• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tolerance-enhanced SU(1,1)interferometers using asymmetric gain

    2023-02-20 13:14:06JianDongZhang張建東andShuaiWang王帥
    Chinese Physics B 2023年1期
    關(guān)鍵詞:王帥

    Jian-Dong Zhang(張建東) and Shuai Wang(王帥)

    School of Mathematics and Physics,Jiangsu University of Technology,Changzhou 213001,China

    Keywords: SU(1,1)interferometer,asymmetric gain,Heisenberg limit,quantum Cramer–Rao bound

    1. Introduction

    In practical applications,the measurement of many physical quantities, such as temperature, concentration and magnetic field, can be transformed into phase estimation.[1–5]In view of this, optical interferometers are an important tool to realize precision measurements. A classical scheme deploys a linear interferometer fed by a single-mode coherent state;in turn, its phase sensitivity is bounded by the shot-noise limit 1/withNbeing the average photon number inside the interferometer. By employing exotic input states,the phase sensitivities of quantum schemes can break through the shot-noise limit and even reach the Heisenberg limit 1/N. On the other hand,nonlinear interferometers,also known as SU(1,1)interferometers,have also received a lot of attention. This kind of interferometer, making use of two nonlinear elements in lieu of two beam splitters in Mach–Zehnder interferometers, was first proposed by Yurkeet al.[6]and experimentally realized by Jinget al.[7]Due to the squeezing and entanglement introduced by nonlinear elements, SU(1,1) interferometers generally have advantages over linear interferometers in phase sensitivity.

    In recent years, many schemes based on SU(1,1) interferometers were proposed. With coherent states as inputs,Plicket al.proved that the phase sensitivity of intensity detection can surpass the shot-noise limit in a lossless scenario.[8]Related to this,Marino and Xinet al.studied the phase sensitivities of intensity detection and parity detection in the presence of photon losses respectively.[9,10]With respect to coherent and squeezed vacuum states, Ou discussed the effects of photon losses on the phase sensitivity of balanced homodyne detection.[11]Further, Liet al. showed that the Heisenberg limit can be achieved by using balanced homodyne detection and parity detection without photon losses.[12,13]The schemes using other quantum states[14–17]and related experimental demonstrations[18–21]have also been studied.

    In addition, many studies are committed to the modified SU(1,1) interferometers. Szigetiet al. showed a pumped-up SU(1,1)interferometer assisted by the pump beam.[22]Andersonet al.proposed a truncated SU(1,1)interferometer,which directly measure the state after the estimated phase with balanced homodyne detection.[23,24]Subsequently, Guptaet al.optimized this scheme and designed a tunable balanced homodyne detection.[25]A degenerate SU(1,1) interferometer and an SU(1,1)interferometer based on entanglement-assisted inputs have also been analyzed.[26,27]Konget al.reported a hybrid SU(1,1)interferometer,in which a beam splitter replaces the second nonlinear element[28]and recently we generalized this configuration.[29,30]More recently, Duet al. designed an SU(2)-in-SU(1,1) nested interferometer in experiment.[31]These schemes can efficiently improve the phase sensitivity or loss tolerance with respect to some specific inputs. The sensitivity limit given by quantum Fisher information can be also saturated. The detailed and comprehensive review can be found in Ref.[32].

    For practical purposes, many of the above schemes analyzed the phase sensitivity in the presence of photon losses.However, almost no method is proposed to resist photon losses. In this paper,we report a modified SU(1,1)interferometer based on asymmetric gain.Two vacuum states are injected into the interferometer and on–off detection is performed at the output. The effects of internal and external losses on the phase sensitivity are analyzed.The asymmetric gain can improve the loss tolerance,which shows a feasible method to downplay the effects of photon losses.

    2. Estimation scheme and optimal phase sensitivity

    In Fig.1,we show the schematic of the modified SU(1,1)interferometer using asymmetric gain. Two vacuum states are used as the inputs and injected into the first optical parametric amplifier(OPA).After the OPA1,the two-mode squeezed vacuum states are prepared and pass through the estimated phaseθ. Subsequently,the states are recombined by the OPA2. Finally,we perform on–off detection at the two output ports. In our scheme, the phase and gain parameter of OPA1 (OPA2)are 0(π)andg1(g2),respectively.

    The transformation relationship of OPA to the mode operators is given by

    withg ∈{g1,g2}andφ ∈{0,π}. Further,the average photon number inside the interferometer is found to be

    irrespective of the gain parameter of OPA2. This is because all devices after the estimated phase including OPA2 are considered as the detection. In addition, refer to Ref. [33], the quantum Cramer–Rao bound for our scheme turns out to be

    which is superior to the Heisenberg limit.

    Fig.1. Schematic of estimation scheme based on a modified SU(1,1)interferometer. OPA,optical parametric amplifier;D,detector.

    Here we calculate the phase sensitivity through the method of symplectic geometry.[34]Since the inputs are Gaussian states and all operations are Gaussian operations,we can write them as symplectic matrices in the phase space. The inputs, two vacuum states, are zero-mean and, as a result, all calculations can be completed by the covariance matrices.

    For our scheme, the covariance matrix of the inputs is found to be

    whereI4is the identity matrix.

    The evolution matrix of the phase shift can be written as

    and those of OPA1 and OPA2 are

    Using Eqs.(5)–(8),one can obtain the covariance matrix of the outputs through the following relationship:

    whereΛ=ΛOPA2ΛPSΛOPA1is the whole evolution matrix.

    On–off detection is a simple photon-number detection,which records only zero-photon events. Accordingly, the expectation value of the detection operator equals the probability of zero-photon events. This can be calculated as[35]

    with

    In particular,the expectation value sits at 1 when the estimated phase is 0.This is because,forθ=0,the whole interferometer is equivalent to identity operation and the outputs are always two vacuum states.

    Using operator property〈Z2〉=〈Z〉and error propagation formula,we get the phase sensitivity

    For a lossless scenario,we consider symmetric gaing1=g2=g. Based on Taylor expansions of cosine and sine functions approaching 0, cosθ ?1-θ2/2 and sinθ ?θ-θ3/6,we can obtain the optimal phase sensitivity

    It can be found that the optimal phase sensitivity is equal to the quantum Cramer–Rao bound. This result suggests that symmetrical gain and on–off detection are the optimal detection strategy. For a small average photon number,the optimal phase sensitivity is superior to the Heisenberg limit. With the increase of the average photon number,the optimal phase sensitivity approximately equals the Heisenberg limit.

    3. Phase sensitivity in the presence of photon losses

    In a realistic scenario,photon losses are inevitable due to the collision between photons and air molecules or optical elements. According to the theory of quantum open systems,for the conservation of photon number,all the lost photons are assumed to enter the surrounding environment. Physically, this process can be modeled by placing two virtual beam splitters in the interferometer. Mathematically, the photon losses can be calculated through the use of Kraus operator. Upon leaving a lossy channel, the covariance matrixΣof a quantum state becomes

    whereLis the lossy rate andIis the identity matrix.

    Because OPAs in the SU(1,1) interferometer are nonlinear elements,the photon losses at different stages have different effects on the phase sensitivity. In what follows, we analyze the effects of internal and external losses,respectively.

    3.1. The effects of internal losses

    Internal losses refer to the photons that lost inside the SU(1,1)interferometer. Without loss of generality,we assume that the losses occur before the estimated phase. At this time,the covariance matrix of the outputs can be written as

    Further, the expectation value of detection operator is given by

    with

    Using error propagation formula,the phase sensitivity can be obtained by

    In this section,we also analyze the conventional SU(1,1)interferometer with symmetric gaing1=g2=g. Based on Eq.(18),the optimal phase sensitivity in the presence of internal losses can be calculated. For practical purposes, we consider the maximally tolerable lossy rate defined as the lossy rate for the optimal phase sensitivity degenerating to the shotnoise limit. When the internal lossy rate of the system exceeds this threshold,the optimal phase sensitivity is inferior to the shot-noise limit. In order to show the quantum advantage,the lossy rate of the system needs to be controlled below this threshold in the realistic detection.

    Figure 2 shows the maximal tolerable lossy rate as a function of the gain parameter. It can be seen from the figure that the maximally tolerable lossy rate decreases with the increase of the gain parameter. That is,the low-photon scheme is more robust than the high-photon scheme. This is because that,for the same lossy rate,the entanglement between the two modes in the high-photon scheme is destroyed more seriously. Interestingly, the decrease in the maximally tolerable lossy rate is approximately linear. Overall,the estimation scheme is sensitive to internal losses. In the realistic detection,low lossy rate should be guaranteed as far as possible.

    Fig.2. Maximally tolerable lossy rate Lmax against gain parameter g in the presence of internal losses.

    3.2. The effects of external losses

    External losses can be divided into preparation losses and detection losses. For our scheme,the inputs are vacuum states and, as a result, the preparation losses have no effect on the phase sensitivity. In the following,we merely consider the detection losses originating from imperfect detection efficiency.In the presence of external losses,the covariance matrix of the outputs can be written as

    Further,the expectation value of the detection operator is given by

    with

    Through the use of error propagation formula, the phase sensitivity is found to be

    Now we turn our attention to the effects of external losses on the optimal phase sensitivity. In Fig.3,we give the dependence of the maximally tolerable lossy rate on the gain parameter. The results suggest that our scheme is very robust against external losses in that the loss tolerance can exceed 90%. In addition, the loss tolerance increases with the increase of the gain parameter. That is, the high-photon scheme is more robust than the low-photon scheme,which is contrary to the case of internal losses.

    Fig.3. Maximally tolerable lossy rate Lmax against gain parameter g in the presence of external losses.

    In fact, this phenomenon is not difficult to understand.Due to external losses, the component state|m,n〉in the outputs ∑cmn|m,n〉turns into|m′,n′〉. As long as the sum ofm′andn′is not equal to 0,the expectation value of detection operator will not be affected. With the increase of the average photon number, the probability ofm′+n′=0 decreases. Therefore,the high-photon scheme has strong tolerance,which originates from the property of on–off detection. In addition, the above results show different loss tolerance behaviors of internal losses and external losses. This is because the fact that external losses are linear whereas internal losses are nonlinear due to the amplification of OPA2.

    4. Optimal asymmetric gain and enhancement of loss tolerance

    In the previous sections,we analyzed the phase sensitivity of the conventional SU(1,1) interferometer without and with photon losses. Here we discuss the phase sensitivity of the modified SU(1,1)interferometer with asymmetric gain. In the lossless scenario, the SU(1,1) interferometer using symmetric gain has been proved to realize the quantum Cramer–Rao bound. On the other hand, our scheme is of strong tolerance with respect to external losses. Hence,we focus on the phase sensitivity with asymmetric gain in the presence of internal losses.

    For given gain parameterg1and lossy rateL, one can determine the optimal gain parameterg2by minimizing the phase sensitivity. Figure 4 shows the optimal asymmetric gain differenceg2-g1as a function of the gain parameterg1.Since the tolerance of our scheme to internal losses is within 10%,we analyze the lossy rate in the same range. The results indicate that, for a small lossy rate, the optimal asymmetric gain difference increases at first and then decreases with increasing the gain parameterg1. When the lossy rate increases,the optimal asymmetric gain difference decreases with the increase of the gain parameterg1. In addition,for the gain parameter less than 1.5,the optimal asymmetric gain differences with different lossy rates are close. When the gain parameter is greater than 2,there is a distinct contrast among the optimal asymmetric gain differences with different lossy rates.

    Fig.4. The optimal asymmetric gain differences g2-g1 against the gain parameter g1 with different lossy rates.

    Here three points deserve mention. The first point is the reason why asymmetric gain is superior to symmetric gain in a lossy scenario. According to the theory of quantum parameter estimation, at the optimal working point, the phase sensitivity can generally reach the quantum Cramer–Rao bound if the operations before and after the estimated phase are reversed.For a lossless scenario, OPA2 completely undoes the operation on the inputs imposed by OPA1. However, in a lossy scenario,OPA2 no longer has such capability in the presence of symmetric gain. To obtain improved phase sensitivity,one can deploy asymmetric gain to restore the outputs to the inputs as much as possible. The second point is the reason whyg2is greater thang1, as shown in Fig. 4. A quantitative calculation is quite complicated and we show a qualitative analysis from a physical perspective. Indeed,OPA1 is a two-mode squeezer and the state inside the interferometer is a two-mode squeezed vacuum. Upon leaving a lossy channel, the resultant state can be expressed as an infinite mixture of two-mode squeezed Fock states|m,n〉.[36]For a low lossy rate,it is feasible that the gain of the anti-squeezer,OPA2,is slightly greater than that of the squeezer,OPA1.The action of OPA2 is divided into two parts;one part is used to offset the squeezing effect of OPA1 and the other part is used to partially convert the Fock state to vacuum. The third point is the reason why there are some jumping points in Fig. 4. As mentioned above, the resultant state becomes a definite mixed state with an equivalent mixed squeezing factorr <g1. For a given lossy rate,with the increase of gaing1,the squeezing factorris not a monotonic function since it consists of infinite weights.[36]That is,there is no simple positive correlation betweeng1andr.Overall,the optimal asymmetric gain is a trade-off between the degrees of squeezing and mixing,resulting in some jumping points.

    In order to quantify the enhanced tolerance arising from asymmetric gain,we define the enhancement factor as follows:

    Fig.5. (a)The maximally tolerable lossy rates with the optimal asymmetric gain(red squares)and symmetric gain(blue circles)against the gain parameter g1. (b)Enhancement factor T against the gain parameter g1.

    In Fig. 5, we show the maximally tolerable lossy rates and enhancement factor against the gain parameterg1,respectively. One can find that the maximally tolerable lossy rate with the optimal asymmetric gain is superior to that with symmetric gain. The corresponding enhancement factor varies roughly from 1% to 12% and decreases with the increase of the gain parameter, as shown in Fig. 5(b). This result verifies that asymmetric gain is a feasible method to resist photon loss.Although this improvement is not remarkable,our results provide an instructive idea for other estimation schemes using SU(1,1) interferometers. In addition, it is not difficult to understand that the enhancement factor is small for a high gain.After a lossy channel,there are infinitely incoherent two-mode squeezed Fock states|m,n〉.[36]Only whenn=mis it possible for OPA2 to convert the state to two vacuum states. For a high gain, the probability of large values ofnandmincreases and that ofn=mdecreases. At this point, the function of OPA2 becomes so weak that it can hardly provide the enhancement of loss tolerance.

    5. Conclusion

    In summary, we proposed an estimation scheme using a modified SU(1,1)interferometer. The inputs are two vacuum states and on–off detection is implemented at the output. In a lossless scenario,the optimal phase sensitivity with symmetric gain can surpass the Heisenberg limit and reach the quantum Cramer–Rao bound. For practical purposes, we analyzed the effects of internal and external losses on the phase sensitivity. The results suggest that our scheme is sensitive to internal losses but extremely robust against external losses. The use of asymmetric gain generally improves the loss tolerance and the physical interpretation is given. Our method provides a feasible idea for resisting photon losses, which may take a step towards practical quantum metrology.

    Acknowledgments

    Project supported by Leading Innovative Talents in Changzhou (Grant No. CQ20210107), Shuangchuang Ph.D Award (Grant No. JSSCBS20210915), Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.21KJB140007), and the National Natural Science Foundation of China(Grant No.12104193).

    猜你喜歡
    王帥
    水輪機轉(zhuǎn)輪體活塞孔誤差分析及解決辦法
    淺析提速背景下寬帶覆蓋場景方案
    Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier
    基于強化學(xué)習(xí)的機場行李裝箱優(yōu)化方法
    包裝工程(2022年3期)2022-02-22 10:29:06
    尋找張明
    Quantum interferometry via a coherent state mixed with a squeezed number state?
    我是保安
    故事會(2018年21期)2018-11-05 03:38:50
    王帥 藍(lán)色 是篤定的顏色
    新媒體環(huán)境下優(yōu)化黨內(nèi)政治生活的四個維度
    這招不靈了
    故事會(2017年12期)2017-06-22 00:25:46
    av在线播放精品| 国产亚洲欧美精品永久| 亚洲精品国产色婷婷电影| 中文字幕精品免费在线观看视频| 悠悠久久av| 日韩欧美一区二区三区在线观看 | 99国产极品粉嫩在线观看| 高清视频免费观看一区二区| 亚洲五月婷婷丁香| 国产一区二区 视频在线| 午夜激情av网站| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 成人手机av| 欧美日韩亚洲国产一区二区在线观看 | 人人妻,人人澡人人爽秒播| 人妻一区二区av| 一级片免费观看大全| 777米奇影视久久| netflix在线观看网站| 韩国高清视频一区二区三区| 99re6热这里在线精品视频| 男女边摸边吃奶| 2018国产大陆天天弄谢| 午夜激情av网站| 日韩电影二区| 亚洲一区二区三区欧美精品| 中国国产av一级| 久热爱精品视频在线9| 免费少妇av软件| 国内毛片毛片毛片毛片毛片| 777米奇影视久久| 久久精品亚洲熟妇少妇任你| 欧美精品高潮呻吟av久久| 国产三级黄色录像| 亚洲伊人久久精品综合| 高清欧美精品videossex| 在线亚洲精品国产二区图片欧美| 欧美日韩中文字幕国产精品一区二区三区 | 大型av网站在线播放| 18禁裸乳无遮挡动漫免费视频| netflix在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 国产在线视频一区二区| 精品一区二区三区四区五区乱码| 亚洲中文日韩欧美视频| 国产亚洲精品第一综合不卡| 叶爱在线成人免费视频播放| 在线观看免费日韩欧美大片| 人人澡人人妻人| 中文字幕av电影在线播放| 亚洲五月色婷婷综合| 久久久精品免费免费高清| 精品福利永久在线观看| 亚洲欧洲日产国产| 性色av一级| 欧美激情 高清一区二区三区| 亚洲精华国产精华精| 美女扒开内裤让男人捅视频| 国产日韩欧美视频二区| 成年人免费黄色播放视频| 美女主播在线视频| 天天躁日日躁夜夜躁夜夜| 亚洲精品一区蜜桃| 欧美激情高清一区二区三区| 午夜成年电影在线免费观看| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 麻豆国产av国片精品| av天堂久久9| 欧美成人午夜精品| 亚洲男人天堂网一区| 国产色视频综合| 色视频在线一区二区三区| 激情视频va一区二区三区| 亚洲国产精品999| 久久久久久久久久久久大奶| 国产片内射在线| 一边摸一边做爽爽视频免费| 在线天堂中文资源库| 亚洲人成电影免费在线| 午夜福利影视在线免费观看| 一区二区日韩欧美中文字幕| 久久九九热精品免费| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 香蕉丝袜av| 日韩中文字幕视频在线看片| 秋霞在线观看毛片| 在线天堂中文资源库| 黄色片一级片一级黄色片| 在线观看免费高清a一片| 欧美+亚洲+日韩+国产| 老司机影院毛片| e午夜精品久久久久久久| 女人爽到高潮嗷嗷叫在线视频| 国产日韩欧美亚洲二区| av超薄肉色丝袜交足视频| 精品一区在线观看国产| 黄色 视频免费看| www.av在线官网国产| bbb黄色大片| 色播在线永久视频| 精品视频人人做人人爽| 久久性视频一级片| 亚洲色图综合在线观看| 人人妻,人人澡人人爽秒播| 中文字幕人妻丝袜制服| 少妇裸体淫交视频免费看高清 | 狠狠精品人妻久久久久久综合| 19禁男女啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频 | 国产成人欧美| 久久精品人人爽人人爽视色| 亚洲精品乱久久久久久| 超碰成人久久| 在线观看人妻少妇| 男女边摸边吃奶| 天堂8中文在线网| 欧美日韩亚洲高清精品| 亚洲欧美精品自产自拍| 国产精品一区二区免费欧美 | 电影成人av| av天堂久久9| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美精品自产自拍| 亚洲欧美日韩高清在线视频 | 大香蕉久久网| 色婷婷av一区二区三区视频| 一二三四在线观看免费中文在| 宅男免费午夜| 亚洲人成电影免费在线| 欧美激情久久久久久爽电影 | 十八禁人妻一区二区| 午夜免费鲁丝| 免费黄频网站在线观看国产| 免费高清在线观看视频在线观看| 午夜日韩欧美国产| 久久亚洲精品不卡| 女警被强在线播放| 欧美激情久久久久久爽电影 | 制服诱惑二区| 夜夜骑夜夜射夜夜干| 国产精品香港三级国产av潘金莲| 美女主播在线视频| 9热在线视频观看99| 久久av网站| 在线观看免费午夜福利视频| 欧美性长视频在线观看| 十八禁网站免费在线| 热99re8久久精品国产| 国产成+人综合+亚洲专区| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 精品国内亚洲2022精品成人 | 久久精品亚洲熟妇少妇任你| 亚洲国产日韩一区二区| 一级片'在线观看视频| 欧美成人午夜精品| 叶爱在线成人免费视频播放| 久久综合国产亚洲精品| 国产成人系列免费观看| tocl精华| 国产精品久久久久久精品电影小说| 久久av网站| 精品一区二区三区四区五区乱码| 国产精品国产三级国产专区5o| 美女高潮到喷水免费观看| 日韩大片免费观看网站| 老汉色∧v一级毛片| www.熟女人妻精品国产| 亚洲 国产 在线| 肉色欧美久久久久久久蜜桃| 黄色怎么调成土黄色| 97在线人人人人妻| 欧美精品人与动牲交sv欧美| 啦啦啦中文免费视频观看日本| 久久久国产欧美日韩av| 如日韩欧美国产精品一区二区三区| 国产免费一区二区三区四区乱码| 免费在线观看完整版高清| 日本wwww免费看| 国产精品久久久久久精品电影小说| 99精品欧美一区二区三区四区| 亚洲国产av新网站| 亚洲熟女毛片儿| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 国产精品 国内视频| 日日夜夜操网爽| 亚洲第一av免费看| 日韩有码中文字幕| 五月天丁香电影| 国产一卡二卡三卡精品| 日本撒尿小便嘘嘘汇集6| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久av网站| 精品久久蜜臀av无| 中文字幕制服av| 亚洲国产精品一区二区三区在线| 美女福利国产在线| 国产一卡二卡三卡精品| 成人三级做爰电影| 亚洲av成人不卡在线观看播放网 | 12—13女人毛片做爰片一| 欧美激情高清一区二区三区| 日日摸夜夜添夜夜添小说| 国产真人三级小视频在线观看| 亚洲熟女精品中文字幕| 亚洲一区中文字幕在线| 国产成人精品在线电影| 久久国产精品人妻蜜桃| 日韩 欧美 亚洲 中文字幕| 成人黄色视频免费在线看| 老司机深夜福利视频在线观看 | netflix在线观看网站| 国产欧美日韩一区二区三 | 亚洲精品中文字幕在线视频| 美女大奶头黄色视频| 91精品国产国语对白视频| avwww免费| 免费在线观看黄色视频的| 午夜激情av网站| 国产精品.久久久| www.精华液| 丝瓜视频免费看黄片| 视频在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 香蕉国产在线看| 无限看片的www在线观看| 国产精品二区激情视频| 美女扒开内裤让男人捅视频| 极品少妇高潮喷水抽搐| 免费观看a级毛片全部| 女性被躁到高潮视频| 日本黄色日本黄色录像| 精品一区在线观看国产| 国产日韩欧美在线精品| 99热国产这里只有精品6| a 毛片基地| 人人妻人人澡人人爽人人夜夜| 国产高清国产精品国产三级| 日韩 欧美 亚洲 中文字幕| 国产极品粉嫩免费观看在线| 动漫黄色视频在线观看| 美女大奶头黄色视频| 9191精品国产免费久久| www.av在线官网国产| 男女国产视频网站| 午夜影院在线不卡| 日本vs欧美在线观看视频| 韩国高清视频一区二区三区| 1024视频免费在线观看| 老司机影院成人| 亚洲国产日韩一区二区| 91老司机精品| 国产精品久久久人人做人人爽| 日韩人妻精品一区2区三区| 高潮久久久久久久久久久不卡| 日韩制服丝袜自拍偷拍| 天堂中文最新版在线下载| 亚洲国产精品一区三区| 啦啦啦免费观看视频1| 黄色片一级片一级黄色片| 亚洲熟女毛片儿| 高清黄色对白视频在线免费看| 亚洲精品av麻豆狂野| 午夜福利一区二区在线看| 桃花免费在线播放| 亚洲av成人不卡在线观看播放网 | av天堂在线播放| 久久精品亚洲av国产电影网| 秋霞在线观看毛片| 色精品久久人妻99蜜桃| 老司机深夜福利视频在线观看 | 亚洲午夜精品一区,二区,三区| 人人妻人人澡人人爽人人夜夜| 久久久久久久久免费视频了| 欧美老熟妇乱子伦牲交| 亚洲欧洲日产国产| 久久精品熟女亚洲av麻豆精品| 性少妇av在线| 黑人巨大精品欧美一区二区蜜桃| 99热国产这里只有精品6| 亚洲成人免费电影在线观看| 亚洲av国产av综合av卡| 99国产精品一区二区三区| 亚洲av电影在线进入| 人人澡人人妻人| 久久久精品免费免费高清| 亚洲成国产人片在线观看| 好男人电影高清在线观看| 成年人黄色毛片网站| 少妇 在线观看| 国产亚洲精品久久久久5区| 啦啦啦视频在线资源免费观看| 国产精品国产av在线观看| av又黄又爽大尺度在线免费看| 好男人电影高清在线观看| 欧美成狂野欧美在线观看| 日韩 亚洲 欧美在线| 国产伦人伦偷精品视频| 高清欧美精品videossex| 国产免费现黄频在线看| 国产成人av激情在线播放| 国产免费av片在线观看野外av| 少妇的丰满在线观看| 欧美+亚洲+日韩+国产| 一区在线观看完整版| 亚洲五月色婷婷综合| 交换朋友夫妻互换小说| 国产老妇伦熟女老妇高清| 黄色视频,在线免费观看| 日日摸夜夜添夜夜添小说| 男女床上黄色一级片免费看| 淫妇啪啪啪对白视频 | 国产男人的电影天堂91| 国产日韩欧美在线精品| 婷婷丁香在线五月| 国产日韩欧美在线精品| 婷婷丁香在线五月| 日韩视频在线欧美| 色综合欧美亚洲国产小说| 男女午夜视频在线观看| 亚洲伊人久久精品综合| 十八禁高潮呻吟视频| 99久久国产精品久久久| 亚洲精品国产av蜜桃| 日本av免费视频播放| 99热全是精品| 欧美亚洲 丝袜 人妻 在线| av免费在线观看网站| 在线看a的网站| 国产亚洲精品一区二区www | 色94色欧美一区二区| 欧美精品av麻豆av| 精品视频人人做人人爽| 欧美国产精品一级二级三级| 国产精品久久久人人做人人爽| 亚洲avbb在线观看| 久久亚洲精品不卡| 久久久精品94久久精品| 久久久精品免费免费高清| 亚洲精品国产一区二区精华液| 国产又爽黄色视频| 国产男女内射视频| 久热这里只有精品99| 欧美日韩亚洲国产一区二区在线观看 | 一级毛片电影观看| 久久天堂一区二区三区四区| 搡老乐熟女国产| 人妻 亚洲 视频| 熟女少妇亚洲综合色aaa.| 免费少妇av软件| 老司机午夜福利在线观看视频 | 黄片小视频在线播放| 伦理电影免费视频| 午夜福利,免费看| 久久国产精品人妻蜜桃| 国产精品二区激情视频| 国产成人av激情在线播放| 免费在线观看完整版高清| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区| 久久久久久久精品精品| 性高湖久久久久久久久免费观看| 亚洲av片天天在线观看| 日韩欧美免费精品| 99国产精品一区二区三区| 欧美xxⅹ黑人| 欧美 亚洲 国产 日韩一| 少妇裸体淫交视频免费看高清 | 国产成人精品在线电影| 国产在视频线精品| 久久精品国产亚洲av高清一级| 国产精品熟女久久久久浪| 性色av乱码一区二区三区2| 不卡av一区二区三区| 精品免费久久久久久久清纯 | 欧美日韩国产mv在线观看视频| 色94色欧美一区二区| 亚洲av成人一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 在线十欧美十亚洲十日本专区| 满18在线观看网站| 97精品久久久久久久久久精品| 亚洲精品日韩在线中文字幕| 妹子高潮喷水视频| 亚洲人成电影免费在线| 午夜免费成人在线视频| 亚洲第一欧美日韩一区二区三区 | 男女床上黄色一级片免费看| 午夜免费鲁丝| 久久精品人人爽人人爽视色| 夜夜骑夜夜射夜夜干| 欧美xxⅹ黑人| 亚洲欧美精品综合一区二区三区| 亚洲精品久久久久久婷婷小说| 国产精品一二三区在线看| 欧美成狂野欧美在线观看| 黄色 视频免费看| 久久精品久久久久久噜噜老黄| 丝瓜视频免费看黄片| 日本撒尿小便嘘嘘汇集6| 99久久人妻综合| av片东京热男人的天堂| 国产在线观看jvid| √禁漫天堂资源中文www| 午夜福利一区二区在线看| 久久午夜综合久久蜜桃| 十八禁网站网址无遮挡| 精品少妇内射三级| 国产伦人伦偷精品视频| av免费在线观看网站| 欧美亚洲 丝袜 人妻 在线| 婷婷色av中文字幕| 国产精品秋霞免费鲁丝片| 日本五十路高清| 国产成人欧美在线观看 | 精品亚洲乱码少妇综合久久| 婷婷丁香在线五月| 亚洲成人国产一区在线观看| 久久99热这里只频精品6学生| 黄色视频不卡| av电影中文网址| 满18在线观看网站| 国产日韩欧美视频二区| 精品国产乱码久久久久久小说| 狠狠精品人妻久久久久久综合| 性少妇av在线| 国产精品香港三级国产av潘金莲| 亚洲国产精品一区三区| 国产亚洲欧美在线一区二区| 国产精品久久久久成人av| 99国产精品一区二区蜜桃av | 久久精品亚洲熟妇少妇任你| 1024视频免费在线观看| 欧美 日韩 精品 国产| 人人妻人人澡人人看| 国产高清视频在线播放一区 | 一区二区日韩欧美中文字幕| 黄片播放在线免费| 90打野战视频偷拍视频| 五月天丁香电影| 又大又爽又粗| 纯流量卡能插随身wifi吗| 性少妇av在线| 久热这里只有精品99| 人人澡人人妻人| 成人亚洲精品一区在线观看| 亚洲精品国产av成人精品| 伊人亚洲综合成人网| 亚洲中文字幕日韩| 国产精品秋霞免费鲁丝片| 搡老岳熟女国产| 久久ye,这里只有精品| 99精品欧美一区二区三区四区| 91精品伊人久久大香线蕉| 人妻一区二区av| 窝窝影院91人妻| 大陆偷拍与自拍| 男人爽女人下面视频在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av蜜桃| 国产成人欧美在线观看 | 国产xxxxx性猛交| 国产高清国产精品国产三级| 视频区欧美日本亚洲| av电影中文网址| 最近最新免费中文字幕在线| 久久久久久人人人人人| 成年女人毛片免费观看观看9 | 亚洲熟女毛片儿| 国产国语露脸激情在线看| 在线观看人妻少妇| 国产人伦9x9x在线观看| 色94色欧美一区二区| 色老头精品视频在线观看| 嫁个100分男人电影在线观看| 欧美日韩亚洲高清精品| 中文字幕色久视频| 亚洲第一青青草原| 黑人操中国人逼视频| 国产成人精品久久二区二区91| 久久久精品区二区三区| 日本wwww免费看| avwww免费| 久久久久久久精品精品| 黄频高清免费视频| 丰满饥渴人妻一区二区三| 久久久精品国产亚洲av高清涩受| 男女无遮挡免费网站观看| 我的亚洲天堂| 免费观看av网站的网址| 国产亚洲av高清不卡| 99热国产这里只有精品6| 日本欧美视频一区| 黄片播放在线免费| 香蕉丝袜av| 秋霞在线观看毛片| 精品久久久久久电影网| 久久精品国产亚洲av香蕉五月 | 日韩中文字幕视频在线看片| 人妻一区二区av| 亚洲欧美一区二区三区久久| 亚洲国产欧美一区二区综合| 男人舔女人的私密视频| 久久久国产一区二区| www.999成人在线观看| 无限看片的www在线观看| 亚洲人成电影观看| 精品人妻1区二区| 精品一区在线观看国产| 人人妻人人澡人人爽人人夜夜| 丝袜脚勾引网站| 99精品久久久久人妻精品| 免费少妇av软件| 色视频在线一区二区三区| 狠狠婷婷综合久久久久久88av| 黄网站色视频无遮挡免费观看| 日本vs欧美在线观看视频| 热99久久久久精品小说推荐| 国产免费一区二区三区四区乱码| 久久精品成人免费网站| 亚洲伊人色综图| 夫妻午夜视频| 国产免费现黄频在线看| 久热爱精品视频在线9| 午夜老司机福利片| 另类亚洲欧美激情| 国精品久久久久久国模美| 亚洲欧美精品自产自拍| 飞空精品影院首页| 熟女少妇亚洲综合色aaa.| 亚洲精品粉嫩美女一区| 老司机在亚洲福利影院| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲av香蕉五月 | 高潮久久久久久久久久久不卡| 免费女性裸体啪啪无遮挡网站| 妹子高潮喷水视频| 欧美一级毛片孕妇| 啦啦啦 在线观看视频| 曰老女人黄片| 在线观看免费午夜福利视频| 久久精品aⅴ一区二区三区四区| 真人做人爱边吃奶动态| 亚洲精品自拍成人| 精品亚洲成a人片在线观看| 国产人伦9x9x在线观看| 国内毛片毛片毛片毛片毛片| 超碰97精品在线观看| 国产成人欧美在线观看 | 另类亚洲欧美激情| 咕卡用的链子| 91国产中文字幕| 在线观看一区二区三区激情| 精品少妇久久久久久888优播| 狠狠狠狠99中文字幕| 免费在线观看影片大全网站| 免费久久久久久久精品成人欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久精品久久久| 青草久久国产| 免费少妇av软件| 国产av国产精品国产| 天天操日日干夜夜撸| 亚洲全国av大片| 欧美精品av麻豆av| 免费观看人在逋| 亚洲国产欧美日韩在线播放| av网站在线播放免费| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品国产av成人精品| 欧美成狂野欧美在线观看| 精品国产一区二区三区四区第35| 黄色毛片三级朝国网站| 亚洲国产欧美一区二区综合| 亚洲少妇的诱惑av| 亚洲欧美日韩高清在线视频 | www.熟女人妻精品国产| 国内毛片毛片毛片毛片毛片| 亚洲国产欧美日韩在线播放| 夫妻午夜视频| 美女脱内裤让男人舔精品视频| 一区二区三区激情视频| 中文精品一卡2卡3卡4更新| 女性生殖器流出的白浆| 亚洲欧美激情在线| 老司机午夜十八禁免费视频| 男女床上黄色一级片免费看| 9热在线视频观看99| 性少妇av在线| 亚洲精品美女久久久久99蜜臀| 下体分泌物呈黄色| 日本vs欧美在线观看视频| 在线精品无人区一区二区三| 97人妻天天添夜夜摸| 亚洲av男天堂| www.999成人在线观看| 国产精品99久久99久久久不卡| 日韩一卡2卡3卡4卡2021年| 99国产精品免费福利视频| 午夜激情av网站| 69精品国产乱码久久久| 丁香六月天网| 欧美精品av麻豆av| 天堂中文最新版在线下载| 伊人久久大香线蕉亚洲五| 久久久国产一区二区| 精品少妇黑人巨大在线播放| 天天躁日日躁夜夜躁夜夜| 制服诱惑二区| 日韩欧美一区二区三区在线观看 |