伦一区二区三区| 免费在线观看完整版高清| 最新美女视频免费是黄的| 91麻豆精品激情在线观看国产 | 免费在线观看视频国产中文字幕亚洲| 人妻一区二区av| 操美女的视频在线观看| 侵犯人妻中文字幕一二三四区| 国产xxxxx性猛交| 午夜亚洲福利在线播放| 精品久久久久久电影网| 中文字幕av电影在线播放| www.自偷自拍.com| 91av网站免费观看| 欧美黄色淫秽网站| 亚洲成人免费电影在线观看| 国产精品九九99| av国产精品久久久久影院| 高清视频免费观看一区二区| av网站在线播放免费| 悠悠久久av| 俄罗斯特黄特色一大片| 欧美丝袜亚洲另类 | 欧美在线一区亚洲| 亚洲成国产人片在线观看| 国产精品久久久久久精品古装| 亚洲精品自拍成人| 亚洲熟女毛片儿| 91国产中文字幕| 欧美成人午夜精品| 亚洲人成电影观看| 高清欧美精品videossex| 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片精品| 国产高清视频在线播放一区| 大香蕉久久网| 丝袜人妻中文字幕| 久久国产精品人妻蜜桃| 老汉色∧v一级毛片| 日韩欧美一区视频在线观看| 天堂中文最新版在线下载| 一级片'在线观看视频| 亚洲精品在线美女| 亚洲一区二区三区欧美精品| 欧美成人午夜精品| 国产精品偷伦视频观看了| av免费在线观看网站| cao死你这个sao货| 精品国产国语对白av| av欧美777| 两性夫妻黄色片| 国产日韩一区二区三区精品不卡| 亚洲精品一卡2卡三卡4卡5卡| 亚洲第一av免费看| 亚洲性夜色夜夜综合| 日本一区二区免费在线视频| 丁香六月欧美| 精品久久久久久,| 狠狠狠狠99中文字幕| 高清av免费在线| 国产一区二区三区视频了| 狠狠婷婷综合久久久久久88av| 天天躁日日躁夜夜躁夜夜| 国产有黄有色有爽视频| 搡老熟女国产l中国老女人| 啦啦啦 在线观看视频| 91大片在线观看| 婷婷精品国产亚洲av在线 | 欧美黄色淫秽网站| 精品卡一卡二卡四卡免费| 99国产极品粉嫩在线观看| 国产精品 国内视频| 午夜免费鲁丝| av欧美777| 波多野结衣一区麻豆| 亚洲专区字幕在线| 亚洲男人天堂网一区| 黄色怎么调成土黄色| 日韩三级视频一区二区三区| 在线观看舔阴道视频| 高清黄色对白视频在线免费看| 侵犯人妻中文字幕一二三四区| tocl精华| 极品少妇高潮喷水抽搐| 美女扒开内裤让男人捅视频| 中文字幕人妻丝袜一区二区| 欧美日韩国产mv在线观看视频| 高清黄色对白视频在线免费看| 国产亚洲av高清不卡| 1024视频免费在线观看| 成年版毛片免费区| 男女免费视频国产| 色综合婷婷激情| 亚洲av成人av| 精品午夜福利视频在线观看一区| 在线天堂最新版资源| 欧美色欧美亚洲另类二区| 在线观看舔阴道视频| 最近最新中文字幕大全免费视频| 女同久久另类99精品国产91| 国产淫片久久久久久久久 | 神马国产精品三级电影在线观看| 欧美另类亚洲清纯唯美| 亚洲熟妇中文字幕五十中出| 国产熟女xx| 一个人观看的视频www高清免费观看| 日韩中文字幕欧美一区二区| 欧美不卡视频在线免费观看| 免费观看的影片在线观看| 欧美一区二区精品小视频在线| 最新在线观看一区二区三区| 国产欧美日韩一区二区三| 高潮久久久久久久久久久不卡| 听说在线观看完整版免费高清| 少妇高潮的动态图| 欧美成狂野欧美在线观看| 男人舔奶头视频| 校园春色视频在线观看| 亚洲熟妇中文字幕五十中出| 无限看片的www在线观看| 在线观看美女被高潮喷水网站 | 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 精品99又大又爽又粗少妇毛片 | 亚洲av不卡在线观看| 亚洲专区中文字幕在线| 亚洲精品影视一区二区三区av| 9191精品国产免费久久| 国产成年人精品一区二区| 久久伊人香网站| 日本在线视频免费播放| 99久久久亚洲精品蜜臀av| 精品欧美国产一区二区三| 日本黄大片高清| 久久午夜亚洲精品久久| 国产精品久久久久久久电影 | 麻豆一二三区av精品| 深夜精品福利| 高清在线国产一区| 亚洲欧美日韩无卡精品| 国产美女午夜福利| 又紧又爽又黄一区二区| 在线观看美女被高潮喷水网站 | 最后的刺客免费高清国语| 亚洲国产精品合色在线| 我要搜黄色片| 搞女人的毛片| 狠狠狠狠99中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 波多野结衣巨乳人妻| 少妇的逼好多水| 男女那种视频在线观看| 一区福利在线观看| 性欧美人与动物交配| 亚洲中文字幕一区二区三区有码在线看| 老鸭窝网址在线观看| 激情在线观看视频在线高清| 69av精品久久久久久| 久久精品国产亚洲av涩爱 | 1000部很黄的大片| 狂野欧美激情性xxxx| 高清日韩中文字幕在线| 国产亚洲精品综合一区在线观看| 日本 欧美在线| 日韩人妻高清精品专区| svipshipincom国产片| 久久精品综合一区二区三区| 99久久九九国产精品国产免费| 99精品久久久久人妻精品| 欧美在线黄色| 国产精品野战在线观看| 免费人成视频x8x8入口观看| 精品人妻偷拍中文字幕| 51国产日韩欧美| 日韩精品青青久久久久久| 国产成人aa在线观看| 亚洲成人免费电影在线观看| 丝袜美腿在线中文| 欧美乱色亚洲激情| 亚洲激情在线av| 亚洲成人久久爱视频| 精品电影一区二区在线| 国产成人av教育| 波多野结衣高清无吗| 最近在线观看免费完整版| 成人特级黄色片久久久久久久| 国产精品 国内视频| 两性午夜刺激爽爽歪歪视频在线观看| 深爱激情五月婷婷| 久久精品国产综合久久久| 国产一区二区三区在线臀色熟女| 国产欧美日韩精品一区二区| 国产av不卡久久| 一级毛片女人18水好多| 两个人视频免费观看高清| 国产高清视频在线播放一区| av女优亚洲男人天堂| av天堂在线播放| 精品无人区乱码1区二区| 亚洲精品在线观看二区| 桃色一区二区三区在线观看| 99国产极品粉嫩在线观看| 少妇人妻精品综合一区二区 | 国产黄a三级三级三级人| 国内精品久久久久精免费| 亚洲av成人av| 免费观看精品视频网站| 老汉色av国产亚洲站长工具| 一级毛片高清免费大全| 亚洲狠狠婷婷综合久久图片| 久久久久国产精品人妻aⅴ院| 一个人观看的视频www高清免费观看| 亚洲精品一卡2卡三卡4卡5卡| 成人av一区二区三区在线看| 在线观看免费午夜福利视频| 91字幕亚洲| 国内精品久久久久久久电影| 欧美日本亚洲视频在线播放| 两人在一起打扑克的视频| 亚洲成人精品中文字幕电影| 国产精品久久电影中文字幕| 久久久久久久久久黄片| 午夜视频国产福利| 一个人免费在线观看电影| 亚洲av二区三区四区| 2021天堂中文幕一二区在线观| 少妇人妻精品综合一区二区 | 啪啪无遮挡十八禁网站| 网址你懂的国产日韩在线| 中亚洲国语对白在线视频| 亚洲人成网站在线播放欧美日韩| 久久久色成人| 欧美+亚洲+日韩+国产| 免费在线观看成人毛片| 美女免费视频网站| 日韩欧美国产在线观看| 男女床上黄色一级片免费看| 日日夜夜操网爽| 亚洲狠狠婷婷综合久久图片| 欧美绝顶高潮抽搐喷水| 久久亚洲真实| 夜夜看夜夜爽夜夜摸| 亚洲成人久久爱视频| 丁香欧美五月| 久久性视频一级片| 真实男女啪啪啪动态图| 色综合站精品国产| 国产激情偷乱视频一区二区| 日韩欧美免费精品| 婷婷精品国产亚洲av|