• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Separation of Eu3+ Using a Novel Dispersion Combined LiquidMembrane with P507 in Kerosene as the Carrier*

    2011-05-15 08:32:06PEILiang裴亮WANGLiming王理明andFUXinglong付興隆
    關(guān)鍵詞:興隆

    PEI Liang (裴亮), WANG Liming (王理明) and FU Xinglong (付興隆)

    ?

    Separation of Eu3+Using a Novel Dispersion Combined LiquidMembrane with P507 in Kerosene as the Carrier*

    PEI Liang (裴亮)1,2,**, WANG Liming (王理明)2and FU Xinglong (付興隆)2

    1Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China2Faculty of Water Resources and Hydraulic Power, Xi’an University of Technology, Xi’an 710048, China

    The separation of Eu3+is studied with a dispersion combined liquid membrane (DCLM), in which polyvinylidene fluoride membrane (PVDF) is used as the liquid membrane support, dispersion solution containing HCl solution as the stripping solution, and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (P507) dissolved in kerosene as the membrane solution. The effects of pH value, initial concentration of Eu3+and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the separation are investigated. The optimum condition for separation of Eu3+is that concentration of HCl solution is 4.0 mol·L-1, concentration of carrier is 0.16 mol·L-1, and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase. The ionic strength has no significant effect on separation of Eu3+. Under the optimum condition, when the initial concentration of Eu3+is 0.8×10-4mol·L-1, the separation percentage of Eu3+is 95.3% during the separation time of 130 min. The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Eu3+in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10-7m2·s-1and 36.6 μm, respectively. The results obtained are in good agreement with literature data.

    dispersion combined liquid membrane, 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester, separation, europium3+

    1 INTRODUCTION

    Liquid membranes (LMs) involve extraction and stripping processes simultaneously, and they have benefits of nonequilibrium mass transfer and up-hill effect, where the solute can move from low to high concentration solution [1-4]. The main liquid membrane systems include emulsion liquid membrane (ELM) [5], supported liquid membrane (SLM) [6], bulk liquid membrane (BLM), flowing liquid membrane (FLM) [7], electrostatic pseudo liquid membrane (EPLM) [2], supported emulsion liquid membrane (SELM) [8, 9], hollow fiber liquid membrane (HFLM) [10], supported liquid membrane with stripping dispersion (SLM-SD) [11, 12],. The potential advantages of LM techniques, over traditional separation techniques and solid membrane techniques, are low capital and operating costs, low energy and extractant consumption, high concentration factors and high fluxes. However, LM techniques have not been adopted for large-scale industrial processes [13-19], primarily due to the lack of longtime stability, difficult operation and larger membrane resistance,[20]. For example, SLM will lose the carrier because of the turbulent shear force of liquid in both phases and concentration difference between organic phase and aqueous phase, and the operation of ELM involves the complexity of emulsification and de-emulsification techniques [10-12].

    A new liquid membrane technique, named dispersion combined liquid membrane (DCLM), has been proposed [21]. The DCLM technique is based upon surface renewal and diffusion theory, with the advantages of fiber membrane extraction, liquid film permeation and most of other liquid membrane systems, resulting in more stable membrane, lower costs, simpler operation, extremely efficient stripping of target species from the organic phase with high flux, and high concentration of target species in the stripping solution. However, more studies are needed for the application of DCLM in industry [22, 23]. The scale-up for the new liquid membrane configuration requires a complete understanding of the efficiency parameters, reported in such a way that a concise and global insight of the separation characteristics of a given system can be easily drawn. For example, the study on the separation of a single cation and a new permeability coefficient equation are needed, and more data for the separation of two or more competitive solutes are required for some applications, such as waste liquid of metallurgical industry.

    The present study is concerned with the technical feasibility for separation of metal ions by DCLM. Eu3+is playing an increasingly important role in high technology. We choose DCLM to separate Eu3+. The effects of various experimental parameters on separation of rare earth Eu3+ions are investigated. The separation of Eu3+is carried out with a DCLM, which consists of polyvinylidene fluoride membrane (PVDF) as the support, dispersion solution concluding HCl solution as the stripping solution, and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (P507) dissolved in kerosene as the membrane solution. Although the separation of metal ions by SLM containing the same carrier (P507) has been extensively studied, there is little research by DCLM. The effects of pH value, initial concentration of Eu3+and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of P507, and different stripping agents in the dispersion phase on separation of Eu3+are investigated. The results with DCLM are compared to those with conventional SLM. A kinetic equation for DCLM process is derived from the law of mass diffusion and the theory of interface chemistry and tested.

    2 EXPERIMENTAL

    2.1 Reagent

    All the reagents such as Eu(CH3COO)3·4H2O, arsenazo III(C22H18As2O14N4S2), CH3COONa, HCl, and CH3COOH used in the present work were of analytical grade. 2-ethyl hexyl phosphonic acid-mono-2- ethyl hexyl ester (P507) is a commercial extractant (purity>95%) and used without any further purification. Kerosene was washed with concentrated sulfuric acid and distilled at 180-220°C.

    2.2 Preparation of solutions

    Eu3+stock solution was prepared by dissolving Eu(CH3COO)3·4H2O in 1 mol·L-1HCl solution, and analyzed by arsenazo III as the chromogenic agent. For Eu3+feed solution, a certain amount of the Eu3+stock solution was diluted with 0.01 mol·L-1HCl solution after adding a calculated amount of CH3COONa and CH3COOH. Arsenazo III stock solution was prepared by dissolving the powder of arsenazo III in deionized water. To obtain the stripping solution, the required amount of HCl was solved and diluted with deionized water to a certain concentration. P507 solution was obtained by diluting a certain amount of extractant with kerosene.

    2.3 Experimental procedure

    The separation with the DCLM was determined as follows. The experiments were accomplished at (25±1)°C in a simple diffusion cell, which consists of two-compartment perspex half-cells, each with effective volume of 70 ml. The membrane impregnated with P507 dissolved in kerosene was clamped between the two half-cells. A microporous PVDF membrane was used as the solid support, the thickness of which is 65 μm, with nominal porosity of 75%, tortuosity of 1.67 and effective area of 10.5 cm2. The feed phase (50 ml) consisted of Eu3+and buffer solution was poured into the perspex half-cell. The mixed dispersion phase consisted of certain volume ratio of the membrane solution containing the carrier P507 to HCl stripping solution was placed into another half-cell. The stability of the SLM was ensured by a modified SLM with stripping dispersion phase, where the aqueous stripping solution was dispersed in the organic membrane solution in a mixer. The stripping dispersion formed in the mixer went to the membrane module to provide a constant supply of the organic solution to the membrane pores. Samples of the feed phase were taken at intervals. The stirred dispersion phase were allowed to stand until the phase separation occurred, and then the Eu3+sample was collected from the dispersion phase. Samples containing Eu3+in the feed phase were analyzed for ion concentration with a UV-1200 spectrophotometer using arsenazo III as the chromogenic agent (under the detection wave length 652 nm). Fig. 1 is the experimental installation of the DCLM process.

    Figure 1 Experimental installation of DCLM process

    1—feed pool; 2—PVDF membrane; 3—feed phase; 4—dispersion pool; 5—membrane solution; 6—stripping phase; 5+6—dispersion phase; 7—magnetic stirrer apparatus

    2.4 Experimental principle and theoretical analysis

    Figure 2 shows the principle of DCLM process, in which concentration change and separation processes are depicted, where subscripts m, f and s stand for membrane phase, feed solution, and dispersion phase, respectively. The co-separation involves following steps.

    (a) Eu3+diffuses from the feed phase to interface A.

    (b) In the membrane phase near interface A, the extraction of Eu3+from the feed solution with carrier P507 [such as (HR)2] in kerosene can be expressed as [24, 25]:

    where1and-1are the reaction percentage constants of the reversible reaction at the interface between the feed phase and membrane phase.

    Figure 2 The principle of DCLM process

    (c) The metal-complex [EuR3(HR)3] diffuses through the membrane A-B.

    (d) In the stripping side near interface B, EuR3(HR)3dissolves in the membrane solution and Eu3+are stripped by stripping agent. At the drop interface, Eu3+in the organic phase interchanges H+in the stripping phase, then Eu3+diffuses to the bulk of the stripping phase and the extractant is regenerated. The stripping reaction can be written as

    where2and-2are the reaction rate constant of the reversible reaction at interface B.

    (e) Carrier P507 returns from interface B to interface A.

    The equation for permeability coefficient can be defined as [26]

    We define

    so that Eq. (1) is expressed as

    In previous study, we obtained [26]

    3 RESULTS AND DISCUSSION

    3.1 Effect of volume ratio of membrane solution to stripping solution

    The effect of volume ratio of membrane solution to stripping solution in the dispersion phase on separation of Eu3+is shown in Fig. 3. The volume ratio is increased from 10︰50 to 50︰10. Volume ratio 50︰10 is better.

    Figure 3 Effect of volume ratio of membrane solution to stripping solution on separation of Eu3+

    (pH in feed phase: 4.0, initial concentration of Eu3+: 1.0×10-4mol·L-1, concentration of HCl solution in dispersion phase: 4.0 mol·L-1, concentration of P507: 0.16 mol·L-1)

    ■?10︰50; ▲?20︰40; ×?30︰30; □?40︰20;◆?50︰10

    At ratios of 50︰10, 40︰20 and 30︰30, the separation percentage of Eu3+are 83.5%, 81.5% and 81% respectively. These separation percentages are satisfactory, so we choose the ratio 30︰30 during the following experiments.

    3.2 Effect of concentration of HCl solution in the dispersion phase

    The effect of concentration of HCl solution in the dispersion phase on separation of Eu3+is shown in Fig. 4. As the acid concentration increases, the separation percentage increases. At the concentration of 5.0 and 4.0 mol·L-1, the separation percentages of Eu3+are 82.5% and 81%, respectively. The increasing of concentration of HCl solution from 2.0 mol·L-1to 3.0 mol·L-1has no significant effect on separation percentage of Eu3+, and it is less than 70%, because the number of Eu3+complex and the concentration of membrane solution which separation through the membrane per unit area of the membrane per unit time are definite. However, under the condition of 6.0 mol·L-1HCl solution, the separation percentage is a little lower than 5.0 mol·L-1and 4.0 mol·L-1, due to higher concentration of HCl solution resulting in a large number of volatilization of HCl during a certain time. The concentration of HCl solution 4.0 mol·L-1in the dispersion phase can be chosen during the following experiments.

    Figure 4 Effect of concentration of HCl solution on separation of Eu3+

    (pH in feed phase: 4.0, initial concentration of Eu3+: 1.0×10-4mol·L-1, volume ratio of membrane solution to stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    concentration/mol·L-1: ■?2; ▲?3; ×?4; □?5;◆?6

    3.3 Effect of pH in the feed phase

    Based on mechanism of mass transfer process, the concentration difference between feed phase and dispersion phase is the driving power of mass transfer process. So in the feed phase the lower the H+concentration is, the stronger the driving power of mass transfer process will be. Stronger power will promote the separation percentage of Eu3+. Equally, the greater the pH value in the feed phase is, the higher the separation percentage of Eu3+is. The effect of pH in the feed phase on separation of Eu3+is studied in the pH range of 3.3 to 4.6, which is adjusted with an HAc-NaAc buffer solution. Initial concentration of Eu3+in the feed phase is 1.0×10-4mol·L-1. The results are shown in the Fig. 5. The separation percentage of Eu3+increases when the pH in the feed phase increased from 3.3 to 4.6, and a maximum separation percentage observed at pH 4.2 is 90.8%. Above the pH of 4.2 in the feed phase, the separation percentage of Eu3+decreases to 86%. When pH value was higher than 4.6, hydroxy complex of Eu3+was formed in the feed phase and the separation percentage of Eu3+decreased. Contrast to the previous cases, the literature [28] suggested the influence of pH on distribution coefficient of extraction process. It is large because the separation process is mainly governed by the driving power of mass transfer caused by the distribution equilibrium, when the renewal effect of the liquid membrane and the diffusion mobility of Eu3+ions are determined under specific experimental conditions [29, 30]. The pH of 4.2 as the optimum pH condition in the feed phase was chosen during the following experiments.

    Figure 5 Effect of pH in the feed phase on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, initial concentration of Eu3+: 1.0×10-4mol·L-1, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    pH: ■?3.3; ▲?3.6; ×?4.0; □?4.2;◆?4.6

    3.4 Effect of initial concentration of Eu3+ in the feed phase

    Effect of initial concentration of Eu3+on separation percentage of Eu3+is studied in the Eu3+concentration range from 0.16×10-4mol·L-1to 1.50×10-4mol·L-1. The results obtained are presented in Fig. 6. With the increasing of initial concentration of Eu3+in the feed phase from 0.16×10-4mol·L-1to 1.50×10-4mol·L-1, the separation percentage of Eu3+decreased during the same time. This is because the number of P507 is definite through the membrane when the interface between the feed phase and the membrane phase is definite. That is to say, the number of Eu3+separated is definite in this separation process. When the Eu3+concentration is 0.8×10-4mol·L-1, 1.0×10-4mol·L-1, and 1.5×10-4mol·L-1, the separation percentage is up to 95.3%, 90.8% and 73.1% in 130 min, respectively. Further more, the separation percentage is up to 97.3% in 100 min, when initial concentration of Eu3+is adjusted to 0.16×10-4mol·L-1, and after 100 min Eu3+is hardly determined, because the concentration of Eu3+is too low to determine, that is to say the Eu3+is exhausted in the feed phase and concentration of Eu3+is below the analytical determination limits.

    Figure 6 Effect of initial concentrations of Eu3+on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, pH in feed phase: 4.2, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    concentration/mol·L-1: ■?0.16×10-4; ▲?0.50×10-4; ×?0.80×10-4;□?1.00×10-4;◆?1.50×10-4

    3.5 Effect of different stripping agents on separation of Eu3+

    The effects of different stripping agents in the dispersion phase on separation of Eu3+are studied. The effect of different stripping agents in the dispersion phase on the separation percentage of Eu3+is shown in Fig. 7. Using hydrochloric acid (HCl) 4 mol·L-1, sulphuric acid (H2SO4) 2 mol·L-1and nitric acid (HNO3) 4 mol·L-1as the stripping agent respectively, it was found that hydrochloric acid is the most efficient stripping agent in this investigation. Under the conditions of hydrochloric acid solution, sulphuric acid solution and nitric acid solution, the separation percentage of Eu3+is up to 95.3%, 92% and 82% respectively. During the following experiment we have still chose the hydrochloric acid as the stripping agent.

    3.6 Effect of concentration of P507 on separation of Eu3+

    Concentration of P507 in the membrane phase and dispersion phase also plays a significant role in separation of Eu3+. Effect of concentration of P507 on separation percentage of Eu3+is studied in the P507 concentration range from 0.036 mol·L-1to 0.23 mol·L-1. The results are shown in the Fig. 8. With the increasing of concentration of P507 in the membrane phase from 0.036 mol·L-1to 0.23 mol·L-1, the separation percentage of Eu3+increases, however, when concentration of P507 increases to 0.23 mol·L-1from 0.16 mol·L-1, the increasing of separation percentage of Eu3+is near. So 0.16 mol·L-1can be chosen as the optimum concentration of carrier.

    Figure 8 Effect of concentration of P507 on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, pH in feed phase: 4.2, initial concentration of Eu3+: 0.8×10-4mol·L-1, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30)

    concentration/mol·L-1: ■?0.016; ▲?0.065; ×?0.100; □?0.160;◆?0.230

    3.7 Effect of ionic strength in the feed phase

    Above experiments, we did not consider the influence of ionic strength. Under the optimum condition, the effect of ionic strength in the feed phase on separation percentage of Eu3+is studied in this section under the same concentration of Eu3+0.8×10-4mol·L-1.The reagent KNO3was used to adjust the ionic strength to 0.5, 1.0, 1.5 and 2.0 mol·L-1respectively. The results are shown in Fig. 9. It indicates that the ionic strength has not influence on the separation percentage of Eu3+.

    4 KINETIC ANALYSIS

    Constructing based on the data of effect of pH in the feed phase, and the relationship developed between 1/cand [H+]3[Eq. (4)], When concentration of carrier is definite.

    Figure 9 Effect of ionic strengths on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, pH in feed phase: 4.2, initial concentration of Eu3+: 0.8×10-4mol·L-1, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    Figure 7 Effect of different stripping agents on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, pH in feed phase: 4.2, initial concentration of Eu3+: 0.8×10-4mol·L-1, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    ■?hydrochloric acid (4 mol·L-1); ▲?sulphuric acid (2 mol·L-1); ×?nitric acid (4 mol·L-1)

    It indicates that the relationship between 1/cand [H+]3is linear (Fig. 10). The value of2is 0.998, which is in good agreement with the theory from Eq. (4). The slope and intercept of the line are 2.3815×1015s·L4·m-1·mol-4and 6.0998×104s·m-1. The thickness of diffusion layerf, which is obtained by using diffusion coefficient of Eu3+in the aqueous solution (6.0×10-10m2·s-1) [27, 31] is thatff·f3.660×10-5m36.6 μm. Then the diffusion coefficientin the membrane, obtained by Eqs. (3) and (4), is thatm2·s-1.

    Figure 10 Comparison between experimental and theoretical (I)

    When+concentration in the feed phase is set, the effect of concentration of carrier on 1/cis studied. The results can be shown in Fig. 11. The value of2is 0.9924, which is in good agreement with the Eq. (4). In the same way, another kinetic equation can be developed as below:

    Figure 11 Comparison between experimental and theoretical

    5 Conclusions

    Optimum separation condition of Eu3+in the DCLM system is that the concentration of HCl solution is 4.0 mol·L-1, volume ratio of membrane solution and stripping solution is 30︰30, the concentration of P507 is 0.16 mol·L-1in the dispersion phase, pH value is 4.2 in the feed phase. When initial concentration of Eu3+is 0.8×10-4mol·L-1, the separation effect of Eu3+is very obvious in the optimum condition and the separation percentage of Eu3+is up to 95.3% during the separation time of 130 min.

    DCLM, owing to a large number of membrane solution is used in the dispersion phase, can supply the losing carrier of supported liquid membrane. As a result, the separation percentage of Eu3+increases, the stability of membrane is enhanced, and the life span of the membrane is extended.

    NOMENCLATURE

    surface area of membrane

    fdiffusion coefficient of the metal ion in feed phase, m2·s-1

    fthickness of diffusion layer between the feed phase and membrane phase, m

    mthickness of the membrane, m

    [H+] concentration of H+, mol·L-1

    [HR] concentration of carrier P507, mol·L-1

    1forward reaction rate constant at the left interface of the membrane

    -1backward reaction rate constant at the left interface of the membrane

    2forward reaction rate constant at the right interface of the membrane

    -2backward reaction rate constant at the right interface of the membrane

    exextraction equilibrium constant

    cpermeability coefficient of metal ion, m·s-1

    fvolume of feed phase

    fseparation resistance due to diffusion by aqueous feed boundry layer, s·m-1

    mseparation resistance due to diffusion through the membrane, s·m-1

    porosity of the membrane

    tortuosity of the membrane

    Subscripts

    f feed phase

    m membrane phase

    s stripping phase

    1 Franken, T., “Liquid membranes-academic exercise or industrial separation proces”,.., 85, 6-10 (1997).

    2 Gu, Z.M., Wu, Q.F., Zheng, Z.X., Li, Z.Q., Jiang, Y.L., Tang C.J., Lin, P.G., “Laboratory and pilot plant test of yttrium recovery from wastewater by electrostatic pseudo liquid membrane”,..., 93, 137-147 (1994).

    3 Gaikwad, A.G., “Synergetic separation of europium through a contained supported liquid membrane using trioctylamine and tributyl phosphate as carriers”,, 63, 917-926 (2004).

    4 Zhang, B.C., Gozzelino, G., Baldi, G., “State of art of the research on supported liquid membrane”,..., 20, 46-54 (2000).

    5 Li, Q.M., Liu, Q., Li, K.A., Tong, S.Y., “Separation study of cadmium through an emulsion liquid membrane”, Talanta, 44, 657-662 (1997).

    6 Bloch, R., Finkelstein, A., “Metal ion separation by dialysis through solvent membrane”,....., 6, 231-237 (1967).

    7 Teramoto, M., Matsuyama, H., Yamashiro, T., Okmoto, S., “Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier”,..., 45 (3), 115-136 (1989).

    8 Fouad, E.A., Bart, H.J., “Emulsion liquid membrane extraction of zinc by a hollow-fiber contact”,..., 307, 156-168 (2008).

    9 Sonawane, J.V., Pabby, A.K., Sastre, A.M., “Au(I) extraction by LIX-79/-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique”,..., 300, 147-155 (2007).

    10 Gabelman, A., Hwang, S.T., “Hollow fiber membrane contactors”,..., 159, 61-106 (1999).

    11 Basualto, C., Marchese, J., Valenzuela, F., Acosta, A., “Extraction of molybdenum by a supported liquid membrane method”,, 59, 999-1007 (2003).

    12 Ho, W.S.W., Wang, B., “Strontium removal by new alkyl phenylphosphonic acids in supported liquid membranes with strip dispersion”,...., 41, 381-388 (2002).

    13 Danesi, P.R., Reichley, Y.L., Rickert, P.G., “Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water separation on the long term stability of the membrane”,..., 31, 117-145 (1987).

    14 Gu, Z.M., “State of the art and recent progress of liquid membrane separation process”,..., 23, 214-223 (2003).

    15 Lin, C., He, G.H., Chen G.H., Tu, Z.H., “Stability of water-in-oil emulsion and its liquid membrane”,....., 18, 224-230 (2004).

    16 Neplenbroek, A.M., Bargeman, D., Smolders, C.A., “Supported liquid membranes: instability effects”,..., 67, 121-132 (1992).

    17 Neplenbroek, A.M., Bargeman, D., Smolders, C.A., “Mechanism of supported liquid membranes degradation: emulsion formation”,..., 67, 133-148 (1992).

    18 Bechiri, O., Ismail, F., Abbessi, M., Samar, M.E.H., “Stability of the emulsion (W/O): application to the extraction of a dawson type heteropolyanion complex in aqueous solution”,..., 52, 895-902 (2008) .

    19 Zha, F.F., Fane, A.G., Fell, C.J.D., “Effect of surface tension gradients on stability of supported liquid membranes”,..., 107, 75-86 (1995).

    20 Ren, Z.Q., Zhang, W.D., Liu, Y.M., Dai, Y., Cui, C.H., “New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater”,..., 62, 6090-6101 (2007).

    21 He, D.S., Luo, X.J., Yang, C.M., Ma, M., Wan, Y., “Study of transport and separation of Zn(II) by a combined supported liquid membrane/strip dispersion process containing D2EHPA in kerosene as the carrier”,, 194, 40-51 (2006).

    22 Pei, L., Yao, B., Zhang, C., “Transport of Tm(III) through dispersion supported liquid membrane containing PC-88A in kerosene as the carrier”,..., 65 (2), 220-227 (2009).

    23 Pei, L., Yao, B., Fu, X., “Study on transport of Dy(III) by dispersion supported liquid membrane”,.., 27 (3), 447-456 (2009).

    24 Kubota, F., Goto, M., Nakashio, F., “Extraction of earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester in the presence of diethylenetriaminepentaacetic acid in aqueous phase”,...., 11, 437-453 (1993).

    25 Choi, K.S., Lee, C.H., Kim, J.G., “Separating Ag, B, Cd, Dy, Eu, and Sm in a Gd matrix using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester extraction chromatography for ICP-AES analysi”,, 71, 662-667 (2007).

    26 Pei, L., Yao, B., Fu, X., Wang, L., “La(III) transport in dispersion supported liquid membrane including PC-88A as the carrier and HCl solution as the stripping solution”,...., 8 (6), 1041-1050 (2008).

    27 Danesi, P.R., Vandegrift, G.F., ”Kinetics and mechanism of the interfacial mass transfer of Eu3+and Am3+in system bis(2-ethylhexyl) phosphate--dodecane NaCl-HCl-water”,..., 85, 36-46 (1981).

    28 Yaftian, M.R., Burgard, M., Dieleman, C.B., Matt, D., “Rare-earth metal-ion separation using a supported liquid membrane mediated by a narrow rim phosphorylated calix(IV) arene”,..., 144 (2), 57-64 (1998).

    29 Jyothi, A., Rao, G.N., “Solvent extraction behaviour of lanthanum(III), cerium(III), europium(III), thorium(IV) and uranium(VI) with 3-phenyl-4-benzoyl-5-isoxazolone”,, 37, 431-433 (1990).

    30 Kandah, M.I., Meunier, J.L., “Removal of nickel ions from water by multi-walled carbon nanotubes”,..., 146, 283-288 (2007).

    31 Chiarizia, R., Castagnola, A., Danesi, P.R., Horwitz, E.P., “Mass transfer rate through solid supported liquid membranes: influence of carrier dimerization and feed metal concentration on membrane permeability”,..., 14 (1), 1-11 (1983).

    ** To whom correspondence should be addressed. E-mail: pellys_0311@163.com

    2010-03-22,

    2010-09-11.

    the National Natural Science Foundation of China (90401009), the Foundation for Planning Project of West Action of Chinese Academy of Sciences (KZCX2-XB2-13), the Research Fund for Excellent Doctoral Thesis of Xi’an University of Technology (602-210805).

    猜你喜歡
    興隆
    我與興隆撞個滿懷
    興隆山楂管理技術(shù)
    河北果樹(2020年2期)2020-05-25 06:58:44
    興隆湖初冬
    萬寧之旅·興隆植物小姐模特大賽(二)
    新教育(2018年27期)2019-01-08 02:23:18
    Unit 6 Travelling around Asia Listening and speaking
    特別的生日禮物
    成都興隆湖畔白鷺飛舞
    我要飛翔
    Topological Srrucrure of US Flighr Nerwork Based on Complex Nerwork Theory
    李興隆 ● 書法欣賞
    中國商論(2014年7期)2014-05-25 05:57:56
    少妇猛男粗大的猛烈进出视频| 亚洲伊人久久精品综合| 欧美变态另类bdsm刘玥| 丰满饥渴人妻一区二区三| av一本久久久久| 日韩一本色道免费dvd| 国产精品国产av在线观看| 黄网站色视频无遮挡免费观看| 人人澡人人妻人| 黄色片一级片一级黄色片| 色网站视频免费| 免费少妇av软件| av欧美777| 国产成人系列免费观看| 纯流量卡能插随身wifi吗| 欧美精品啪啪一区二区三区 | av有码第一页| 十八禁高潮呻吟视频| 啦啦啦视频在线资源免费观看| 欧美日韩一级在线毛片| 亚洲精品美女久久av网站| 蜜桃在线观看..| 久久久精品区二区三区| 丁香六月欧美| 各种免费的搞黄视频| 国产成人精品久久久久久| 国产淫语在线视频| 国产精品国产三级国产专区5o| 亚洲精品av麻豆狂野| 首页视频小说图片口味搜索 | 丰满少妇做爰视频| 大片电影免费在线观看免费| 欧美日韩成人在线一区二区| 成人免费观看视频高清| 亚洲色图 男人天堂 中文字幕| 国产成人精品久久二区二区91| 成年美女黄网站色视频大全免费| 天堂中文最新版在线下载| 一级片免费观看大全| a级毛片在线看网站| 色精品久久人妻99蜜桃| 久久av网站| 乱人伦中国视频| 黄色视频在线播放观看不卡| 黄色a级毛片大全视频| 亚洲欧洲国产日韩| 久久99一区二区三区| 欧美黑人欧美精品刺激| 女人高潮潮喷娇喘18禁视频| 777久久人妻少妇嫩草av网站| 我的亚洲天堂| av又黄又爽大尺度在线免费看| 嫁个100分男人电影在线观看 | 一区二区三区四区激情视频| 欧美人与性动交α欧美精品济南到| 亚洲国产精品一区二区三区在线| 成人亚洲欧美一区二区av| 99国产精品一区二区蜜桃av | 久久人妻熟女aⅴ| videosex国产| 99国产精品免费福利视频| 亚洲少妇的诱惑av| 老司机在亚洲福利影院| 国产成人av激情在线播放| 亚洲av男天堂| 亚洲一区二区三区欧美精品| 成年人免费黄色播放视频| 美女午夜性视频免费| 老司机靠b影院| 五月天丁香电影| av国产精品久久久久影院| xxx大片免费视频| 波多野结衣一区麻豆| 亚洲七黄色美女视频| 91精品三级在线观看| 欧美97在线视频| 妹子高潮喷水视频| 欧美性长视频在线观看| 久久久久久久精品精品| 熟女少妇亚洲综合色aaa.| 操出白浆在线播放| av网站免费在线观看视频| 女性生殖器流出的白浆| 国产成人精品久久久久久| 日韩av不卡免费在线播放| 亚洲精品乱久久久久久| 香蕉国产在线看| 电影成人av| 成人亚洲欧美一区二区av| 午夜福利,免费看| 免费女性裸体啪啪无遮挡网站| 少妇被粗大的猛进出69影院| 欧美+亚洲+日韩+国产| 99热全是精品| 夜夜骑夜夜射夜夜干| 午夜免费鲁丝| www.精华液| 日本vs欧美在线观看视频| 日本av免费视频播放| 亚洲黑人精品在线| 人人妻人人澡人人爽人人夜夜| 亚洲精品一二三| 国产免费又黄又爽又色| 亚洲国产成人一精品久久久| 一二三四在线观看免费中文在| 女人爽到高潮嗷嗷叫在线视频| 精品少妇久久久久久888优播| 国产亚洲午夜精品一区二区久久| 18禁黄网站禁片午夜丰满| 只有这里有精品99| 电影成人av| 成年美女黄网站色视频大全免费| 美女高潮到喷水免费观看| 久久久欧美国产精品| 亚洲成人免费av在线播放| 啦啦啦啦在线视频资源| 97人妻天天添夜夜摸| 亚洲精品国产av成人精品| 国产片特级美女逼逼视频| 国产黄色视频一区二区在线观看| 最近手机中文字幕大全| 国产成人精品久久二区二区免费| 精品少妇久久久久久888优播| 精品一区二区三区av网在线观看 | 99国产精品免费福利视频| 国产成人一区二区在线| 久久av网站| 高清视频免费观看一区二区| 国产伦理片在线播放av一区| 19禁男女啪啪无遮挡网站| 欧美日本中文国产一区发布| 亚洲成色77777| 在线天堂中文资源库| 青草久久国产| 99香蕉大伊视频| 国产高清国产精品国产三级| 黄色a级毛片大全视频| 中文精品一卡2卡3卡4更新| 日韩制服骚丝袜av| 婷婷色综合大香蕉| 最新的欧美精品一区二区| 国产成人精品久久二区二区91| 国产有黄有色有爽视频| 免费高清在线观看日韩| 女性生殖器流出的白浆| 老汉色av国产亚洲站长工具| 亚洲国产精品999| 91麻豆精品激情在线观看国产 | 老司机午夜十八禁免费视频| 欧美人与性动交α欧美精品济南到| 国产精品成人在线| 婷婷色麻豆天堂久久| 男的添女的下面高潮视频| 亚洲七黄色美女视频| 狠狠婷婷综合久久久久久88av| 成人亚洲欧美一区二区av| 人人妻人人澡人人爽人人夜夜| 美女高潮到喷水免费观看| 九草在线视频观看| 国产欧美日韩精品亚洲av| 亚洲男人天堂网一区| 国产又色又爽无遮挡免| 人妻 亚洲 视频| 嫁个100分男人电影在线观看 | 黄片播放在线免费| 亚洲国产最新在线播放| 在线观看www视频免费| 一级黄色大片毛片| 欧美成人精品欧美一级黄| 精品少妇一区二区三区视频日本电影| 亚洲专区国产一区二区| 一级黄色大片毛片| 亚洲精品在线美女| 老司机靠b影院| 美女午夜性视频免费| 无遮挡黄片免费观看| 欧美日韩亚洲高清精品| 狠狠精品人妻久久久久久综合| 丰满饥渴人妻一区二区三| 日韩中文字幕欧美一区二区 | 欧美日韩亚洲综合一区二区三区_| 亚洲,欧美精品.| 国产成人精品久久久久久| 久久中文字幕一级| 国产精品九九99| 日本黄色日本黄色录像| 免费在线观看完整版高清| 国产不卡av网站在线观看| 国产精品香港三级国产av潘金莲 | 免费观看a级毛片全部| 国产成人影院久久av| 欧美精品一区二区大全| 18在线观看网站| 日本午夜av视频| 欧美久久黑人一区二区| 日本欧美国产在线视频| 国产深夜福利视频在线观看| 自线自在国产av| tube8黄色片| 午夜福利,免费看| 少妇裸体淫交视频免费看高清 | 久久久久久久久久久久大奶| 亚洲一区二区三区欧美精品| 午夜av观看不卡| 少妇人妻久久综合中文| 精品少妇久久久久久888优播| 婷婷成人精品国产| 九草在线视频观看| 日本vs欧美在线观看视频| 一本大道久久a久久精品| 18禁观看日本| 黄片小视频在线播放| 欧美精品一区二区大全| 久久这里只有精品19| 精品久久蜜臀av无| 岛国毛片在线播放| 国产野战对白在线观看| 在线观看一区二区三区激情| 美女脱内裤让男人舔精品视频| 亚洲av国产av综合av卡| 亚洲av欧美aⅴ国产| 99精国产麻豆久久婷婷| 午夜福利免费观看在线| 亚洲久久久国产精品| 国产精品av久久久久免费| 成在线人永久免费视频| 丝袜美腿诱惑在线| 99热国产这里只有精品6| av国产精品久久久久影院| 亚洲欧美一区二区三区久久| 黄色视频在线播放观看不卡| 欧美成人精品欧美一级黄| 无遮挡黄片免费观看| 亚洲视频免费观看视频| 性色av乱码一区二区三区2| 国产精品亚洲av一区麻豆| 夜夜骑夜夜射夜夜干| 亚洲欧美日韩另类电影网站| 黄色 视频免费看| 一区二区日韩欧美中文字幕| 免费在线观看完整版高清| 亚洲国产欧美一区二区综合| 久久精品亚洲av国产电影网| 国产一区亚洲一区在线观看| 日本猛色少妇xxxxx猛交久久| 欧美日韩国产mv在线观看视频| 九色亚洲精品在线播放| 亚洲av在线观看美女高潮| 国产免费又黄又爽又色| 国产xxxxx性猛交| 国产精品国产av在线观看| 国产在线视频一区二区| 国产精品.久久久| 99国产精品一区二区蜜桃av | 永久免费av网站大全| 国产精品av久久久久免费| 香蕉丝袜av| 国产欧美亚洲国产| 波野结衣二区三区在线| 电影成人av| 亚洲精品av麻豆狂野| videos熟女内射| 一级,二级,三级黄色视频| 国产av国产精品国产| 欧美av亚洲av综合av国产av| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂| 18禁观看日本| 亚洲av日韩在线播放| 中文字幕色久视频| 亚洲专区国产一区二区| 亚洲久久久国产精品| 天天躁夜夜躁狠狠久久av| 久久影院123| 妹子高潮喷水视频| 看十八女毛片水多多多| 国产成人欧美在线观看 | 久久九九热精品免费| 亚洲,一卡二卡三卡| 涩涩av久久男人的天堂| 成在线人永久免费视频| 桃花免费在线播放| 丝袜脚勾引网站| 午夜免费男女啪啪视频观看| 色精品久久人妻99蜜桃| 欧美另类一区| 一区二区三区激情视频| 十八禁网站网址无遮挡| 麻豆av在线久日| 制服人妻中文乱码| 国产成人a∨麻豆精品| 嫩草影视91久久| 免费女性裸体啪啪无遮挡网站| 亚洲九九香蕉| 美女高潮到喷水免费观看| 一级毛片黄色毛片免费观看视频| 国产熟女欧美一区二区| 国产有黄有色有爽视频| 电影成人av| 免费看十八禁软件| 欧美精品人与动牲交sv欧美| 超色免费av| 欧美日韩福利视频一区二区| 国产一区亚洲一区在线观看| 在线av久久热| 午夜激情久久久久久久| 中文精品一卡2卡3卡4更新| 欧美日韩视频高清一区二区三区二| 亚洲精品久久午夜乱码| 美女福利国产在线| 女人高潮潮喷娇喘18禁视频| 亚洲欧美精品自产自拍| 久久国产精品人妻蜜桃| 国产野战对白在线观看| 亚洲精品久久久久久婷婷小说| 9色porny在线观看| 狂野欧美激情性bbbbbb| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 欧美日韩国产mv在线观看视频| 国产一区有黄有色的免费视频| 久久免费观看电影| 国产成人免费无遮挡视频| 美女午夜性视频免费| 如日韩欧美国产精品一区二区三区| 精品国产国语对白av| 成人午夜精彩视频在线观看| 成年人黄色毛片网站| 我要看黄色一级片免费的| 宅男免费午夜| 国产97色在线日韩免费| 国产一区二区 视频在线| 日韩中文字幕欧美一区二区 | 中文字幕最新亚洲高清| 亚洲国产成人一精品久久久| 精品国产一区二区三区久久久樱花| 成人三级做爰电影| 超碰97精品在线观看| 国产熟女欧美一区二区| 亚洲av电影在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 国产女主播在线喷水免费视频网站| 校园人妻丝袜中文字幕| 日本欧美视频一区| 中文欧美无线码| 久久久久久久精品精品| 三上悠亚av全集在线观看| 99精国产麻豆久久婷婷| 日本wwww免费看| 欧美精品啪啪一区二区三区 | 国产男女内射视频| 日本欧美国产在线视频| 天天影视国产精品| 亚洲激情五月婷婷啪啪| 国产1区2区3区精品| av视频免费观看在线观看| 日本vs欧美在线观看视频| av国产久精品久网站免费入址| 国产又色又爽无遮挡免| 久久精品亚洲av国产电影网| 男人爽女人下面视频在线观看| 国产在线免费精品| 大片电影免费在线观看免费| 晚上一个人看的免费电影| 亚洲国产精品一区二区三区在线| 午夜福利视频精品| 久久毛片免费看一区二区三区| 最新的欧美精品一区二区| 大片免费播放器 马上看| 免费看不卡的av| 色婷婷av一区二区三区视频| 亚洲中文字幕日韩| 国产有黄有色有爽视频| 亚洲中文日韩欧美视频| 少妇精品久久久久久久| 欧美日韩福利视频一区二区| 水蜜桃什么品种好| av有码第一页| 国产高清国产精品国产三级| 青春草视频在线免费观看| 精品国产乱码久久久久久小说| 亚洲三区欧美一区| av视频免费观看在线观看| 极品人妻少妇av视频| 黄网站色视频无遮挡免费观看| 九草在线视频观看| 国产一区二区 视频在线| 国产精品久久久av美女十八| 成人黄色视频免费在线看| a级毛片黄视频| 久久鲁丝午夜福利片| www.精华液| 亚洲av在线观看美女高潮| 欧美日韩成人在线一区二区| 欧美日韩精品网址| 精品免费久久久久久久清纯 | 色婷婷久久久亚洲欧美| 国产精品麻豆人妻色哟哟久久| 看十八女毛片水多多多| 视频区图区小说| 久久99热这里只频精品6学生| 久久久精品区二区三区| 亚洲国产毛片av蜜桃av| 美女高潮到喷水免费观看| 99热国产这里只有精品6| 色婷婷久久久亚洲欧美| 国产男女超爽视频在线观看| 国产成人av激情在线播放| 久热这里只有精品99| 各种免费的搞黄视频| www.自偷自拍.com| 男女之事视频高清在线观看 | 99久久99久久久精品蜜桃| 久久久国产欧美日韩av| 午夜福利免费观看在线| 免费高清在线观看视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲欧美一区二区三区久久| av在线app专区| 19禁男女啪啪无遮挡网站| 国产黄色免费在线视频| 亚洲欧美日韩高清在线视频 | 国产极品粉嫩免费观看在线| 日韩免费高清中文字幕av| 久久久国产精品麻豆| 在线观看国产h片| 精品一区二区三卡| 十分钟在线观看高清视频www| 欧美精品亚洲一区二区| 国产在线视频一区二区| 欧美国产精品一级二级三级| 搡老岳熟女国产| 精品国产乱码久久久久久小说| 不卡av一区二区三区| 黑丝袜美女国产一区| 成人18禁高潮啪啪吃奶动态图| 久久久久久久大尺度免费视频| 久久中文字幕一级| 精品欧美一区二区三区在线| 一区二区三区激情视频| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| 国产精品成人在线| 欧美少妇被猛烈插入视频| 无遮挡黄片免费观看| 宅男免费午夜| 国产成人欧美在线观看 | 久久精品人人爽人人爽视色| 在线观看www视频免费| 久久久国产精品麻豆| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品| 亚洲国产av新网站| 国产成人欧美| 成年美女黄网站色视频大全免费| 欧美日韩视频高清一区二区三区二| 美女午夜性视频免费| 亚洲欧美成人综合另类久久久| 亚洲五月色婷婷综合| 看十八女毛片水多多多| 日本av手机在线免费观看| 亚洲图色成人| 久久天躁狠狠躁夜夜2o2o | 在线观看免费视频网站a站| 国产一区二区三区av在线| netflix在线观看网站| 日韩欧美一区视频在线观看| 午夜av观看不卡| 91九色精品人成在线观看| 亚洲成av片中文字幕在线观看| 久久热在线av| 亚洲av成人不卡在线观看播放网 | 国产三级黄色录像| 免费在线观看日本一区| 午夜福利,免费看| 国产日韩一区二区三区精品不卡| 国产欧美日韩一区二区三 | 国产黄频视频在线观看| 在线观看免费高清a一片| 极品少妇高潮喷水抽搐| 满18在线观看网站| 国产视频首页在线观看| 三上悠亚av全集在线观看| 大型av网站在线播放| 9色porny在线观看| 国产午夜精品一二区理论片| 99香蕉大伊视频| 日本欧美国产在线视频| 亚洲,欧美,日韩| 久久久久久亚洲精品国产蜜桃av| 国产深夜福利视频在线观看| 国产熟女午夜一区二区三区| 亚洲精品在线美女| 国产精品成人在线| 热re99久久精品国产66热6| 一级,二级,三级黄色视频| 免费日韩欧美在线观看| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| 99国产精品免费福利视频| 亚洲国产精品一区三区| 精品人妻在线不人妻| 婷婷丁香在线五月| 十八禁高潮呻吟视频| 中文字幕人妻熟女乱码| 国产精品熟女久久久久浪| 大香蕉久久网| 国产一区二区 视频在线| 日韩 欧美 亚洲 中文字幕| 国产国语露脸激情在线看| 秋霞在线观看毛片| 免费观看av网站的网址| 免费一级毛片在线播放高清视频 | 精品国产一区二区三区久久久樱花| av天堂久久9| 久久久精品免费免费高清| www.精华液| 一个人免费看片子| 99精品久久久久人妻精品| 日韩 亚洲 欧美在线| 成人亚洲欧美一区二区av| 91老司机精品| 久久国产精品男人的天堂亚洲| av福利片在线| 欧美日韩精品网址| 国产免费现黄频在线看| 国产精品一区二区在线不卡| 亚洲欧美色中文字幕在线| 国产极品粉嫩免费观看在线| av线在线观看网站| 久久久久久亚洲精品国产蜜桃av| 男人添女人高潮全过程视频| 国产人伦9x9x在线观看| 日本黄色日本黄色录像| 亚洲成人手机| 大话2 男鬼变身卡| 精品少妇一区二区三区视频日本电影| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡| 国产成人精品久久久久久| 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 啦啦啦中文免费视频观看日本| 欧美黄色片欧美黄色片| 国产视频首页在线观看| 午夜免费观看性视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品一区二区大全| 日韩免费高清中文字幕av| 天天添夜夜摸| 国产免费一区二区三区四区乱码| 国产三级黄色录像| 亚洲色图综合在线观看| 十八禁网站网址无遮挡| 50天的宝宝边吃奶边哭怎么回事| 久久av网站| 久久国产精品人妻蜜桃| 亚洲视频免费观看视频| av一本久久久久| 考比视频在线观看| 国产精品欧美亚洲77777| 在线观看免费视频网站a站| 一级片'在线观看视频| 日韩视频在线欧美| 亚洲国产欧美在线一区| 国产又爽黄色视频| 777米奇影视久久| 国产日韩欧美在线精品| 操美女的视频在线观看| 十八禁高潮呻吟视频| 老司机午夜十八禁免费视频| 少妇粗大呻吟视频| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 精品熟女少妇八av免费久了| 精品人妻1区二区| 日本猛色少妇xxxxx猛交久久| 1024香蕉在线观看| 啦啦啦在线免费观看视频4| 大陆偷拍与自拍| a级毛片黄视频| 婷婷色麻豆天堂久久| 国产精品久久久久久精品古装| 女警被强在线播放| 国产野战对白在线观看| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 国产高清videossex| 一本一本久久a久久精品综合妖精| 脱女人内裤的视频| 99国产综合亚洲精品| 777久久人妻少妇嫩草av网站| 如日韩欧美国产精品一区二区三区| 成年av动漫网址| 91麻豆av在线| 尾随美女入室| 91九色精品人成在线观看| 亚洲色图 男人天堂 中文字幕| 午夜福利乱码中文字幕| 亚洲欧美一区二区三区久久| 后天国语完整版免费观看| 成年动漫av网址| 精品卡一卡二卡四卡免费| 亚洲美女黄色视频免费看| 亚洲精品久久成人aⅴ小说| 丰满少妇做爰视频| 久9热在线精品视频| 国产午夜精品一二区理论片| 老司机深夜福利视频在线观看 | 黄色毛片三级朝国网站| 亚洲人成电影观看| 欧美97在线视频| 亚洲国产最新在线播放| 婷婷色综合大香蕉| 国产一卡二卡三卡精品|